1
|
Gan J, Wang Y, Zhang F, Zang X, Meng F, Gu T, Xu Z, Li Z, Cai G, Wu Z, Hong L. Analysis of differential transcriptome expression reveals that ISG15 provides support for embryo development by promoting angiogenesis in porcine mesometrium. Int J Biol Macromol 2025; 306:141601. [PMID: 40024418 DOI: 10.1016/j.ijbiomac.2025.141601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Mesometrium is the "gateway" through which the endometrium exchanges nutrients and substances with the outside world due to blood vessels entering endometrium across mesometrium. Therefore, dissecting the transcription atlas of the mesometrium will be a great help in understanding the role of mesometrium during implantation. In this study, we collected samples from the mesometrium and adjacent endometrium on the 12th day of estrous cycle and pregnancy. Transcription atlas of mesometrium and adjacent endometrium revealed that genes such as ISG15, which are related to the pathway of response to Interferon α and γ, were significantly enriched. The result of immunohistochemistry demonstrated that the core genes within these pathways were mainly located in the vascular endothelial cells both the endometrium and mesometrium. ISG15 interferon assay revealed the down-regulation of ISG15 induced proliferation, migration and tube formation. Taken together, we concluded that down-regulation of genes related to response of interferons promoted angiogenesis in the mesometrium and adjacent endometrium, allowing mesometrium to play an essential supportive role in pregnancy.
Collapse
Affiliation(s)
- Jianyu Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongzhong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xupeng Zang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fanming Meng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ting Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zheng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zicong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Gengyuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China.
| | - Linjun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Regional Gene Bank of Livestock (Gene Bank of Guangdong Livestock and Poultry), Guangzhou 510642, China.
| |
Collapse
|
2
|
Wang H, Dou L. Single-cell RNA sequencing reveals hub genes of myocardial infarction-associated endothelial cells. BMC Cardiovasc Disord 2024; 24:70. [PMID: 38267885 PMCID: PMC10809747 DOI: 10.1186/s12872-024-03727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) is a cardiovascular disease that seriously threatens human health. Dysangiogenesis of endothelial cells (ECs) primarily inhibits recovery from MI, but the specific mechanism remains to be further elucidated. METHODS In this study, the single-cell RNA-sequencing data from both MI and Sham mice were analyzed by the Seurat Package (3.2.2). The number of ECs in MI and Sham groups were compared by PCA and tSNE algorithm. FindMarkers function of Seurat was used to analyze the DEGs between the MI and Sham groups. Then, the ECs was further clustered into 8 sub-clusters for trajectory analysis. The BEAM was used to analyze the branch point 3 and cluster the results. In addition, the DEGs in the microarray data set of MI and Sham mice were cross-linked, and the cross-linked genes were used to construct PPI networks. The key genes with the highest degree were identified and analyzed for functional enrichment. Finally, this study cultured human umbilical vein endothelial cells (HUVECs), established hypoxia models, and interfered with hub gene expression in cells. The impact of hub genes on the migration and tube formation of hypoxic-induced HUVECs were verified by Wound healing assays and tubule formation experiments. RESULTS The number and proportion of ECs in the MI group were significantly lower than those in the Sham group. Meantime, 225 DEGs were found in ECs between the MI and Sham groups. Through trajectory analysis, EC4 was found to play an important role in MI. Then, by using BEAM to analyze the branch point 3, and clustering the results, a total of 495 genes were found to be highly expressed in cell Fate2 (mainly EC4). In addition, a total of 194 DEGs were identified in Micro array dataset containing both MI and Sham mice. The hub genes (Timp1 and Fn1) with the highest degree were identified. Inhibiting Timp1 and Fn1 expression promoted the migration and tube formation of HUVECs. CONCLUSIONS Our data highlighted the non-linear dynamics of ECs in MI, and provided a foothold for analyzing cardiac homeostasis and pro-angiogenesis in MI.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cardiovascular Medicine, Zhejiang Greentown Cardiovascular Hospital, No.409 Gudun Road, Hangzhou, 310000, Zhejiang, China
| | - Liping Dou
- Department of Geriatrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318 Chaowang Road, Hangzhou, 310005, Zhejiang, China.
| |
Collapse
|
3
|
Xue Y, Shen Z, Tao F, Zhou J, Xu B. Transcriptomic Analysis Reveal the Molecular Mechanisms of Seed Coat Development in Cucurbita pepo L. FRONTIERS IN PLANT SCIENCE 2022; 13:772685. [PMID: 35283914 PMCID: PMC8912962 DOI: 10.3389/fpls.2022.772685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/06/2022] [Indexed: 05/24/2023]
Abstract
Cucurbita pepo is one of the earliest cultivated crops. It is native to Central and South America and is now widely cultivated all over the world for its rich nutrition, short growth period, and high yield, which make it suitable for intercropping. Hull-less C. pepo L. (HLCP) is a rare variant in nature that is easier to consume. Its seed has a seed kernel but lacks a seed coat. The molecular mechanism underlying the lack of seed coat development in the HLCP variety is not clear yet. The BGISEQ-500 sequencing platform was used to sequence 18 cDNA libraries of seed coats from hulled C. pepo (CP) and HLCP at three developmental stages (8, 18, and 28 days) post-pollination. We found that lignin accumulation in the seed coat of the HLCP variety was much lower than that of the CP variety. A total of 2,099 DEGs were identified in the CP variety, which were enriched mainly in the phenylpropanoid biosynthesis pathway, amino sugar, and nucleotide sugar metabolism pathways. A total of 1,831 DEGs were identified in the HLCP variety and found to be enriched mainly in the phenylpropanoid biosynthesis and metabolism pathways of starch and sucrose. Among the DEGs, hub proteins (FusA), protein kinases (IRAK4), and several transcription factors related to seed coat development (MYB, bHLH, NAC, AP2/EREBP, WRKY) were upregulated in the CP variety. The relative expression levels of 12 randomly selected DEGs were determined using quantitative real-time PCR analysis and found to be consistent with those obtained using RNA-Seq, with a correlation coefficient of 0.9474. We found that IRAK4 protein kinases, AP2/EREBP, MYB, bHLH, and NAC transcription factors may play important roles in seed coat development, leading to the formation of HLCP.
Collapse
Affiliation(s)
- Yingyu Xue
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Zhiyan Shen
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Fei Tao
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Jingjiang Zhou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Narovlyansky AN, Poloskov VV, Ivanova AM, Mezentseva MV, Suetina IA, Russu LI, Chelarskaya ES, Izmest'eva AV, Ospelnikova TP, Zubashev IK, Sarymsakov AA, Ershov FI. [Interferon-regulating activity of the CelAgrip drug and its influence on the formation of reactive oxygen species and expression of innate immunity genes in Burkitt's lymphome cells cultures.]. Vopr Virusol 2021; 65:87-94. [PMID: 32515564 DOI: 10.36233/0507-4088-2020-65-2-87-94] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/31/2020] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Interferons (IFN) and IFN inducers are effective in suppressing viral reproduction and correcting of the innate immunity mechanisms. The aim of the study was to test the hypothesis of the possible involvement of the IFN inducer CelAgrip (CA) as an activator or suppressor of antiviral effects in Burkitt's lymphoma (LB) cell cultures with different ability to produce Epstein-Barr virus antigens (EBV). MATERIAL AND METHODS The kinetic analysis of the dynamics of reactive oxygen species (ROS) production and determination of gene group expression by real-time PCR in response to CA treatment were done in human cell lines LB P3HR-1 and Namalva, spontaneously producing and not producing EBV antigens. RESULTS AND DISCUSSION When treating CA in Namalva cells, a decrease in the ROS activation index was found; in P3HR-1 cells, an increase was observed. After treatment with CA, there was no reliable activation of the IFN-α, IFN-β and IFN-λ genes in Namalva cells, but the expression of the ISG15 and P53(TP53) genes was increased more than 1200 times and 4.5 times, respectively. When processing the CA of P3HR-1 cells, the expression of IFN-α genes increased by more than 200 times, IFN-λ - 100 times, and the ISG15 gene - 2.2 times. The relationship between IFN-inducing action of CA and the activity of ISG15 and ROS in LB cell cultures producing and not producing EBV antigens is supposed. CONCLUSION In Namalva cells that do not produce EBV antigens the treatment of CA results in suppression of ROS generation and activation of the expression of genes ISG15 and P53 (TP53); in P3HR-1 cells producing EBV antigens, the opposite picture is observed - the formation of ROS and the expression of the IFN-α and IFN-λ genes are activated and the activity of the ISG15 and P53 (TP53) genes is suppressed.
Collapse
Affiliation(s)
- A N Narovlyansky
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| | - V V Poloskov
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| | - A M Ivanova
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| | - M V Mezentseva
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| | - I A Suetina
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| | - L I Russu
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| | - E S Chelarskaya
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| | - A V Izmest'eva
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| | - T P Ospelnikova
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| | - I K Zubashev
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| | - A A Sarymsakov
- Institute of Polymer Chemystry and Physics, Tashkent, 100128, Uzbekistan
| | - F I Ershov
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| |
Collapse
|
5
|
Szlavicz E, Olah P, Szabo K, Pagani F, Bata-Csorgo Z, Kemeny L, Szell M. Analysis of psoriasis-relevant gene expression and exon usage alterations after silencing of SR-rich splicing regulators. Exp Dermatol 2018. [DOI: 10.1111/exd.13530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Eszter Szlavicz
- Faculty of Medicine; Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
- Faculty of Medicine; Department of Dermatology, Venereology and Oncodermatology; University of Pécs; Pécs Hungary
| | - Peter Olah
- Faculty of Medicine; Department of Dermatology, Venereology and Oncodermatology; University of Pécs; Pécs Hungary
- Department of Dermatology; University Hospital Düsseldorf; Düsseldorf Germany
| | - Kornélia Szabo
- Faculty of Medicine; Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
- MTA-SZTE Dermatological Research Group; University of Szeged; Szeged Hungary
| | - Franco Pagani
- International Centre for Genetic Engineering and Biotechnology; Trieste Italy
| | - Zsuzsanna Bata-Csorgo
- Faculty of Medicine; Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
- MTA-SZTE Dermatological Research Group; University of Szeged; Szeged Hungary
| | - Lajos Kemeny
- Faculty of Medicine; Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
- MTA-SZTE Dermatological Research Group; University of Szeged; Szeged Hungary
| | - Márta Szell
- MTA-SZTE Dermatological Research Group; University of Szeged; Szeged Hungary
- Faculty of Medicine; Department of Medical Genetics; University of Szeged; Szeged Hungary
| |
Collapse
|
6
|
Li G, Wang X, Luo Q, Gan C. Identification of key genes and long non‑coding RNAs in celecoxib‑treated lung squamous cell carcinoma cell line by RNA‑sequencing. Mol Med Rep 2018; 17:6456-6464. [PMID: 29512696 PMCID: PMC5928627 DOI: 10.3892/mmr.2018.8656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 08/03/2017] [Indexed: 12/11/2022] Open
Abstract
Celecoxib is an inhibitor of cyclooxygenase-2, a gene that is often aberrantly expressed in the lung squamous cell carcinoma (LSQCC). The present study aims to provide novel insight into chemoprevention by celecoxib treatment. The human LSQCC cell line SK‑MES‑1 was treated with or without celecoxib and RNA‑sequencing (RNA‑seq) was performed on the Illumina HiSeq 2000 platform. Expression levels of genes or long non‑coding RNAs (lncRNAs) were calculated by Cufflinks software. Subsequently, differentially expressed genes (DEGs) and differentially expressed lncRNAs (DE‑LNRs) between the two groups were selected using the limma package and LNCipedia 3.0, respectively; followed by co‑expression analysis based on their expression correlation coefficient (CC). Enrichment analysis for the DEGs and co‑expressed DE‑LNRs were performed. Protein‑protein interaction (PPI) network analysis for DEGs was performed using STRING database. A set of 317 DEGs and 25 DE‑LNRs were identified between celecoxib‑treated and non‑treated cell lines. A total of 12 pathways were enriched by the DEGs, including 'protein processing in endoplasmic reticulum' for activating transcription factor 4 (ATF4), 'mammalian target of rapamycin (mTOR) signaling pathway' for vascular endothelial growth factor A (VEGFA) and 'ECM‑receptor interaction' for fibronectin 1 (FN1). Genes such as VEGFA, ATF4 and FN1 were highlighted in the PPI network. VEGFA was linked with lnc‑AP000769.1‑2:10 (CC= ‑0.99227), whereas ATF4 and FN1 were closely correlated with lnc‑HFE2‑2:1 (CC=0.996159 and ‑0.98714, respectively). lncRNAs were also enriched in pathways such as 'mTOR signaling pathway' for lnc‑HFE2‑2:1. Several important molecules were identified in celecoxib‑treated LSQCC cell lines, such as VEGFA, ATF4, FN1, lnc‑AP000769.1‑2:10 and lnc‑HFE2‑2:1, which may enhance the anti‑cancer effects of celecoxib on LSQCC.
Collapse
Affiliation(s)
- Gang Li
- Department of Thoracic Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Xuehai Wang
- Department of Thoracic Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Qingsong Luo
- Department of Thoracic Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Chongzhi Gan
- Department of Thoracic Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
7
|
Tao F, Wang J, Guo Z, Hu J, Xu X, Yang J, Chen X, Hu X. Transcriptomic Analysis Reveal the Molecular Mechanisms of Wheat Higher-Temperature Seedling-Plant Resistance to Puccinia striiformis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2018; 9:240. [PMID: 29541084 PMCID: PMC5835723 DOI: 10.3389/fpls.2018.00240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a destructive disease of wheat worldwide. The disease is preferably controlled by growing resistant cultivars. Wheat cultivar Xiaoyan 6 (XY 6) has been resistant to stripe rust since its release. In the previous studies, XY 6 was found to have higher-temperature seedling-plant (HTSP) resistance. However, the molecular mechanisms of HTSP resistance were not clear. To identify differentially expressed genes (DEGs) involved in HTSP resistance, we sequenced 30 cDNA libraries constructed from XY 6 seedlings exposed to several temperature treatments. Compared to the constant normal (15°C) and higher (20°C) temperature treatments, 1395 DEGs were identified in seedlings exposed to 20°C for 24 h (to activate HTSP resistance) and then kept at 15°C. These DEGs were located on all 21 chromosomes, with 29.2% on A, 41.1% on B and 29.7% on D genomes, by mapping to the Chinese Spring wheat genome. The 1395 DEGs were enriched in ribosome, plant-pathogen interaction and glycerolipid metabolism pathways, and some of them were identified as hub proteins (phosphatase 2C10), resistance protein homologs, WRKY transcription factors and protein kinases. The majority of these genes were up-regulated in HTSP resistance. Based on the differential expression, we found that phosphatase 2C10 and LRR receptor-like serine/threonine protein kinases are particularly interesting as they may be important for HTSP resistance through interacting with different resistance proteins, leading to a hypersensitive response.
Collapse
Affiliation(s)
- Fei Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Junjuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhongfeng Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jingjing Hu
- Wuhan UnigueGene Bioinformatics Science and Technology Co., Ltd, Wuhan, China
| | - Xiangming Xu
- NIAB East Malling Research (EMR), East Malling, United Kingdom
| | - Jiarong Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- *Correspondence: Jiarong Yang
| | - Xianming Chen
- Agricultural Research Service, United States Department of Agriculture and Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Xiaoping Hu
| |
Collapse
|
8
|
Du X, Hu C, Yao Y, Sun S, Zhang Y. Analysis and Prediction of Exon Skipping Events from RNA-Seq with Sequence Information Using Rotation Forest. Int J Mol Sci 2017; 18:ijms18122691. [PMID: 29231888 PMCID: PMC5751293 DOI: 10.3390/ijms18122691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/21/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022] Open
Abstract
In bioinformatics, exon skipping (ES) event prediction is an essential part of alternative splicing (AS) event analysis. Although many methods have been developed to predict ES events, a solution has yet to be found. In this study, given the limitations of machine learning algorithms with RNA-Seq data or genome sequences, a new feature, called RS (RNA-seq and sequence) features, was constructed. These features include RNA-Seq features derived from the RNA-Seq data and sequence features derived from genome sequences. We propose a novel Rotation Forest classifier to predict ES events with the RS features (RotaF-RSES). To validate the efficacy of RotaF-RSES, a dataset from two human tissues was used, and RotaF-RSES achieved an accuracy of 98.4%, a specificity of 99.2%, a sensitivity of 94.1%, and an area under the curve (AUC) of 98.6%. When compared to the other available methods, the results indicate that RotaF-RSES is efficient and can predict ES events with RS features.
Collapse
Affiliation(s)
- Xiuquan Du
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Anhui University, Hefei 230601, China.
- Center of Information Support & Assurance Technology, Anhui University, Hefei 230601, China.
- School of Computer Science and Technology, Anhui University, Hefei 230601, China.
| | - Changlin Hu
- School of Computer Science and Technology, Anhui University, Hefei 230601, China.
| | - Yu Yao
- School of Computer Science and Technology, Anhui University, Hefei 230601, China.
| | - Shiwei Sun
- School of Computer Science and Technology, Anhui University, Hefei 230601, China.
| | - Yanping Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Anhui University, Hefei 230601, China.
- Center of Information Support & Assurance Technology, Anhui University, Hefei 230601, China.
- School of Computer Science and Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
9
|
Villarroya-Beltri C, Guerra S, Sánchez-Madrid F. ISGylation - a key to lock the cell gates for preventing the spread of threats. J Cell Sci 2017; 130:2961-2969. [PMID: 28842471 DOI: 10.1242/jcs.205468] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Interferon stimulated gene 15 (ISG15) is an ubiquitin-like protein whose expression and conjugation to targets (ISGylation) is induced by infection, interferon (IFN)-α and -β, ischemia, DNA damage and aging. Attention has historically focused on the antiviral effects of ISGylation, which blocks the entry, replication or release of different intracellular pathogens. However, recently, new functions of ISGylation have emerged that implicate it in multiple cellular processes, such as DNA repair, autophagy, protein translation and exosome secretion. In this Review, we discuss the induction and conjugation of ISG15, as well as the functions of ISGylation in the prevention of infections and in cancer progression. We also offer a novel perspective with regard to the latest findings on this pathway, with special attention to the role of ISGylation in the inhibition of exosome secretion, which is mediated by fusion of multivesicular bodies with lysosomes. Finally, we propose that under conditions of stress or infection, ISGylation acts as a defense mechanism to inhibit normal protein translation by modifying protein kinase R (PKR, also known as EIF2AK2), while any newly synthesized proteins are being tagged and thus marked as potentially dangerous. Then, the endosomal system is re-directed towards protein degradation at the lysosome, to effectively 'lock' the cell gates and thus prevent the spread of pathogens, prions and deleterious aggregates through exosomes.
Collapse
Affiliation(s)
- Carolina Villarroya-Beltri
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.,Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Susana Guerra
- Preventive Medicine Department, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain .,Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Hsu KS, Zhao X, Cheng X, Guan D, Mahabeleshwar GH, Liu Y, Borden E, Jain MK, Kao HY. Dual regulation of Stat1 and Stat3 by the tumor suppressor protein PML contributes to interferon α-mediated inhibition of angiogenesis. J Biol Chem 2017; 292:10048-10060. [PMID: 28432122 DOI: 10.1074/jbc.m116.771071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/18/2017] [Indexed: 01/13/2023] Open
Abstract
IFNs are effective in inhibiting angiogenesis in preclinical models and in treating several angioproliferative disorders. However, the detailed mechanisms of IFNα-mediated anti-angiogenesis are not completely understood. Stat1/2/3 and PML are IFNα downstream effectors and are pivotal regulators of angiogenesis. Here, we investigated PML's role in the regulation of Stat1/2/3 activity. In Pml knock-out (KO) mice, ablation of Pml largely reduces IFNα angiostatic ability in Matrigel plug assays. This suggested an essential role for PML in IFNα's anti-angiogenic function. We also demonstrated that PML shared a large cohort of regulatory genes with Stat1 and Stat3, indicating an important role of PML in regulating Stat1 and Stat3 activity. Using molecular tools and primary endothelial cells, we demonstrated that PML positively regulates Stat1 and Stat2 isgylation, a ubiquitination-like protein modification. Accordingly, manipulation of the isgylation system by knocking down USP18 altered IFNα-PML axis-mediated inhibition of endothelial cell migration and network formation. Furthermore, PML promotes turnover of nuclear Stat3, and knockdown of PML mitigates the effect of LLL12, a selective Stat3 inhibitor, on IFNα-mediated anti-angiogenic activity. Taken together, we elucidated an unappreciated mechanism in which PML, an IFNα-inducible effector, possess potent angiostatic activity, doing so in part by forming a positive feedforward loop with Stat1/2 and a negative feedback loop with Stat3. The interplay between PML, Stat1/Stat2, and Stat3 contributes to IFNα-mediated inhibition of angiogenesis, and disruption of this network results in aberrant IFNα signaling and altered angiostatic activity.
Collapse
Affiliation(s)
| | - Xuan Zhao
- From the Department of Biochemistry and
| | | | | | | | - Yu Liu
- From the Department of Biochemistry and
| | - Ernest Borden
- Taussig Cancer Institute, Cleveland Clinic Case Comprehensive Cancer Center, Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland, Ohio 44195, and
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio 44106
| | - Hung-Ying Kao
- From the Department of Biochemistry and .,The Comprehensive Cancer Center of Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106
| |
Collapse
|