1
|
Rodolaki K, Pergialiotis V, Iakovidou N, Boutsikou T, Iliodromiti Z, Kanaka-Gantenbein C. The impact of maternal diabetes on the future health and neurodevelopment of the offspring: a review of the evidence. Front Endocrinol (Lausanne) 2023; 14:1125628. [PMID: 37469977 PMCID: PMC10352101 DOI: 10.3389/fendo.2023.1125628] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Maternal health during gestational period is undoubtedly critical in shaping optimal fetal development and future health of the offspring. Gestational diabetes mellitus is a metabolic disorder occurring in pregnancy with an alarming increasing incidence worldwide during recent years. Over the years, there is a growing body of evidence that uncontrolled maternal hyperglycaemia during pregnancy can potentially have detrimental effect on the neurodevelopment of the offspring. Both human and animal data have linked maternal diabetes with motor and cognitive impairment, as well as autism spectrum disorders, attention deficit hyperactivity disorder, learning abilities and psychiatric disorders. This review presents the available data from current literature investigating the relationship between maternal diabetes and offspring neurodevelopmental impairment. Moreover, possible mechanisms accounting for the detrimental effects of maternal diabetes on fetal brain like fetal neuroinflammation, iron deficiency, epigenetic alterations, disordered lipid metabolism and structural brain abnormalities are also highlighted. On the basis of the evidence demonstrated in the literature, it is mandatory that hyperglycaemia during pregnancy will be optimally controlled and the impact of maternal diabetes on offspring neurodevelopment will be more thoroughly investigated.
Collapse
Affiliation(s)
- Kalliopi Rodolaki
- First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilios Pergialiotis
- First Department of Obstetrics and Gynecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoleta Iakovidou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Boutsikou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Zoe Iliodromiti
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Kanaka-Gantenbein
- First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Sardar R, Hami J, Soleimani M, Joghataei MT, Shirazi R, Golab F, Namjoo Z, Zandieh Z. Maternal diabetes-induced alterations in the expression of brain-derived neurotrophic factor in the developing rat hippocampus. J Chem Neuroanat 2021; 114:101946. [PMID: 33745942 DOI: 10.1016/j.jchemneu.2021.101946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/19/2021] [Accepted: 03/04/2021] [Indexed: 01/06/2023]
Abstract
Maternal diabetes during pregnancy affects the development of hippocampus in the offspring. Brain-derived neurotrophic factor (BDNF) has received increasing attention for its role in regulating the survival and differentiation of neuronal cells in developing and adult brain. In the current study, we evaluated the effects of maternal diabetes and insulin treatment on expression and distribution pattern of BDNF in the hippocampus of neonatal rats at the first two postnatal weeks. We found no differences in hippocampal expression of BDNF between diabetics with normal control or insulin treated neonatal rats at postnatal day (P0) (P > 0.05 each). Nevertheless, there was a marked BDNF downregulation in both sides' hippocampi of male/female diabetic group in two-week-old offspring (P ≤ 0.05 each). Furthermore, the numerical density of BDNF+ cells was significantly reduced in the right/left dentate gyrus (DG) of male and female newborns born to diabetic animals at all studied postnatal days (P ≤ 0.05 each). In addition, a lower number of reactive cells have shown in the all hippocampal subareas in the diabetic pups at P14 (P ≤ 0.05 each). Our results have demonstrated that the insulin-treatment improves some of the negative impacts of diabetes on the expression of hippocampal BDNF in the newborns. We conclude that diabetes in pregnancy bilaterally disrupts the expression of BDNF in the hippocampus of the both male and female newborns at early postnatal days. In addition, good glycemic control by insulin in the most cases is sufficient to prevent the alterations in expression of BDNF protein in developing hippocampus.
Collapse
Affiliation(s)
- Reza Sardar
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Hami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Mansoureh Soleimani
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Taghi Joghataei
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Namjoo
- Department of Anatomical Science, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zahra Zandieh
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Science, Tehran, Iran.
| |
Collapse
|
3
|
Abbasi F, Baradaran R, Khoshdel-Sarkarizi H, Kargozar S, Hami J, Mohammadipour A, Kheradmand H, Haghir H. Distribution pattern of nicotinic acetylcholine receptors in developing cerebellum of rat neonates born of diabetic mothers. J Chem Neuroanat 2020; 108:101819. [PMID: 32522497 DOI: 10.1016/j.jchemneu.2020.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Faeze Abbasi
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Raheleh Baradaran
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Hoda Khoshdel-Sarkarizi
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Hami
- Department of Anatomical Sciences, School of Medicine, BirjandUniversity of Medical Sciences, Birjand, Iran
| | - Abbas Mohammadipour
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Hamed Kheradmand
- Hazrat Rasoul Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Haghir
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran; Medical Genetic Research Center (MGRC), School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Haghir H, Hami J, Lotfi N, Peyvandi M, Ghasemi S, Hosseini M. Expression of apoptosis-regulatory genes in the hippocampus of rat neonates born to mothers with diabetes. Metab Brain Dis 2017; 32:617-628. [PMID: 28078553 DOI: 10.1007/s11011-017-9950-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/03/2017] [Indexed: 01/01/2023]
Abstract
Diabetes during pregnancy impairs the development of the central nervous system (CNS) and causes cognitive and behavioral abnormalities in offspring. However, the exact mechanism by which the maternal diabetes affects the development of the brain remains to be elucidated. The aim of the present study was to investigate the effects of maternal diabetes in pregnancy on the expression of Bcl-2 and Bax genes and the numerical density of degenerating dark neurons (DNs) in the hippocampus of offspring at the first postnatal two weeks. Wistar female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was sacrificed at P0, P7, and P14. Our findings demonstrated a significant down-regulation in the hippocampal expression of Bcl-2 in the diabetic group newborns (P < 0.05). In contrast, the mRNA expression of Bax was markedly up-regulated in the offspring born to diabetic dams at all of studied time-points (P < 0.05). Moreover, we found a striking increase in the numerical density of DNs in the various subfields of hippocampus of diabetic group pups (P < 0.05). The results of the present study revealed that maternal hyperglycemia during gestational period may result in disturbances in the expression of Bcl-2 and Bax genes as two important genes in neuronal apoptosis regulation and induces the production of DNs in the developing hippocampus of neonatal rats. These disturbances may be a reason for the cognitive, structural, and behavioral anomalies observed in offspring born to diabetic mothers. Furthermore, the control of maternal glycaemia by insulin administration in most cases normalized these negative impacts.
Collapse
Affiliation(s)
- Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Hami
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Ghaffari St., Birjand, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Nassim Lotfi
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Ghaffari St., Birjand, Iran
| | - Mostafa Peyvandi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Simagol Ghasemi
- Microanatomy Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Hosseini
- Department of Public Health, Deputy of Research and Technology, Research Centre of Experimental Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
5
|
Hami J, Vafaei-Nezhad S, Sadeghi A, Ghaemi K, Taheri MMH, Fereidouni M, Ivar G, Hosseini M. Synaptogenesis in the Cerebellum of Offspring Born to Diabetic Mothers. J Pediatr Neurosci 2017; 12:215-221. [PMID: 29204194 PMCID: PMC5696656 DOI: 10.4103/jpn.jpn_144_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There is increasing evidence that maternal diabetes mellitus during the pregnancy is associated with a higher risk of neurodevelopmental and neurofunctional anomalies including motor dysfunctions, learning deficits, and behavioral problems in offspring. The cerebellum is a part of the brain that has long been recognized as a center of movement balance and motor coordination. Moreover, recent studies in humans and animals have also implicated the cerebellum in cognitive processing, sensory discrimination, attention, and learning and memory. Synaptogenesis is one of the most crucial events during the development of the central nervous system. Synaptophysin (SYP) is an integral membrane protein of synaptic vesicles and is considered to be a marker for synaptic density and synaptogenesis. Here, we review the manuscripts focusing on the negative impacts of maternal diabetes in pregnancy on the expression or localization of SYP in the developing cerebellar cortex. We believe that the alteration in synaptogenesis or synapse density may be part of the cascade of events through which diabetes in pregnant women affects the newborn's cerebellum.
Collapse
Affiliation(s)
- Javad Hami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Vafaei-Nezhad
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Akram Sadeghi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Kazem Ghaemi
- Department of Neurosurgery, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mohammad Fereidouni
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ghasem Ivar
- Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Department of Public Health, Research Centre of Experimental Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
6
|
Hami J, Vafaei-Nezhad S, Ivar G, Sadeghi A, Ghaemi K, Mostafavizadeh M, Hosseini M. Altered expression and localization of synaptophysin in developing cerebellar cortex of neonatal rats due to maternal diabetes mellitus. Metab Brain Dis 2016; 31:1369-1380. [PMID: 27389246 DOI: 10.1007/s11011-016-9864-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/28/2016] [Indexed: 12/30/2022]
Abstract
There is sufficient evidence that diabetes during pregnancy is associated with a higher risk of neurodevelopmental anomalies including learning deficits, behavioral problems and motor dysfunctions in the offspring. Synaptophysin (SYP) is an integral membrane protein of synaptic vesicles and is considered as a marker for synaptogenesis and synaptic density. This study aimed to examine the effects of maternal diabetes in pregnancy on the expression and localization of SYP in the developing rat cerebellum. Wistar female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was euthanized at postnatal day (P) 0, 7, and 14. The results revealed a significant down-regulation in the mRNA expression of SYP in the offspring born to diabetic animals at both P7 and P14 (P < 0.05 each). One week after birth, there was a significant reduction in the localization of SYP expression in the external granular (EGL) and in the molecular (ML) layers of neonates born to diabetic animals (P < 0.05 each). We also found a marked decrease in the expression of SYP in all of the cerebellar cortical layers of STZ-D group pups at P14 (P < 0.05 each). Moreover, our results revealed no significant changes in either expression or localization of SYP in insulin-treated group pups when compared with the controls (P ≥ 0.05 each). The present study demonstrated that maternal diabetes has adverse effects on the synaptogenesis in the offspring's cerebellum. Furthermore, the rigid maternal blood glucose control in the most cases normalized these negative impacts.
Collapse
Affiliation(s)
- Javad Hami
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Ghaffari St, Birjand, Iran
| | - Saeed Vafaei-Nezhad
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Ghaffari St, Birjand, Iran.
| | - Ghasem Ivar
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Ghaffari St, Birjand, Iran
| | - Akram Sadeghi
- Department of Anatomy and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kazem Ghaemi
- Department of Neurosurgery, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mehran Hosseini
- Department of Public Health, Deputy of Research and Technology, Research Centre of Experimental Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|