1
|
Brain to blood efflux as a mechanism underlying the neuroprotection mediated by rapid remote preconditioning in brain ischemia. Mol Biol Rep 2020; 47:5385-5395. [DOI: 10.1007/s11033-020-05626-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
|
2
|
Response of distant regions affected by diaschisis commissuralis in one of the most common models of transient focal ischemia in rats. J Chem Neuroanat 2019; 101:101666. [DOI: 10.1016/j.jchemneu.2019.101666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 11/17/2022]
|
3
|
Liu P, Zhang R, Liu D, Wang J, Yuan C, Zhao X, Li Y, Ji X, Chi T, Zou L. Time-course investigation of blood-brain barrier permeability and tight junction protein changes in a rat model of permanent focal ischemia. J Physiol Sci 2018; 68:121-127. [PMID: 28078626 PMCID: PMC10716957 DOI: 10.1007/s12576-016-0516-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/21/2016] [Indexed: 01/04/2023]
Abstract
Permanent middle cerebral artery occlusion (pMCAO) is an animal model that is widely used to simulate human ischemic stroke. However, the timing of the changes in the expression of tight junction (TJ) proteins and synaptic proteins associated with pMCAO remain incompletely understood. Therefore, to further explore the characteristics and mechanisms of blood-brain barrier (BBB) damage during cerebral ischemic stroke, we used a pMCAO rat model to define dynamic changes in BBB permeability within 120 h after ischemia in order to examine the expression levels of the TJ proteins claudin-5 and occludin and the synaptic proteins synaptophysin (SYP) and postsynaptic density protein 95 (PSD95). In our study, Evans blue content began to increase at 4 h and was highest at 8 and 120 h after ischemia. TTC staining showed that cerebral infarction was observed at 4 h and that the percentage of infarct volume increased with time after ischemia. The expression levels of claudin-5 and occludin began to decline at 1 h and were lowest at 8 and 120 h after ischemia. The expression levels of SYP and PSD95 decreased from 12 to 120 h after ischemia. GFAP, an astrocyte marker, gradually increased in the cortex penumbra over time post-ischemia. Our study helps clarify the characteristics of pMCAO models and provides evidence supporting the translational potential of animal stroke models.
Collapse
Affiliation(s)
- Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Rui Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Danyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Jinling Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Chunling Yuan
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Xuemei Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Yinjie Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Xuefei Ji
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Tianyan Chi
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Libo Zou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China.
| |
Collapse
|
4
|
Zhao Z, Ong LK, Johnson S, Nilsson M, Walker FR. Chronic stress induced disruption of the peri-infarct neurovascular unit following experimentally induced photothrombotic stroke. J Cereb Blood Flow Metab 2017; 37:3709-3724. [PMID: 28304184 PMCID: PMC5718325 DOI: 10.1177/0271678x17696100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How stress influences brain repair is an issue of considerable importance, as patients recovering from stroke are known to experience high and often unremitting levels of stress post-event. In the current study, we investigated how chronic stress modified the key cellular components of the neurovascular unit. Using an experimental model of focal cortical ischemia in male C57BL/6 mice, we examined how exposure to a persistently aversive environment, induced by the application of chronic restraint stress, altered the cortical remodeling post-stroke. We focused on systematically investigating changes in the key components of the neurovascular unit (i.e. neurons, microglia, astrocytes, and blood vessels) within the peri-infarct territories using both immunohistochemistry and Western blotting. The results from our study indicated that exposure to chronic stress exerted a significant suppressive effect on each of the key cellular components involved in neurovascular remodeling. Co-incident with these cellular changes, we observed that chronic stress was associated with an exacerbation of motor impairment 42 days post-event. Collectively, these results highlight the vulnerability of the peri-infarct neurovascular unit to the negative effects of chronic stress.
Collapse
Affiliation(s)
- Zidan Zhao
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| | - Lin Kooi Ong
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| | - Sarah Johnson
- 4 School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Nilsson
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| | - Frederick R Walker
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| |
Collapse
|
5
|
Mršić-Pelčić J, Pilipović K, Pelčić G, Vitezić D, Župan G. Decrease in Oxidative Stress Parameters after Post-Ischaemic Recombinant Human Erythropoietin Administration in the Hippocampus of Rats Exposed to Focal Cerebral Ischaemia. Basic Clin Pharmacol Toxicol 2017. [DOI: 10.1111/bcpt.12833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jasenka Mršić-Pelčić
- Department of Pharmacology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| | - Kristina Pilipović
- Department of Pharmacology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| | - Goran Pelčić
- Clinics for Ophthalmology; Clinical Hospital Centre Rijeka; Rijeka Croatia
| | - Dinko Vitezić
- Department of Pharmacology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| | - Gordana Župan
- Department of Pharmacology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| |
Collapse
|