1
|
Liu AB, Liu J, Wang S, Ma L, Zhang JF. Biological role and expression of translationally controlled tumor protein (TCTP) in tumorigenesis and development and its potential for targeted tumor therapy. Cancer Cell Int 2024; 24:198. [PMID: 38835077 DOI: 10.1186/s12935-024-03355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Translationally controlled tumor protein (TCTP), also known as histamine-releasing factor (HRF) or fortilin, is a highly conserved protein found in various species. To date, multiple studies have demonstrated the crucial role of TCTP in a wide range of cellular pathophysiological processes, including cell proliferation and survival, cell cycle regulation, cell death, as well as cell migration and movement, all of which are major pathogenic mechanisms of tumorigenesis and development. This review aims to provide an in-depth analysis of the functional role of TCTP in tumor initiation and progression, with a particular focus on cell proliferation, cell death, and cell migration. It will highlight the expression and pathological implications of TCTP in various tumor types, summarizing the current prevailing therapeutic strategies that target TCTP.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Sheng Wang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| |
Collapse
|
2
|
Du Y, Cai X. Therapeutic potential of natural compounds from herbs and nutraceuticals in spinal cord injury: Regulation of the mTOR signaling pathway. Biomed Pharmacother 2023; 163:114905. [PMID: 37207430 DOI: 10.1016/j.biopha.2023.114905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Spinal cord injury (SCI) is a disease in which the spinal cord is subjected to various external forces that cause it to burst, shift, or, in severe cases, injure the spinal tissue, resulting in nerve injury. SCI includes not only acute primary injury but also delayed and persistent spinal tissue injury (i.e., secondary injury). The pathological changes post-SCI are complex, and effective clinical treatment strategies are lacking. The mammalian target of rapamycin (mTOR) coordinates the growth and metabolism of eukaryotic cells in response to various nutrients and growth factors. The mTOR signaling pathway has multiple roles in the pathogenesis of SCI. There is evidence for the beneficial effects of natural compounds and nutraceuticals that regulate the mTOR signaling pathways in a variety of diseases. Therefore, the effects of natural compounds on the pathogenesis of SCI were evaluated by a comprehensive review using electronic databases, such as PubMed, Web of Science, Scopus, and Medline, combined with our expertise in neuropathology. In particular, we reviewed the pathogenesis of SCI, including the importance of secondary nerve injury after the primary mechanical injury, the roles of the mTOR signaling pathways, and the beneficial effects and mechanisms of natural compounds that regulate the mTOR signaling pathway on pathological changes post-SCI, including effects on inflammation, neuronal apoptosis, autophagy, nerve regeneration, and other pathways. This recent research highlights the value of natural compounds in regulating the mTOR pathway, providing a basis for developing novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yan Du
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xue Cai
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
3
|
Pandamooz S, Jurek B, Dianatpour M, Haerteis S, Limm K, Oefner PJ, Dargahi L, Borhani-Haghighi A, Miyan JA, Salehi MS. The beneficial effects of chick embryo extract preconditioning on hair follicle stem cells: A promising strategy to generate Schwann cells. Cell Prolif 2023:e13397. [PMID: 36631409 DOI: 10.1111/cpr.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
The beneficial effects of hair follicle stem cells in different animal models of nervous system conditions have been extensively studied. While chick embryo extract (CEE) has been used as a growth medium supplement for these stem cells, this is the first study to show the effect of CEE on them. The rat hair follicle stem cells were isolated and supplemented with 10% fetal bovine serum plus 10% CEE. The migration rate, proliferative capacity and multipotency were evaluated along with morphometric alteration and differentiation direction. The proteome analysis of CEE content identified effective factors of CEE that probably regulate fate and function of stem cells. The CEE enhances the migration rate of stem cells from explanted bulges as well as their proliferation, likely due to activation of AP-1 and translationally controlled tumour protein (TCTP) by thioredoxin found in CEE. The increased length of outgrowth may be the result of cyclic AMP response element binding protein (CREB) phosphorylation triggered by active CamKII contained in CEE. Further, CEE supplementation upregulates the expression of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. The elevated expression of target genes and proteins may be due to CREB, AP-1 and c-Myc activation in these stem cells. Given the increased transcript levels of neurotrophins, VEGF, and the expression of PDGFR-α, S100B, MBP and SOX-10 protein, it is possible that CEE promotes the fate of these stem cells towards Schwann cells.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benjamin Jurek
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany.,Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Silke Haerteis
- Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Katharina Limm
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Jaleel A Miyan
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Gao J, Ma Y, Yang G, Li G. Translationally controlled tumor protein: the mediator promoting cancer invasion and migration and its potential clinical prospects. J Zhejiang Univ Sci B 2022; 23:642-654. [PMID: 35953758 DOI: 10.1631/jzus.b2100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved multifunctional protein localized in the cytoplasm and nucleus of eukaryotic cells. It is secreted through exosomes and its degradation is associated with the ubiquitin-proteasome system (UPS), heat shock protein 27 (Hsp27), and chaperone-mediated autophagy (CMA). Its structure contains three α-helices and eleven β-strands, and features a helical hairpin as its hallmark. TCTP shows a remarkable similarity to the methionine-R-sulfoxide reductase B (MsrB) and mammalian suppressor of Sec4 (Mss4/Dss4) protein families, which exerts guanine nucleotide exchange factor (GEF) activity on small guanosine triphosphatase (GTPase) proteins, suggesting that some functions of TCTP may at least depend on its GEF action. Indeed, TCTP exerts GEF activity on Ras homolog enriched in brain (Rheb) to boost the growth and proliferation of Drosophila cells. TCTP also enhances the expression of cell division control protein 42 homolog (Cdc42) to promote cancer cell invasion and migration. Moreover, TCTP regulates cytoskeleton organization by interacting with actin microfilament (MF) and microtubule (MT) proteins and inducing the epithelial-mesenchymal transition (EMT) process. In essence, TCTP promotes cancer cell movement. It is usually highly expressed in cancerous tissues and thus reduces patient survival; meanwhile, drugs can target TCTP to reduce this effect. In this review, we summarize the mechanisms of TCTP in promoting cancer invasion and migration, and describe the current inhibitory strategy to target TCTP in cancerous diseases.
Collapse
Affiliation(s)
- Junying Gao
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yan Ma
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan 250014, China. ,
| |
Collapse
|
5
|
Cheng P, Liao HY, Zhang HH. The role of Wnt/mTOR signaling in spinal cord injury. J Clin Orthop Trauma 2022; 25:101760. [PMID: 35070684 PMCID: PMC8762069 DOI: 10.1016/j.jcot.2022.101760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 01/07/2023] Open
Abstract
Spinal cord injury (SCI) is the most common disabling spinal injury, a complex pathologic process that can eventually lead to severe neurological dysfunction. The Wnt/mTOR signaling pathway is a pervasive signaling cascade that regulates a wide range of physiological processes during embryonic development, from stem cell pluripotency to cell fate. Numerous studies have reported that Wnt/mTOR signaling pathway plays an important role in neural development, synaptogenesis, neuron growth, differentiation and survival after the central nervous system (CNS) is damaged. Wnt/mTOR also plays an important role in regulating various pathophysiological processes after spinal cord injury (SCI). After SCI, Wnt/mTOR signal regulates the physiological and pathological processes of neural stem cell proliferation and differentiation, neuronal axon regeneration, neuroinflammation and pain through multiple pathways. Due to the characteristics of the Wnt signal in SCI make it a potential therapeutic target of SCI. In this paper, the characteristics of Wnt/mTOR signal, the role of Wnt/mTOR pathway on SCI and related mechanisms are reviewed, and some unsolved problems are discussed. It is hoped to provide reference value for the research field of the role of Wnt/mTOR pathway in SCI, and provide a theoretical basis for biological therapy of SCI.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Spine Surgery, LanZhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China
| | - Hai-Yang Liao
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, 342800, PR China
| | - Hai-Hong Zhang
- Department of Spine Surgery, LanZhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China
| |
Collapse
|
6
|
Ding Y, Chen Q. mTOR pathway: A potential therapeutic target for spinal cord injury. Biomed Pharmacother 2021; 145:112430. [PMID: 34800780 DOI: 10.1016/j.biopha.2021.112430] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is the most common disabling spinal injury, and the complex pathological process can eventually lead to severe neurological dysfunction. Many studies have reported that the mammalian target of rapamycin (mTOR) signaling pathway plays an important role in synaptogenesis, neuron growth, differentiation, and survival after central nervous system injury. It is also involved in various traumatic and central nervous system diseases, including traumatic brain injury, neonatal hypoxic-ischemic brain injury, Alzheimer's disease, Parkinson's disease, and cerebral apoplexy. mTOR has also been reported to play an important regulatory role in various pathophysiological processes following SCI. Activation of mTOR signals after SCI can regulate physiological and pathological processes, such as proliferation and differentiation of neural stem cells, regeneration of nerve axons, neuroinflammation, and glial scar formation, through various pathways. Inhibition of mTOR activity has been confirmed to promote repair in SCI. At present, many studies have reported that Chinese herbal medicine can inhibit the SCI-activated mTOR pathway to improve the microenvironment and promote nerve repair after SCI. Due to the role of the mTOR pathway in SCI, it may be a potential therapeutic target for SCI. This review is focused on the pathophysiological process of SCI, characteristics of the mTOR pathway, role of the mTOR pathway in SCI, role of inhibition of mTOR on SCI, and role and significance of inhibition of mTOR by related Chinese herbal medicine inhibitors in SCI. In addition, the review discusses the deficiencies and solutions to mTOR and SCI research shortcomings. This study hopes to provide reference for mTOR and SCI research and a theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 342800, PR China; The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 342800, PR China.
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 342800, PR China; The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 342800, PR China.
| |
Collapse
|
7
|
Beneficial Effects of Resveratrol-Mediated Inhibition of the mTOR Pathway in Spinal Cord Injury. Neural Plast 2018; 2018:7513748. [PMID: 29780409 PMCID: PMC5892236 DOI: 10.1155/2018/7513748] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/03/2018] [Accepted: 02/18/2018] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) causes a high rate of morbidity and disability. The clinical features of SCI are divided into acute, subacute, and chronic phases according to its pathophysiological events. The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in cell death and inflammation in the acute phase and neuroregeneration in the subacute/chronic phases at different times. Resveratrol has the potential of regulating cell growth, proliferation, metabolism, and angiogenesis through the mTOR signaling pathway. Herein, we explicate the role of resveratrol in the repair of SCI through the inhibition of the mTOR signaling pathway. The inhibition of the mTOR pathway by resveratrol has the potential of serving as a neuronal restorative mechanism following SCI.
Collapse
|
8
|
Pinkaew D, Fujise K. Fortilin: A Potential Target for the Prevention and Treatment of Human Diseases. Adv Clin Chem 2017; 82:265-300. [PMID: 28939212 DOI: 10.1016/bs.acc.2017.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fortilin is a highly conserved 172-amino-acid polypeptide found in the cytosol, nucleus, mitochondria, extracellular space, and circulating blood. It is a multifunctional protein that protects cells against apoptosis, promotes cell growth and cell cycle progression, binds calcium (Ca2+) and has antipathogen activities. Its role in the pathogenesis of human and animal diseases is also diverse. Fortilin facilitates the development of atherosclerosis, contributes to both systemic and pulmonary arterial hypertension, participates in the development of cancers, and worsens diabetic nephropathy. It is important for the adaptive expansion of pancreatic β-cells in response to obesity and increased insulin requirement, for the regeneration of liver after hepatectomy, and for protection of the liver against alcohol- and ER stress-induced injury. Fortilin is a viable surrogate marker for in vivo apoptosis, and it plays a key role in embryo and organ development in vertebrates. In fish and shrimp, fortilin participates in host defense against bacterial and viral pathogens. Further translational research could prove fortilin to be a viable molecular target for treatment of various human diseases including and not limited to atherosclerosis, hypertension, certain tumors, diabetes mellitus, diabetic nephropathy, hepatic injury, and aberrant immunity and host defense.
Collapse
Affiliation(s)
- Decha Pinkaew
- University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ken Fujise
- University of Texas Medical Branch at Galveston, Galveston, TX, United States; The Institute of Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX, United States.
| |
Collapse
|
9
|
Jiang X, Yu M, Ou Y, Cao Y, Yao Y, Cai P, Zhang F. Downregulation of USP4 Promotes Activation of Microglia and Subsequent Neuronal Inflammation in Rat Spinal Cord After Injury. Neurochem Res 2017; 42:3245-3253. [PMID: 28755289 DOI: 10.1007/s11064-017-2361-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 06/11/2017] [Accepted: 07/18/2017] [Indexed: 01/03/2023]
Abstract
NF-κB is involved in the activation of microglia, which induces secondary spinal cord injury (SCI). This process involves the activation of NF-κB signaling pathway by TRAF6 through its polyubiquitination function. We know that deubiquitination of TRAF6 mediated by deubiquitinating enzyme (DUB) significantly inhibits activation of NF-κB pathway. The ubiquitin-specific protease 4 (USP4) belongs to the deubiquitinase family. Therefore, we hypothesize that USP4 is involved in the microglial activation and subsequent neuronal inflammation after SCI. In this study, we examined the expression and the role of USP4 after SCI. Western blot analysis showed that the expression of USP4 was downregulated and the expression of p-p65 was upregulated in the spinal cord after SCI. Immunohistochemical and immunofluorescence staining showed that USP4 was expressed in microglia but its expression decreased after SCI. In vitro LPS-induced activation of microglia showed decreased expression of USP4 and increased expression of p-p65 and TRAF6. USP4 silencing in LPS-induced activation of microglia promoted the expression of p-p65 and TRAF6 and the secretion of TNF-α and IL-1β. In conclusion, our study provides the first evidence that in microglial cells expression of USP4 decreases after SCI in rats. The downregulation of USP4 expression may promote microglial activation and subsequent neuronal inflammation through NF-κB by attenuating the deubiquitination of TRAF6. This mechanism is of great significance in the pathophysiology of secondary SCI.
Collapse
Affiliation(s)
- Xingjie Jiang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, Jiangsu, China
| | - Mingchen Yu
- Medical College, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yiqing Ou
- Medical College, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yong Cao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, Jiangsu, China
| | - Yu Yao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, Jiangsu, China
| | - Ping Cai
- Department of Orthopedics and Traumatology, Jiangsu Province Hospital of TCM, Nanjing, 210029, Jiangsu, China
| | - Feng Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China. .,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
10
|
Hao S, Qin Y, Yin S, He J, He D, Wang C. Serum translationally controlled tumor protein is involved in rat liver regeneration after hepatectomy. Hepatol Res 2016; 46:1392-1401. [PMID: 26969900 DOI: 10.1111/hepr.12695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/12/2022]
Abstract
AIM The translationally controlled tumor protein (TCTP) has been reported to promote progression of many physiological processes. However, whether TCTP is involved in liver regeneration has been rarely studied. This study aimed to investigate the potential role of serum TCTP in liver regeneration after two-thirds partial hepatectomy. METHODS The synthesis rate and accumulated expression of TCTP was assessed by phosphor imaging and Western blot analysis, respectively. The mRNA expression of tctp was analyzed by quantitative real-time PCR. The effect of serum TCTP on hepatocyte proliferation was investigated by bromodeoxyuridine incorporation, liver/body weight ratio, albumin concentration, and histological examination of liver following treatment of rat with anti-TCTP antibody or prokaryotic TCTP protein before hepatectomy. The MTT assay was used to examine effect of TCTP on hepatocyte proliferation in vitro. RESULTS The results showed that the expression of intracellular and serum TCTP protein was significantly increased in rats after two-thirds partial hepatectomy. In vivo bromodeoxyuridine labeling assay suggested that treatment with anti-TCTP antibody before hepatectomy significantly decreased hepatocyte proliferation and liver/body weight ratio. The prokaryotic TCTP had a potential promoting effect on hepatocyte proliferation both in vivo and in vitro, although prokaryotic TCTP given to rats prior to hepatectomy did not increase the proliferation ratio or liver/body weight ratio. Furthermore, anti-TCTP antibody pretreatment decreased the expression of cyclin E, cdk2, and interleukin-6 in rat liver. CONCLUSION These findings suggest serum TCTP is involved in rat liver regeneration through promoting hepatocyte proliferation.
Collapse
Affiliation(s)
- Shuai Hao
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Yu Qin
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Sheng Yin
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Jinjun He
- Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Dacheng He
- Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Chengtao Wang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|