1
|
Chang L, Čok Z, Yu L. Protein Kinases as Mediators for miRNA Modulation of Neuropathic Pain. Cells 2025; 14:577. [PMID: 40277902 PMCID: PMC12025903 DOI: 10.3390/cells14080577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Neuropathic pain is a chronic condition resulting from injury or dysfunction in the somatosensory nervous system, which leads to persistent pain and a significant impairment of quality of life. Research has highlighted the complex molecular mechanisms that underlie neuropathic pain and has begun to delineate the roles of microRNAs (miRNAs) in modulating pain pathways. miRNAs, which are small non-coding RNAs that regulate gene expression post-transcriptionally, have been shown to influence key cellular processes, including neuroinflammation, neuronal excitability, and synaptic plasticity. These processes contribute to the persistence of neuropathic pain, and miRNAs have emerged as critical regulators of pain behaviors by modulating signaling pathways that control pain sensitivity. miRNAs can influence neuropathic pain by targeting genes that encode protein kinases involved in pain signaling. This review focuses on miRNAs that have been demonstrated to modulate neuropathic pain behavior through their effects on protein kinases or their immediate upstream regulators. The relationship between miRNAs and neuropathic pain behaviors is characterized as either an upregulation or a downregulation of miRNA levels that leads to a reduction in neuropathic pain. In the case of miRNA upregulation resulting in an alleviation of neuropathic pain behaviors, protein kinases exhibit a positive correlation with neuropathic pain, whereas decreased protein kinase levels correlate with diminished neuropathic pain behaviors. The only exception is GRK2, which shows an inverse correlation with neuropathic pain. In the case of miRNA downregulation resulting in a reduction in neuropathic pain behaviors, protein kinases display mixed relationships to neuropathic pain, with some kinases exhibiting positive correlation, while others exhibit negative correlation. By exploring how protein kinases mediate miRNA modulation of neuropathic pain, valuable insight may be gained into the pathophysiology of neuropathic pain, offering potential therapeutic targets for developing more effective strategies for pain management.
Collapse
Affiliation(s)
| | | | - Lei Yu
- Department of Genetics, Center of Alcohol & Substance Use Studies, Rutgers University, Piscataway, NJ 08854, USA; (L.C.)
| |
Collapse
|
2
|
Wu L, Ning P, Liang Y, Wang T, Chen L, Lu D, Tang H. Methyltransferase METTL3 regulates neuropathic pain through m6A methylation modification of SOCS1. Neuropharmacology 2024; 261:110176. [PMID: 39357736 DOI: 10.1016/j.neuropharm.2024.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
The mechanisms of neuropathic pain (NP) are considered multifactorial. Alterations in the suppressor of cytokine signaling 1 (SOCS1) play a critical role in neural damage and inflammation. Epigenetic RNA modifications, specifically N6-methyladenosine (m6A) methylation, have increasingly been observed to impact the nervous system. Nevertheless, there is a scarcity of studies investigating the connection between m6A methylation and SOCS1 in the molecular mechanisms of NP. This study investigates the roles and potential mechanisms of the m6A methyltransferase like 3 (METTL3) and SOCS1 in female rats with spinal nerve ligation (SNL)-induced NP. It was found that in NP, both METTL3 and overall m6A levels were downregulated, leading to the activation of pro-inflammatory cytokines, such as interleukin-1β, interleukin 6, and tumor necrosis factor-α. Notably, The SOCS1 mRNA is significantly enriched with m6A methylation modifications, with the most prevalent m6A methyltransferase METTL3 stabilizing the downregulation of SOCS1 by targeting m6A methylation modifications at positions 151, 164, and 966.Exogenous supplementation of METTL3 improved NP-related neuroinflammation and behavioral dysfunctions, but these effects could be reversed by the absence of SOCS1. Additionally, the depletion of endogenous SOCS1 promoted NP progression by inducing the toll-like receptor 4 (TLR4) signaling pathway. The dysregulation of METTL3 and the resulting m6A modification of SOCS1 form a crucial epigenetic regulatory loop that promotes the progression of NP. Targeting the METTL3/SOCS1 axis might offer new insights into potential therapeutic strategies for NP.
Collapse
Affiliation(s)
- Liping Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China; The First Clinical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Peng Ning
- The First Clinical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Yingye Liang
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Tianyi Wang
- The First Clinical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Lingnv Chen
- The First Clinical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Dongming Lu
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Hongliang Tang
- Guangxi University of Traditional Chinese Medicine Affiliated Fangchenggang Hospital, Fangchenggang, China.
| |
Collapse
|
3
|
Golmakani H, Azimian A, Golmakani E. Newly discovered functions of miRNAs in neuropathic pain: Transitioning from recent discoveries to innovative underlying mechanisms. Mol Pain 2024; 20:17448069231225845. [PMID: 38148597 PMCID: PMC10851769 DOI: 10.1177/17448069231225845] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 12/28/2023] Open
Abstract
Neuropathic pain is a widespread clinical issue caused by somatosensory nervous system damage, affecting numerous individuals. It poses considerable economic and public health challenges, and managing it can be challenging due to unclear underlying mechanisms. Nevertheless, emerging evidence suggests that neurogenic inflammation and neuroinflammation play a role in developing pain patterns. Emerging evidence suggests that neurogenic inflammation and neuroinflammation play significant roles in developing neuropathic pain within the nervous system. Increased/decreased miRNA expression patterns could affect the progression of neuropathic and inflammatory pain by controlling nerve regeneration, neuroinflammation, and the expression of abnormal ion channels. However, our limited knowledge of miRNA targets hinders a complete grasp of miRNA's functions. Meanwhile, exploring exosomal miRNA, a recently uncovered role, has significantly advanced our comprehension of neuropathic pain's pathophysiology in recent times. In this review, we present a comprehensive overview of the latest miRNA studies and explore the possible ways miRNAs might play a role in the development of neuropathic pain.
Collapse
Affiliation(s)
- Hasan Golmakani
- Department of Pediatrics, Faculty of Medicine, Mashhad Azad University, Mashhad, Iran
| | - Amir Azimian
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ebrahim Golmakani
- Department of Anesthesiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Morchio M, Sher E, Collier DA, Lambert DW, Boissonade FM. The Role of miRNAs in Neuropathic Pain. Biomedicines 2023; 11:biomedicines11030775. [PMID: 36979754 PMCID: PMC10045079 DOI: 10.3390/biomedicines11030775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Neuropathic pain is a debilitating condition affecting around 8% of the adult population in the UK. The pathophysiology is complex and involves a wide range of processes, including alteration of neuronal excitability and synaptic transmission, dysregulated intracellular signalling and activation of pro-inflammatory immune and glial cells. In the past 15 years, multiple miRNAs–small non-coding RNA–have emerged as regulators of neuropathic pain development. They act by binding to target mRNAs and preventing the translation into proteins. Due to their short sequence (around 22 nucleotides in length), they can have hundreds of targets and regulate several pathways. Several studies on animal models have highlighted numerous miRNAs that play a role in neuropathic pain development at various stages of the nociceptive pathways, including neuronal excitability, synaptic transmission, intracellular signalling and communication with non-neuronal cells. Studies on animal models do not always translate in the clinic; fewer studies on miRNAs have been performed involving human subjects with neuropathic pain, with differing results depending on the specific aetiology underlying neuropathic pain. Further studies using human tissue and liquid samples (serum, plasma, saliva) will help highlight miRNAs that are relevant to neuropathic pain diagnosis or treatment, as biomarkers or potential drug targets.
Collapse
Affiliation(s)
- Martina Morchio
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Emanuele Sher
- UK Neuroscience Hub, Eli Lilly and Company, Bracknell RG12 1PU, UK
| | - David A. Collier
- UK Neuroscience Hub, Eli Lilly and Company, Bracknell RG12 1PU, UK
| | - Daniel W. Lambert
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Fiona M. Boissonade
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
- Correspondence:
| |
Collapse
|
5
|
Ikuma Y, Sakai A, Sakamoto A, Suzuki H. Increased extracellular release of microRNAs from dorsal root ganglion cells in a rat model of neuropathic pain caused by peripheral nerve injury. PLoS One 2023; 18:e0280425. [PMID: 36662897 PMCID: PMC9858844 DOI: 10.1371/journal.pone.0280425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023] Open
Abstract
microRNAs (miRNAs) are extracellularly released by cells for intercellular communication, while intracellularly, they inhibit the expression of specific genes. An increasing number of studies suggest that extracellular miRNAs have great potential as both therapeutic targets and disease-specific biomarkers in a variety of diseases, including pain disorders. However, little is known about miRNA release from dorsal root ganglion (DRG) neurons in neuropathic pain caused by peripheral nerve injury. In this study, we investigated the changes in the extracellular release of miRNAs from DRG neurons in a rat model of neuropathic pain induced by chronic constriction injury of the sciatic nerve. We found increased release of six miRNAs (let-7d, miR-21, miR-142-3p, miR-146b, miR-203-3p and miR-221) from primary cultured DRG neurons prepared from rats 7 days after nerve injury. Among these, miR-221 was also increased in serum from days 7 to 28 after nerve injury. In contrast, serum miR-221 levels and its release from DRG neurons were unchanged in an inflammatory pain model produced by intraplantar injection of complete Freund's adjuvant. These results suggest that the increased release of specific miRNAs by DRG neurons may be involved in the pathophysiology of neuropathic pain through extracellular as well as intracellular mechanisms. Furthermore, serum miR-221 may be useful as a biomarker of neuropathic pain caused by peripheral nerve injury.
Collapse
Affiliation(s)
- Yuko Ikuma
- Department of Anesthesiology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
- Department of Pharmacology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Sakai
- Department of Pharmacology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
6
|
Li X, Jin DS, Eadara S, Caterina MJ, Meffert MK. Regulation by noncoding RNAs of local translation, injury responses, and pain in the peripheral nervous system. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100119. [PMID: 36798094 PMCID: PMC9926024 DOI: 10.1016/j.ynpai.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Neuropathic pain is a chronic condition arising from damage to somatosensory pathways that results in pathological hypersensitivity. Persistent pain can be viewed as a consequence of maladaptive plasticity which, like most enduring forms of cellular plasticity, requires altered expression of specific gene programs. Control of gene expression at the level of protein synthesis is broadly utilized to directly modulate changes in activity and responsiveness in nociceptive pathways and provides an effective mechanism for compartmentalized regulation of the proteome in peripheral nerves through local translation. Levels of noncoding RNAs (ncRNAs) are commonly impacted by peripheral nerve injury leading to persistent pain. NcRNAs exert spatiotemporal regulation of local proteomes and affect signaling cascades supporting altered sensory responses that contribute to hyperalgesia. This review discusses ncRNAs found in the peripheral nervous system (PNS) that are dysregulated following nerve injury and the current understanding of their roles in pathophysiological pain-related responses including neuroimmune interactions, neuronal survival and axon regeneration, Schwann cell dedifferentiation and proliferation, intercellular communication, and the generation of ectopic action potentials in primary afferents. We review progress in the field beyond cataloging, with a focus on the relevant target transcripts and mechanisms underlying pain modulation by ncRNAs.
Collapse
Affiliation(s)
- Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Daniel S. Jin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Sreenivas Eadara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Michael J. Caterina
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Department of Neurosurgery and Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
7
|
Zhao YY, Wu ZJ, Zhu LJ, Niu TX, Liu B, Li J. Emerging roles of miRNAs in neuropathic pain: From new findings to novel mechanisms. Front Mol Neurosci 2023; 16:1110975. [PMID: 36873108 PMCID: PMC9981676 DOI: 10.3389/fnmol.2023.1110975] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Neuropathic pain, which results from damage to the somatosensory nervous system, is a global clinical condition that affects many people. Neuropathic pain imposes significant economic and public health burdens and is often difficult to manage because the underlying mechanisms remain unclear. However, mounting evidence indicates a role for neurogenic inflammation and neuroinflammation in pain pattern development. There is increasing evidence that the activation of neurogenic inflammation and neuroinflammation in the nervous system contribute to neuropathic pain. Altered miRNA expression profiles might be involved in the pathogenesis of both inflammatory and neuropathic pain by regulating neuroinflammation, nerve regeneration, and abnormal ion channel expression. However, the lack of knowledge about miRNA target genes prevents a full understanding of the biological functions of miRNAs. At the same time, an extensive study on exosomal miRNA, a newly discovered role, has advanced our understanding of the pathophysiology of neuropathic pain in recent years. This section provides a comprehensive overview of the current understanding of miRNA research and discusses the potential mechanisms of miRNAs in neuropathic pain.
Collapse
Affiliation(s)
- Yu-Ying Zhao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Zi-Jun Wu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Li-Juan Zhu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Tong-Xiang Niu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Bin Liu
- Department of Critical Care Medicine, General Hospital of Tianjin Medical University, Tianjin, China.,Center for Critical Care Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Jing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Research Institute of Anesthesiology, Tianjin, China
| |
Collapse
|
8
|
Jiang W, Tan XY, Li JM, Yu P, Dong M. DNA Methylation: A Target in Neuropathic Pain. Front Med (Lausanne) 2022; 9:879902. [PMID: 35872752 PMCID: PMC9301322 DOI: 10.3389/fmed.2022.879902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain (NP), caused by an injury or a disease affecting the somatosensory nervous system of the central and peripheral nervous systems, has become a global health concern. Recent studies have demonstrated that epigenetic mechanisms are among those that underlie NP; thus, elucidating the molecular mechanism of DNA methylation is crucial to discovering new therapeutic methods for NP. In this review, we first briefly discuss DNA methylation, demethylation, and the associated key enzymes, such as methylases and demethylases. We then discuss the relationship between NP and DNA methylation, focusing on DNA methyltransferases including methyl-CpG-binding domain (MBD) family proteins and ten-eleven translocation (TET) enzymes. Based on experimental results of neuralgia in animal models, the mechanism of DNA methylation-related neuralgia is summarized, and useful targets for early drug intervention in NP are discussed.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xuan-Yu Tan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Jia-Ming Li
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Peng Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Peng Yu
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Ming Dong
| |
Collapse
|
9
|
The Role of Non-Coding RNAs in the Pathogenesis of Parkinson’s Disease: Recent Advancement. Pharmaceuticals (Basel) 2022; 15:ph15070811. [PMID: 35890110 PMCID: PMC9315906 DOI: 10.3390/ph15070811] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson’s disease (PD) is a prevalent neurodegenerative aging disorder that manifests as motor and non-motor symptoms, and its etiopathogenesis is influenced by non-coding RNAs (ncRNAs). Signal pathway and gene sequence studies have proposed that alteration of ncRNAs is relevant to the occurrence and development of PD. Furthermore, many studies on brain tissues and body fluids from patients with PD indicate that variations in ncRNAs and their target genes could trigger or exacerbate neurodegenerative pathogenesis and serve as potential non-invasive biomarkers of PD. Numerous ncRNAs have been considered regulators of apoptosis, α-syn misfolding and aggregation, mitochondrial dysfunction, autophagy, and neuroinflammation in PD etiology, and evidence is mounting for the determination of the role of competing endogenous RNA (ceRNA) mechanisms in disease development. In this review, we discuss the current knowledge regarding the regulation and function of ncRNAs as well as ceRNA networks in PD pathogenesis, focusing on microRNAs, long ncRNAs, and circular RNAs to increase the understanding of the disease and propose potential target identification and treatment in the early stages of PD.
Collapse
|
10
|
Hu C, He M, Xu Q, Tian W. Advances With Non-coding RNAs in Neuropathic Pain. Front Neurosci 2022; 15:760936. [PMID: 35002601 PMCID: PMC8733285 DOI: 10.3389/fnins.2021.760936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Neuropathic pain (NP) is one of the most common types of clinical pain. The common causes of this syndrome include injury to the central or peripheral nervous systems and pathological changes. NP is characterized by spontaneous pain, hyperalgesia, abnormal pain, and paresthesia. Because of its diverse etiology, the pathogenesis of NP has not been fully elucidated and has become one of the most challenging problems in clinical medicine. This kind of pain is extremely resistant to conventional treatment and is accompanied by serious complications. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), contribute to diverse biological processes by regulating the expression of various mRNAs involved in pain-related pathways, at the posttranscriptional level. Abnormal regulation of ncRNAs is closely related to the occurrence and development of NP. In this review, we summarize the current state of understanding of the roles of different ncRNAs in the development of NP. Understanding these mechanisms can help develop novel therapeutic strategies to prevent or treat chronic pain.
Collapse
Affiliation(s)
- Cheng Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Menglin He
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Qian Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Weiqian Tian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Fakhri S, Abbaszadeh F, Jorjani M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomed Pharmacother 2021; 139:111563. [PMID: 33873146 DOI: 10.1016/j.biopha.2021.111563] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is globally considered as one of the most debilitating disorders, which interferes with daily activities and life of the affected patients. Despite many developments in related recognizing and treating procedures, post-SCI neuropathic pain (NP) is still a clinical challenge for clinicians with no distinct treatments. Accordingly, a comprehensive search was conducted in PubMed, Medline, Scopus, Web of Science, and national database (SID and Irandoc). The relevant articles regarding signaling pathways, therapeutic targets and pharmacotherapy of post-SCI pain were also reviewed. Data were collected with no time limitation until November 2020. The present study provides the findings on molecular mechanisms and therapeutic targets, as well as developing the critical signaling pathways to introduce novel neuroprotective treatments of post-SCI pain. From the pathophysiological mechanistic point of view, post-SCI inflammation activates the innate immune system, in which the immune cells elicit secondary injuries. So, targeting the critical signaling pathways for pain management in the SCI population has significant importance in providing new treatments. Indeed, several receptors, ion channels, excitatory neurotransmitters, enzymes, and key signaling pathways could be used as therapeutic targets, with a pivotal role of n-methyl-D-aspartate, gamma-aminobutyric acid, and inflammatory mediators. The current review focuses on conventional therapies, as well as crucial signaling pathways and promising therapeutic targets for post-SCI pain to provide new insights into the clinical treatment of post-SCI pain. The need to develop innovative delivery systems to treat SCI is also considered.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Epigenetic modification of BDNF mediates neuropathic pain via miR-30a-3p/EP300 axis in CCI rats. Biosci Rep 2021; 40:226778. [PMID: 33103739 PMCID: PMC7670569 DOI: 10.1042/bsr20194442] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Recent investigation of microRNAs on chronic pain has developed a breakthrough in neuropathic pain management. In the present study, decreased expression of miR-30a-3p was reported using qRT-PCR analysis and loss of miR-30a-3p promoted neuropathic pain progression in sciatic nerve chronic constrictive injury rats through determining the pain threshold. We predicted miR-30a-3p could target E-cadherin transcriptional activator (EP300) via bioinformatics analysis. Meanwhile, we found that brain-derived neurotrophic factor (BDNF) is involved in neuropathic pain. Here, we exhibited that EP300 epigenetically up-regulated BDNF via enhancing acetylated histone H3 and H4 on the promoter. For another, miR-30a-3p was able to modify the level of BDNF and acetylated histone H3 and H4. Loss of miR-30a-3p enhanced EP300 and BDNF colocalization in CCI rats. Subsequently, it was shown that increased EP300 induced neuropathic pain by an enhancement of neuronal BDNF level in vivo. To sum up, it was revealed that epigenetic modification of BDNF promoted neuropathic pain via EP300 induced by miR-30a-3p in CCI rats.
Collapse
|
13
|
Li X, Wang S, Yang X, Chu H. miR‑142‑3p targets AC9 to regulate sciatic nerve injury‑induced neuropathic pain by regulating the cAMP/AMPK signalling pathway. Int J Mol Med 2020; 47:561-572. [PMID: 33416140 PMCID: PMC7797458 DOI: 10.3892/ijmm.2020.4824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the effects of microRNA (miR)-142-3p on neuropathic pain caused by sciatic nerve injury in chronic compression injury (CCI) rats, and further investigate its mechanism. Rat experiments were divided into four parts in the study. In the first part, the rats were divided into the Sham and CCI groups. The expression of miR-142-3p, AC9 and cAMP were detected. In the second part, the rats were divided into the Sham, CCI, miR-142-3p mimic, mimic-negative control (NC), miR-142-3p small interfering RNA (siRNA) and siRNA-NC groups. The expression of cAMP and the levels of AMPK pathway-related proteins were detected. In the third part, the rats were randomly divided into Sham, CCI, AC9 mimic, mi-NC, AC9 siRNA and si-NC groups. Double luciferase reporter assay was used to analyse the targeting relationship between miR-142-3p and AC9. In the fourth part, the rats were divided into the Sham, CCI, miR-142-3p siRNA, AC9 mimic, miR-142-3p siRNA + AC9 siRNA, cAMP activator (Forskolin) and miR-142-3p siRNA + cAMP inhibitor groups. The expres-sion of miR-142-3p was significantly increased while AC9 and cAMP expression significantly decreased in CCI rats. However, AC9 overexpression significantly increased the levels of cAMP protein. Luciferase reporter assay also proved that AC9 is the target gene of miR-142-3p. Moreover, miR-142-3p silencing was found to reduce neuropathic pain in CCI rats by upregulating the expression of AC9. It was also found that cAMP activation can relieve neuropathic pain and promote the expression of AMPK-related proteins in CCI rats. Silencing miR-142-3p can target AC9 to reduce the expression of inflammatory factors and neuropathic pain in CCI rats by increasing the expression of cAMP/AMPK pathway-related proteins.
Collapse
Affiliation(s)
- Xiao Li
- Department of Hand Surgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Shoupeng Wang
- Department of Orthopedics, Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang, Shandong 277100, P.R. China
| | - Xiaoli Yang
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Hongjun Chu
- Department of Orthopedics, Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang, Shandong 277100, P.R. China
| |
Collapse
|
14
|
LncRNA NEAT1/miR-128-3p/AQP4 axis regulating spinal cord injury-induced neuropathic pain progression. J Neuroimmunol 2020; 351:577457. [PMID: 33373887 DOI: 10.1016/j.jneuroim.2020.577457] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/29/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neuropathic pain (NP) is the comorbidity in spinal cord injury(SCI), which is the hardest to cure. Non-coding RNA dysregulations are related to the development of NP. NEAT1(nuclear paraspeckle assembly transcript 1) is a new type of lncRNA. This study explores the role and specific mechanism of NEAT1 in SCI-mediated NP. METHODS Firstly, the NEAT1 expression in SCI rats and the control group was detected with RT-PCR to analyze the relationship between NEAT13 and NP symptoms. Then, SCI rats were intrathecally injected with NEAT13 overexpressing and knocking down lentiviruses. Afterward, ELISA was utilized to assess the expression of IL-6, IL-1β and TNFα in rats. Subsequently, immunohistochemistry was adopted to verify the activation of microglial cells. After that, bioinformatics analysis was employed to further predict the downstream target genes of NEAT1, while RT-PCR and Western blot were conducted to determine the relative expression of miR-128-3p and aquaporin-4(AQP4). Meanwhile, a dual-luciferase reporter assay was performed to further study the targeting relationship between NEAT1 and miR-128-3p, and miR-128-3p and AQP4. RESULTS SCI rats showed distinctly higher NEAT1 expression compared with that of the control group. ELISA experiment confirmed that the over-expression of NEAT1 enhanced the expression of IL-6, IL-1β, and TNFα in SCI rats. Other related mechanism studies revealed that NEAT13 targeted and inhibited miR-128-3p as its competing endogenous RNA (ceRNA), and enhanced AQP4 expression, while miR-128-3p targeted AQP4 to regulate its expression. SUMMARY NEAT1 affects AQP4 signaling pathway to alleviate the spinal cord injury-induced NP via promoting miR-128-3p expression.
Collapse
|
15
|
Tang S, Jing H, Song F, Huang H, Li W, Xie G, Zhou J. MicroRNAs in the Spinal Microglia Serve Critical Roles in Neuropathic Pain. Mol Neurobiol 2020; 58:132-142. [PMID: 32902792 DOI: 10.1007/s12035-020-02102-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Neuropathic pain (NP) can occur after peripheral nerve injury (PNI), and it can be converted into a maladaptive, detrimental phenotype that causes a long-term state of pain hypersensitivity. In the last decade, the discovery that dysfunctional microglia evoke pain, called "microgliopathic pain," has challenged traditional neuronal views of "pain" and has been extensively explored. Recent studies have shown that microRNAs (miRNAs) can act as activators or inhibitors of spinal microglia in NP conditions. We first briefly review spinal microglial activation in NP. We then comprehensively describe miRNA expression changes and their potential mechanisms in the response of microglia to nerve injury. We summarize the roles of the following two representative miRNAs: miR-124, which reverses NP by keeping microglia quiescent, and miR-155, which promotes NP following microglial activation. Finally, we focused on the therapeutic potential of microglial miRNAs in NP. The findings we summarized may be essential tools for basic research and clinical treatment of NP.
Collapse
Affiliation(s)
- Simin Tang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, People's Republic of China
- Sun Yat-sen University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Huan Jing
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, People's Republic of China
- ZunYi Medical University, ZunYi, 563100, Guizhou Province, People's Republic of China
| | - Fuhu Song
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Haicheng Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Wenjun Li
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Guiling Xie
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong Province, People's Republic of China.
| |
Collapse
|
16
|
Wang YM, Gao FJ, Lin SQ, Yi ZX, Zhang JM, Wu HX, He QL, Wei M, Zou XN, Zhang H, Sun LB. Activation of p38MAPK in spinal microglia contributes to autologous nucleus pulposus-induced mechanical hyperalgesia in a modified rat model of lumbar disk herniation. Brain Res 2020; 1742:146881. [PMID: 32413357 DOI: 10.1016/j.brainres.2020.146881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 04/22/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022]
Abstract
Recent studies have implicated the activation of p38 mitogen-activated protein kinase (MAPK) and glial cells contribute to hyperalgesia following nerve injury or nerve compression. In our work, we investigated the underlying mechanisms of autologous nucleus pulposus (NP)-induced mechanical hyperalgesia in a modified rat model of lumbar disk herniation (LDH). Firstly, our results showed that 50% mechanical withdrawal threshold (50% MWT) decreased on postoperative day (POD) 1 and significantly minimally reduced on POD 7 and lasted for day 28 after surgery (P < 0.05). Secondly, phosphorylation of p38MAPK (p-p38MAPK) and glial cells were monitored on POD 1, 3, 7, 14 and 28 using immunofluorescence staining. P38MAPK activation, observed in the spinal cord, began to increase on POD 1, peaked on POD 3, and significantly decreased on POD 14 and POD 28 (P < 0.05). Microglia activation was initiated at day 1, maximal at day 3, and maintained until day 14 after surgery (P < 0.05). Astrocytic activation was found in 7 to 14 days after modelling (P < 0.05). Then, double immunostaining method was applied to observe the co-expression of p-p38MAPK and glial cells, and it showed that p-p38MAPK was mainly expressed in activated microglia, rarely in neurons, and none in astrocytes. Lastly, we discovered that both SB203580 (50ug, p38MAPK inhibitor) and minocycline (0.5 mg, microglial inhibitor) would inhibit the p-p38MAPK protein expression tested by western blot analysis and reduce mechanical hyperalgesia. In conclusion, current study suggest that activation or phosphorylation of p38MAPK in spinal microglia contributes to autologous NP-induced mechanical hyperalgesia in our animal model.
Collapse
Affiliation(s)
- Y-M Wang
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - F-J Gao
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sh-Q Lin
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Z-X Yi
- Yi chun university, Key Laboratory of Province for Research on Active Ingredients in Natural Medicines, Yi chun, Jiangxi, China
| | - J-M Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - H-X Wu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Q-L He
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - M Wei
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - X-N Zou
- Guangdong Provincial Key Laboratory of orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - H Zhang
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China.
| | - L-B Sun
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Song G, Yang Z, Guo J, Zheng Y, Su X, Wang X. Interactions Among lncRNAs/circRNAs, miRNAs, and mRNAs in Neuropathic Pain. Neurotherapeutics 2020; 17:917-931. [PMID: 32632773 PMCID: PMC7609633 DOI: 10.1007/s13311-020-00881-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain (NP) is directly caused by an injury or disease of the somatosensory nervous system. It is a serious type of chronic pain that is a burden to the economy and public health. Although recent studies have improved our understanding of NP, its pathogenesis has not been fully elucidated. Noncoding RNAs, including lncRNAs, circRNAs, and miRNAs, are involved in the pathological development of NP through many mechanisms. In addition, extensive evidence suggests that novel regulatory mechanisms among lncRNAs/circRNAs, miRNAs, and mRNAs play a crucial role in the pathophysiological process of NP. In this review, we comprehensively summarize the regulatory relationship among lncRNAs/circRNAs, miRNAs, and mRNAs and emphasize the important role of the lncRNA/circRNA-miRNA-mRNA axis in NP.
Collapse
Affiliation(s)
- Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Zheng Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Jiabao Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Yili Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China.
| |
Collapse
|
18
|
Cata JP, Gorur A, Yuan X, Berg NK, Sood AK, Eltzschig HK. Role of Micro-RNA for Pain After Surgery. Anesth Analg 2020; 130:1638-1652. [DOI: 10.1213/ane.0000000000004767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Yao J, Gao R, Luo M, Li D, Guo L, Yu Z, Xiong F, Wei C, Wu B, Xu Z, Zhang D, Wang J, Wang L. miR-802 participates in the inflammatory process of inflammatory bowel disease by suppressing SOCS5. Biosci Rep 2020; 40:BSR20192257. [PMID: 32211804 PMCID: PMC7138906 DOI: 10.1042/bsr20192257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/01/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
The present study aims to reveal the detailed molecular mechanism of microRNA (miR)-802 in the progression of inflammatory bowel disease (IBD). IBD tissues were obtained from IBD patients, followed by CD4+ cells isolation. Then, qRT-PCR and ELISA were used to detect the expression of miR-802, suppressor of cytokine signaling 5 (SOCS5), interleukin (IL)-17A and tumor necrosis factor (TNF)-α. Transfection of miR-802 mimics and miR-802 inhibitor in CD4+ cells was detected by Western blot. TargetScan and luciferase reporter assay were used to detect the relationship between SOCS5 and miR-802. Finally, colitis mice model was established to verify whether miR-802 inhibitor was involved in the protective effect of colonic mucosa. The miR-802 was highly expressed in inflamed mucosa and PBMC cells of IBD. The highest expression of miR-802 was observed in CD4+ T cells based on different immune cell subsets analysis. SOCS5 was the target gene of miR-802. The mice model experiments showed that blockade of miR-802 could alleviate mice colitis. Our study suggests that up-regulation of miR-802 plays an important role in inflammatory process of IBD via targeting SOCS5. Moreover, the differentiation of Th17 and secretion of TNF-α in IBD could be stimulated by miR-802.
Collapse
Affiliation(s)
- Jun Yao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Ruoyu Gao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Minghan Luo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Defeng Li
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Liliangzi Guo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Zichao Yu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Feng Xiong
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Cheng Wei
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Benhua Wu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Zhenglei Xu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Dingguo Zhang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Jianyao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, No. 7019, Yitian Road Road, Shenzhen City, Guangdong Province 518026, China
| | - Lisheng Wang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| |
Collapse
|
20
|
Kalpachidou T, Kummer K, Kress M. Non-coding RNAs in neuropathic pain. Neuronal Signal 2020; 4:NS20190099. [PMID: 32587755 PMCID: PMC7306520 DOI: 10.1042/ns20190099] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain in general, and members of the non-coding RNA (ncRNA) family, specifically the short, 22 nucleotide microRNAs (miRNAs) and the long non-coding RNAs (lncRNAs) act as master switches orchestrating both immune as well as neuronal processes. Several chronic disorders reveal unique ncRNA expression signatures, which recently generated big hopes for new perspectives for the development of diagnostic applications. lncRNAs may offer perspectives as candidates indicative of neuropathic pain in liquid biopsies. Numerous studies have provided novel mechanistic insight into the role of miRNAs in the molecular sequelae involved in the pathogenesis of neuropathic pain along the entire pain pathway. Specific processes within neurons, immune cells, and glia as the cellular components of the neuropathic pain triad and the communication paths between them are controlled by specific miRNAs. Therefore, nucleotide sequences mimicking or antagonizing miRNA actions can provide novel therapeutic strategies for pain treatment, provided their human homologues serve the same or similar functions. Increasing evidence also sheds light on the function of lncRNAs, which converge so far mainly on purinergic signalling pathways both in neurons and glia, and possibly even other ncRNA species that have not been explored so far.
Collapse
Affiliation(s)
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Wang T, Jiang L, Wei X, Dong Z, Liu B, Zhao J, Wang L, Xie P, Wang Y, Zhou S. Inhibition of miR-221 alleviates LPS-induced acute lung injury via inactivation of SOCS1/NF-κB signaling pathway. Cell Cycle 2019; 18:1893-1907. [PMID: 31208297 DOI: 10.1080/15384101.2019.1632136] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The role of inflammation response has been well documented in the development of acute lung injury (ALI). However, little is known about the functions of miRNAs in the regulation of inflammation in ALI. The aim of this study was to explore the effects of miRNAs in the regulation of inflammation in ALI and to elucidate the biomolecular mechanisms responsible for these effects. The expression profiles of miRNAs in lung tissues from lipopolysaccharide (LPS)-induced ALI mice model were analyzed using a microarray. It was observed that microRNA-221-3p (miR-221) was significantly increased in lung tissues in ALI mice. The inhibition of miR-221 attenuated lung injury including decreased lung W/D weight ratio and lung permeability and survival rates of ALI mice, as well as apoptosis, whereas its agomir-mediated upregulation exacerbated the lung injury. Concomitantly, miR-221 inhibition significantly reduced LPS-induced pulmonary inflammation, while LPS-induced pulmonary inflammation was aggravated by miR-221 upregulation. Of note, suppressor of cytokine signaling-1 (SOCS1), an effective suppressor of the NF-κB signaling pathway, was found to be a direct target of miR-221 in RAW264.7 cells. Overexpression of SOCS1 by pcDNA-SOCS1 plasmids markedly reversed the miR-221 inhibition-mediated inhibitory effects on inflammation and apoptosis in LPS-treated RAW264.7 cells. Finally, it was found that miR-221 inhibition suppressed LPS induced the activation of the NF-κB signaling pathway, as demonstrated by downregulation of phosphorylated-IκBα, p-p65 and upregulation of IκBα, whilst miR-221 overexpression had an opposite result in ALI mice. Our findings demonstrate that inhibition of miR-221 can alleviate LPS-induced inflammation via inactivation of SOCS1/NF-κB signaling pathway in ALI mice.
Collapse
Affiliation(s)
- Tao Wang
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Lihua Jiang
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Xiaoyong Wei
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Zhenghua Dong
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Bo Liu
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Junbo Zhao
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Lijuan Wang
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Peilin Xie
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Yuxia Wang
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Shangyou Zhou
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| |
Collapse
|
22
|
Guo JB, Zhu Y, Chen BL, Song G, Peng MS, Hu HY, Zheng YL, Chen CC, Yang JZ, Chen PJ, Wang XQ. Network and pathway-based analysis of microRNA role in neuropathic pain in rat models. J Cell Mol Med 2019; 23:4534-4544. [PMID: 31066224 PMCID: PMC6584487 DOI: 10.1111/jcmm.14357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/18/2018] [Accepted: 04/14/2019] [Indexed: 12/17/2022] Open
Abstract
The molecular mechanisms underlying neuropathic pain (NP) remain poorly understood. Emerging evidence has suggested the role of microRNAs (miRNAs) in the initiation and development of NP, but the specific effects of miRNAs in NP are largely unknown. Here, we use network- and pathway-based methods to investigate NP-induced miRNA changes and their biological functions by conducting a systematic search through multiple electronic databases. Thirty-seven articles meet the inclusion criteria. Venn analysis and target gene forecasting are performed and the results indicate that 167 overlapping target genes are co-regulated by five down-regulated miRNAs (rno-miR-183, rno-miR-96, rno-miR-30b, rno-miR-150 and rno-miR-206). Protein-protein interaction network analysis shows that 77 genes exhibit interactions, with cyclic adenosine monophosphate (cAMP)-dependent protein kinase catalytic subunit beta (degree = 11) and cAMP-response element binding protein 1 (degree = 10) having the highest connectivity degree. Gene ontology analysis shows that these target genes are enriched in neuron part, neuron projection, somatodendritic compartment and nervous system development. Moreover, analysis of Kyoto Encyclopedia of Genes and Genomes reveals that three pathways, namely, axon guidance, circadian entrainment and insulin secretion, are significantly enriched. In addition, rno-miR-183, rno-miR-96, rno-miR-30b, rno-miR-150 and rno-miR-206 are consistently down-regulated in the NP models, thus constituting the potential biomarkers of this disease. Characterizing these miRNAs and their target genes paves way for their future use in clinical practice.
Collapse
Affiliation(s)
- Jia-Bao Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi Zhu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bing-Lin Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Meng-Si Peng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hao-Yu Hu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Chang-Cheng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jing-Zhao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
23
|
Zhong L, Fu K, Xiao W, Wang F, Shen LL. Overexpression of miR-98 attenuates neuropathic pain development via targeting STAT3 in CCI rat models. J Cell Biochem 2019; 120:7989-7997. [PMID: 30485529 DOI: 10.1002/jcb.28076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
MicroRNA (miRNA) are significant regulators of neuropathic pain development and neuroinflammation can contribute a lot to the progression of neuropathic pain. Recently, miR-98 has been reported to be involved in various diseases. However, little is known about the role of miR-98 in neuropathic pain development and neuroinflammation. Therefore, our study was aimed to investigate the function of miR-98 in neuropathic pain via establishing a rat model using chronic constriction injury (CCI) of the sciatic nerve. Here, we observed that miR-98 was downregulated in CCI rat models. Overexpression of miR-9 was able to inhibit neuropathic pain progression. Recently, STAT3 has been reported to serve a key role in various processes, including inflammation. Interestingly, our study indicated that STAT3 was dramatically upregulated and activated in CCI rats. By using informatics analysis, STAT3 was predicted as a direct target of miR-98 and the direct correlation was confirmed. Then, miR-98 was overexpressed in CCI rats and it was found that miR-98 was able to repress neuropathic pain development via inhibiting the neuroinflammation. As displayed, interleukin 6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) expression was obviously induced in CCI rats, while miR-98 reduced their protein levels. Finally, we found that overexpression of STAT3 reversed the inhibitory effect of miR-98 on neuropathic pain development. Taken these together, we reported that overexpression of miR-98 attenuated neuropathic pain development via targeting STAT3 in CCI rat models.
Collapse
Affiliation(s)
- Liang Zhong
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Kui Fu
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Weimin Xiao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu-Lu Shen
- Department of Anesthesiology, Huai'an Second People' Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
24
|
miR-221 alleviates the inflammatory response and cell apoptosis of neuronal cell through targeting TNFAIP2 in spinal cord ischemia-reperfusion. Neuroreport 2019; 29:655-660. [PMID: 29596155 DOI: 10.1097/wnr.0000000000001013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study aimed to examine the role of miR-221 in inflammatory response and apoptosis of neuronal cells after spinal cord ischemia/reperfusion (I/R) injury. Blood samples were obtained from 20 I/R patients and that of 20 healthy individuals were used as a control. AGE1.HN and SY-SH-5Y neuronal cell lines subjected to oxygen-glucose deprivation (OGD) stress were used in cell experiments. Real-time PCR and western blot were used to evaluate the expression of miR-221, tumor necrosis factor-α, and TNFAIP2. TUNEL assay analyzed cell apoptosis. I/R patients had lower serum levels of miR-221 than healthy controls. In OGD-AGE1.HN and SY-SH-5Y cells, miR-221 was significantly downregulated and TNFAIP2 mRNA and protein were upregulated; meanwhile, both proinflammatory cytokine tumor necrosis factor-α and anti-inflammation cytokine interleukin-6 were elevated and the percentage of apoptotic cells was increased. This inflammatory response and cell apoptosis induced by OGD stress were attenuated by miR-221 overexpression and enhanced by miR-221 knockdown. TNFAIP2 is a target gene for miR-221 and could be regulated negatively by the miR-221 mimic or the miR-221 inhibitor with or without OGD stress. Accordingly, TNFAIP2 overexpression reversed the inflammatory response and cell apoptosis induced by miR-221 under OGD stress. Downregulation of miR-221 occurs in spinal cord I/R injury and in cell lines subjected to oxygen-glucose deprivation. miR-221 regulates the inflammatory response and apoptosis of neuronal cells through its impact on TNFAIP2.
Collapse
|
25
|
The Role of MicroRNAs in Patients with Amyotrophic Lateral Sclerosis. J Mol Neurosci 2018; 66:617-628. [PMID: 30415446 DOI: 10.1007/s12031-018-1204-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a serious neurodegenerative disease that affects motor neurons and leads to death within 2 to 3 years after the first symptoms manifest. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression in fundamental cellular processes and, post-transcriptionally, the translation levels of target mRNA transcripts. We searched PubMed for studies that examined miRNAs in ALS patients and attempted to group the results in order to find the strongest miRNA candidate for servings as an ALS biomarker. The studies on humans so far have been diverse, yielding considerably heterogeneous results, as they were performed on a wide variety of tissues and subjects. Among the miRNAs that were found consistently deregulated are miR-206, miR-133, miR-149, and miR-338-3p. Additively, the deregulation of some specific miRNAs seems to compose a miRNA expression profile that is specific for ALS. More research is required in order for the scientific community to reach a consensus.
Collapse
|
26
|
Intrathecal Injection of miR-133b-3p or miR-143-3p Prevents the Development of Persistent Cold and Mechanical Allodynia Following a Peripheral Nerve Injury in Rats. Neuroscience 2018; 386:223-239. [PMID: 30018017 DOI: 10.1016/j.neuroscience.2018.06.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/01/2018] [Accepted: 06/24/2018] [Indexed: 12/24/2022]
Abstract
In DRG an increase in miR-133b-3p, miR-143-3p, and miR-1-3p correlates with the lack of development of neuropathic pain following a peripheral nerve injury. Using lentiviral (LV) vectors we found that a single injection of LV-miR-133b-3p or LV-miR-143-3p immediately after a peripheral nerve injury prevented the development of sustained mechanical and cold allodynia. Injection of LV-miR-133b-3p or LV-miR-143-3p by themselves or in combination, on day 3 post-injury produced a partial and transient reduction in mechanical allodynia and a sustained decrease in cold allodynia. Injection of LV-miR-1-3p has no effect. Co-injection of LV-miR-1a with miR-133b-3p or miR-143-3p on day 3 post-injury produced a sustained decrease in mechanical and cold allodynia. In DRG cultures, miR-133b-3p and miR-143-3p but not miR-1-3p, enhanced the depolarization-evoked cytoplasmic calcium increase. Using 3'UTR target clones containing a Gaussian luciferase reporter gene we found that with the 3'UTR-Scn2b, miR-133-3p and miR-143-3p reduced the expression while miR-1-3p enhanced the expression of the reporter gene. With the 3'UTR-TRPM8, miR-133-3p and miR-143-3p reduced the expression and miR-1-3p had no effect. With the 3'UTR-Piezo2, miR-133-3p increased the expression while miR-143-3p and miR-1-3p had no effect. LV-miR133b-3p, LV-miR-143-3p and LV-miR1a-3p reduced Scn2b-mRNA and Piezo2-mRNA. LV-miR133b-3p and LV-miR-143-3p reduced TRPM8-mRNA. LV-miR-133b-3p and LV-miR-143-3p prevent the development of chronic pain when injected immediately after the injury, but are only partially effective when injected at later times. LV-miR-1a-3p had no effect on pain, but complemented the actions of LV-miR-133b-3p or LV-miR-143-3p resulting in a sustained reversal of pain when co-injected 3 days following nerve injury.
Collapse
|
27
|
Cheray M, Joseph B. Epigenetics Control Microglia Plasticity. Front Cell Neurosci 2018; 12:243. [PMID: 30123114 PMCID: PMC6085560 DOI: 10.3389/fncel.2018.00243] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/18/2018] [Indexed: 01/31/2023] Open
Abstract
Microglia, resident immune cells of the central nervous system, fulfill multiple functions in the brain throughout life. These microglial functions range from participation in innate and adaptive immune responses, involvement in the development of the brain and its homeostasis maintenance, to contribution to degenerative, traumatic, and proliferative diseases; and take place in the developing, the aging, the healthy, or the diseased brain. Thus, an impressive level of cellular plasticity, appears as a requirement for the pleiotropic biological functions of microglia. Epigenetic changes, including histone modifications or DNA methylation as well as microRNA expression, are important modifiers of gene expression, and have been involved in cell phenotype regulation and reprogramming and are therefore part of the mechanisms regulating cellular plasticity. Here, we review and discuss the epigenetic mechanisms, which are emerging as contributors to this microglial cellular plasticity and thereby can constitute interesting targets to modulate microglia associated brain diseases, including developmental diseases, neurodegenerative diseases as well as cancer.
Collapse
Affiliation(s)
- Mathilde Cheray
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
28
|
Penas C, Navarro X. Epigenetic Modifications Associated to Neuroinflammation and Neuropathic Pain After Neural Trauma. Front Cell Neurosci 2018; 12:158. [PMID: 29930500 PMCID: PMC5999732 DOI: 10.3389/fncel.2018.00158] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests that epigenetic alterations lie behind the induction and maintenance of neuropathic pain. Neuropathic pain is usually a chronic condition caused by a lesion, or pathological change, within the nervous system. Neuropathic pain appears frequently after nerve and spinal cord injuries or diseases, producing a debilitation of the patient and a decrease of the quality of life. At the cellular level, neuropathic pain is the result of neuronal plasticity shaped by an increase in the sensitivity and excitability of sensory neurons of the central and peripheral nervous system. One of the mechanisms thought to contribute to hyperexcitability and therefore to the ontogeny of neuropathic pain is the altered expression, trafficking, and functioning of receptors and ion channels expressed by primary sensory neurons. Besides, neuronal and glial cells, such as microglia and astrocytes, together with blood borne macrophages, play a critical role in the induction and maintenance of neuropathic pain by releasing powerful neuromodulators such as pro-inflammatory cytokines and chemokines, which enhance neuronal excitability. Altered gene expression of neuronal receptors, ion channels, and pro-inflammatory cytokines and chemokines, have been associated to epigenetic adaptations of the injured tissue. Within this review, we discuss the involvement of these epigenetic changes, including histone modifications, DNA methylation, non-coding RNAs, and alteration of chromatin modifiers, that have been shown to trigger modification of nociception after neural lesions. In particular, the function on these processes of EZH2, JMJD3, MeCP2, several histone deacetylases (HDACs) and histone acetyl transferases (HATs), G9a, DNMT, REST and diverse non-coding RNAs, are described. Despite the effort on developing new therapies, current treatments have only produced limited relief of this pain in a portion of patients. Thus, the present review aims to contribute to find novel targets for chronic neuropathic pain treatment.
Collapse
Affiliation(s)
- Clara Penas
- Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Xavier Navarro
- Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
29
|
Shi DN, Yuan YT, Ye D, Kang LM, Wen J, Chen HP. MiR-183-5p Alleviates Chronic Constriction Injury-Induced Neuropathic Pain Through Inhibition of TREK-1. Neurochem Res 2018; 43:1143-1149. [PMID: 29736614 DOI: 10.1007/s11064-018-2529-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 01/04/2023]
Abstract
MicroRNAs have been implicated in nerve injury and neuropathic pain. In the previous study we had shown that miR-96 can attenuate neuropathic pain through inhibition of Nav1.3. In this study, we investigated the role of miR-183, a same cluster member of microRNA with miR-96, in neuropathic pain and its potential mechanisms. We found that the expression level of miR-183-5p in dorsal root ganglion was decreased with the development of neuropathic pain induced by chronic constriction sciatic nerve injury (CCI). By contrast, the TREK-1, a K+ channel, was increased. Further investigation identified that intrathecal injection of miR-183-5p mimic efficiently ameliorated neuropathic pain and inhibited the expression of TREK-1, a predicted target gene of miR-183-5p. Luciferase assays confirmed the binding of miR-183-5p and TREK-1. In addition, over-expression of TREK-1 blocked the roles of miR-183-5p in neuropathic pain. Our findings suggested that miR-183-5P participated in the regulation of CCI-induced neuropathic pain through inhibiting the expression of TREK-1.
Collapse
Affiliation(s)
- Dan-Ni Shi
- Department of Histology and Embryology, Medical College, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China
| | - Yi-Tao Yuan
- Department of Histology and Embryology, Medical College, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China.,Nanchang Joint Programme, Queen Mary University of London, London, E1 4NS, UK
| | - Dan Ye
- School of Life Science, Jiangxi Science & Techology Normal University, Nanchang, 330013, People's Republic of China
| | - Lu-Mei Kang
- Department of Animal Science, Medical College, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China
| | - Jing Wen
- Department of Histology and Embryology, Medical College, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China
| | - Hong-Ping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China. .,Jiangxi Province Key Laboratory of Tumor Pathogen's and Molecular Pathology, 461 Bayi Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
30
|
Méndez-Mancilla A, Lima-Rogel V, Toro-Ortíz JC, Escalante-Padrón F, Monsiváis-Urenda AE, Noyola DE, Salgado-Bustamante M. Differential expression profiles of circulating microRNAs in newborns associated to maternal pregestational overweight and obesity. Pediatr Obes 2018; 13:168-174. [PMID: 29045034 DOI: 10.1111/ijpo.12247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND The perinatal environment has a role in the establishment of altered metabolic and inflammatory responses, and could be modulated by microRNAs regulating immune and metabolic processes. OBJECTIVE To analyze the expression profile of four circulating microRNAs and cytokine serum concentrations in neonates born to overweight and obese women. METHODS Pregnant women were included and grouped by pregestational body mass index (21 with normal weight, 10 overweight and 10 obese women). A peripheral blood sample was obtained from newborn infants and used to determine circulating miRNAs expression and cytokine serum concentrations. RESULTS There were significant differences in the expression of three microRNAs between newborns of pregestational obese women and newborns from pregestational normal weight women: miR-155 (p = 0.03), miR-181a (p = 0.02) and miR-221 (p = 0.04). A significant reduction in IL-1β (p = 0.005) expression was also found in newborns of overweight women; although this cytokine was also diminished in newborns of obese women, this was not statistically significant. An association between IL-1β concentrations and miR-146a and miR-221 expression was also observed. CONCLUSIONS Expression of miR-155, miR-181a and miR-221 differs in infants born to obese women compared with infants born to normal weight women. Changes in microRNA expression could participate in the epigenetic foetal programming of metabolic disorders in children born to obese women.
Collapse
Affiliation(s)
- A Méndez-Mancilla
- Biochemistry Department, Faculty of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - V Lima-Rogel
- Pediatrics Department, Hospital Central "Dr. Ignacio Morones Prieto", San Luis Potosi, Mexico
| | - J C Toro-Ortíz
- Gynecology and Obstetrics Division, Hospital Central "Dr. Ignacio Morones Prieto", San Luis Potosi, Mexico
| | - F Escalante-Padrón
- Pediatrics Department, Hospital Central "Dr. Ignacio Morones Prieto", San Luis Potosi, Mexico
| | - A E Monsiváis-Urenda
- Immunology Department, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - D E Noyola
- Microbiology Department, Faculty of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - M Salgado-Bustamante
- Biochemistry Department, Faculty of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
31
|
Zhang Y, Mou J, Cao L, Zhen S, Huang H, Bao H. MicroRNA-142-3p relieves neuropathic pain by targeting high mobility group box 1. Int J Mol Med 2017; 41:501-510. [PMID: 29115575 DOI: 10.3892/ijmm.2017.3222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 10/06/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA) are emerging as critical regulators of neuropathic pain development. Neuroinflammation contributes to the development of neuropathic pain. miR‑142‑3p has been characterized as an inflammation‑related miRNA in various pathological processes. However, little is known about the role of miR‑142‑3p in neuroinflammation and neuropathic pain. The present study aimed to investigate the function of miR‑142‑3p in neuropathic pain by creating a murine model using spinal nerve ligation (SNL). A significant reduction in miR‑142‑3p expression was observed in the dorsal root ganglion of mice with SNL (P<0.05) compared with control mice. Overexpression of miR‑142‑3p significantly inhibited neuropathic pain and neuroinflammation in mice with SNL (P<0.05). High mobility group box 1 (HMGB1) was identified as a direct target gene of miR‑142‑3p by bioinformatic analysis and dual‑luciferase reporter assays. Overexpression of miR‑142‑3p significantly reduced the mRNA and protein expression levels of HMGB1 in vitro and in vivo (P<0.05). In addition, HMGB1 mRNA expression and miR‑142‑3p expression were inversely correlated in mice with SNL. Furthermore, overexpression of HMGB1 significantly reversed the inhibitory effect of miR‑142‑3p on neuroinflammation and neuropathic pain development (P<0.05). Overall, these results suggest that miR‑142‑3p functions as a negative regulator of neuropathic pain development through the downregulation of HMGB1, indicating that miR‑142‑3p may serve as a potential therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Junying Mou
- Department of Anesthesiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, P.R. China
| | - Li Cao
- Department of Internal Medicine, Suizhou Zengdu Hospital, Suizhou, Hubei 441300, P.R. China
| | - Su Zhen
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hongjuan Huang
- Department of Neurology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
32
|
Bioinformatics Genes and Pathway Analysis for Chronic Neuropathic Pain after Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6423021. [PMID: 29164149 PMCID: PMC5661087 DOI: 10.1155/2017/6423021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/09/2017] [Accepted: 09/07/2017] [Indexed: 12/11/2022]
Abstract
It is well known spinal cord injury (SCI) can cause chronic neuropathic pain (NP); however its underlying molecular mechanisms remain elusive. This study aimed to disclose differentially expressed genes (DEGs) and activated signaling pathways in association with SCI induced chronic NP, in order to identify its diagnostic and therapeutic targets. Microarray dataset GSE5296 has been downloaded from Gene Expression Omnibus (GEO) database. Significant analysis of microarray (SAM), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and pathway network analysis have been used to compare changes of DEGs and signaling pathways between the SCI and sham-injury group. As a result, DEGs analysis showed there were 592 DEGs with significantly altered expression; among them Ccl3 expression showed the highest upregulation which implicated its association with SCI induced chronic NP. Moreover, KEGG analysis found 209 pathways changed significantly; among them the most significantly activated one is MAPK signaling pathway, which is in line with KEGG analysis results. Our results show Ccl3 is highly associated with SCI induced chronic NP; as the exosomes with Ccl3 can be easily and efficiently detected in peripheral blood, Ccl3 may serve as a potential prognostic target for the diagnosis and treatment of SCI induced chronic NP.
Collapse
|
33
|
Ji LJ, Shi J, Lu JM, Huang QM. MiR-150 alleviates neuropathic pain via inhibiting toll-like receptor 5. J Cell Biochem 2017; 119:1017-1026. [PMID: 28685867 DOI: 10.1002/jcb.26269] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/06/2017] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs) are reported as vital participators in the pathophysiological course of neuropathic pain. However, the underlying mechanisms of the functional roles of miRNAs in neuropathic pain are largely unknown. This study was designed to explore the potential role of miR-150 in regulating the process of neuropathic pain in a rat model established by chronic sciatic nerve injury (CCI). Overexpression of miR-150 greatly alleviated neuropathic pain development and reduced inflammatory cytokine expression, including COX-2, interleukin IL-6, and tumor necrosis factor (TNF)-α in CCI rats. By bioinformatic analysis, 3'-untranslated region (UTR) of Toll-like receptor (TLR5) was predicted to be a target of miR-150. TLR5 commonly serves as an important regulator of inflammation. Overexpression of miR-150 significantly suppressed the expression of TLR5 in vitro and in vivo. Furthermore, upregulation of TLR5 decreased the miR-150 expression and downregulation of TLR5 increased miR-150, respectively. Overexpression of TLR5 significantly reversed the miR-150-induced suppressive effects on neuropathic pain. In conclusion, our current study indicates that miR-150 may inhibit neuropathic pain development of CCI rats through inhibiting TLR5-mediated neuroinflammation. Our findings suggest that miR-150 may provide a novel therapeutic target for neuropathic pain treatment.
Collapse
Affiliation(s)
- Li-Juan Ji
- Department of Sport Medicine and Rehabilitation Center, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jing Shi
- Geriatric Department,The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Min Lu
- Department of Neurology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Qiang-Min Huang
- Department of Sport Medicine and Rehabilitation Center, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
34
|
Niu J, Huang D, Zhou R, Yue M, Xu T, Yang J, He L, Tian H, Liu X, Zeng J. Activation of dorsal horn cannabinoid CB2 receptor suppresses the expression of P2Y 12 and P2Y 13 receptors in neuropathic pain rats. J Neuroinflammation 2017; 14:185. [PMID: 28899427 PMCID: PMC5596460 DOI: 10.1186/s12974-017-0960-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/06/2017] [Indexed: 12/27/2022] Open
Abstract
Background More evidence suggests that dorsal spinal cord microglia is an important site contributing to CB2 receptor-mediated analgesia. The upregulation of P2Y12 and P2Y13 purinoceptors in spinal dorsal horn microglia is involved in the development of pain behavior caused by peripheral nerve injury. However, it is not known whether the expression of P2Y12 and P2Y13 receptors at spinal dorsal horn will be influenced after CB2 receptor activation in neuropathic pain rats. Methods Chronic constriction injury (CCI) and intrathecal ADPbetaS injection were performed in rats to induce neuropathic pain. The paw withdrawal latency (PWL) was used to evaluate thermal hyperalgesia in neuropathic rats. The expression of P2Y12 and P2Y13 receptors, p-p38MAPK, and NF-kappaBp65 was detected with RT-PCR and western blotting analysis. Results Treatment with AM1241 produces a pronounced inhibition of CCI-induced thermal hyperalgesia and significantly inhibited the increased expression of P2Y12 and P2Y13 receptors at the mRNA and protein levels, which open up the possibility that P2Y12 and P2Y13 receptor expression are downregulated by CB2 receptor agonist AM1241 in CCI rats. Western blot analysis demonstrated that AM1241 reduced the elevated expression of p-p38MAPK and NF-κBp65 in the dorsal spinal cord induced by CCI. After administration with either SB203580 (p38MAPK inhibitor) or PDTC (NF-kappaB inhibitor), the levels of P2Y13 receptor expression in the dorsal spinal cord were lower than those in the CCI group. However, in CCI rats, the increased expression of P2Y12 receptor was prevented by intrathecal administration of PDTC but not by SB203580. In addition, minocycline significantly decreased the increased expression of P2Y12 and P2Y13 receptors. The similar results can be observed in ADPbetaS-treated rats. Intrathecal injection of ADPbataS causes thermal hyperalgesia and increased expression of P2Y12 and P2Y13 receptors in the dorsal spinal cord of naive rats. Moreover, intrathecal injection of AM1241 alleviates pain response and reduces the elevated expression of P2Y12 and P2Y13 receptors, p-p38MAPK, and NF-κBp65 in the dorsal spinal cord of ADPbetaS-treated rats. Intrathecal injection of SB203580 significantly inhibited the ADPbetaS-induced P2Y13 receptor expression, without affecting P2Y12 receptor expression. However, treatment with either SB203580 or PDTC effectively inhibited P2Y13 receptor expression compared to ADPbetaS-treated rats. Conclusions In CCI- and ADPbetaS-treated rats, AM1241 pretreatment could efficiently activate CB2 receptor, while inhibiting p38MAPK and NF-kappaB activation in the dorsal spinal cord. CB2 receptor stimulation decreased P2Y13 receptor expression via p38MAPK/NF-kappaB signaling. On the other hand, CB2 receptor activation decreased P2Y12 receptor expression via p38MAPK-independent NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Juan Niu
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - Dujuan Huang
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - Rui Zhou
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - MingXia Yue
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - Tao Xu
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - Junna Yang
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - Li He
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - Hong Tian
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - XiaoHong Liu
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China.
| |
Collapse
|
35
|
Pegoraro V, Merico A, Angelini C. Micro-RNAs in ALS muscle: Differences in gender, age at onset and disease duration. J Neurol Sci 2017; 380:58-63. [PMID: 28870590 PMCID: PMC5598142 DOI: 10.1016/j.jns.2017.07.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/25/2022]
Abstract
Few studies have explored the role of microRNAs (or miRNAs) in Amyotrophic Lateral Sclerosis (ALS) muscle, possibly because of the difficulty in obtaining samples and because this is a rare disease. We measured the expression levels of muscle-specific miRNAs (miRNA-1, miRNA-206, miRNA-133a, miRNA-133b, miRNA-27a) and inflammatory/angiogenic miRNAs (miRNA-155, miRNA-146a, miRNA-221, miRNA-149*) in the muscles of 13 ALS patients and controls. To highlight differences, patients were subdivided according to their gender, age at onset of symptoms, and disease duration. A significant over-expression of all miRNAs was observed in ALS patients versus controls, in male patients versus females, in patients with early onset versus patients with late onset, and in patients with long disease duration versus patients with short duration. A differential expression of miRNAs according to gender could be explained by the hormonal regulation which determines the body muscle mass. The course of the disease might reflect differential degree of muscle atrophy and signaling at miRNA levels. An evident role is also played by inflammatory/angiogenetic factors as shown by the observed miRNA changes. MyomiRNAs (especially miRNA-206) are up-regulated in ALS muscle than in controls. Inflammatory miRNA-(especially miRNA-221) is up-regulated in ALS than in controls. There is gender difference in expression of myo-miRNAs and inflammatory miRNAs. MiRNAs levels differ according to age at onset and disease duration.
Collapse
Affiliation(s)
| | - Antonio Merico
- Fondazione San Camillo Hospital IRCCS, Lido Venice, Italy
| | | |
Collapse
|
36
|
MicroRNA-93 alleviates neuropathic pain through targeting signal transducer and activator of transcription 3. Int Immunopharmacol 2017; 46:156-162. [PMID: 28284149 DOI: 10.1016/j.intimp.2017.01.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/16/2016] [Accepted: 01/20/2017] [Indexed: 12/21/2022]
Abstract
Emerging evidence suggests that microRNAs (miRNAs) play a critical role in the pathogenesis of neuropathic pain. However, the exact role of miRNAs in regulating neuropathic pain remains largely unknown. In this study, we aimed to investigate the potential role of miR-93 in a rat model of neuropathic pain induced by chronic constriction sciatic nerve injury (CCI). We found a significant decrease of miR-93 in the spinal cord of CCI rats compared with sham rats. Overexpression of miR-93 significantly alleviated neuropathic pain development and reduced inflammatory cytokine expression, including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 in CCI rats. By bioinformatic analysis and dual-luciferase reporter assay, we found that miR-93 directly targeted the 3'-untranslated region (UTR) of signal transducer and activator of transcription 3 (STAT3), an important regulator of inflammation. Overexpression of miR-93 markedly suppressed the expression of STAT3 in vitro and in vivo. Furthermore, overexpression of STAT3 significantly reversed the miR-93 overexpression-induced suppressive effects on neuropathic pain development and neuroinflammation. Taken together, our study suggests that miR-93 inhibits neuropathic pain development of CCI rats possibly through inhibiting STAT3-mediated neuroinflammation. Our findings indicate that miR-93 may serve as a novel therapeutic target for neuropathic pain intervention.
Collapse
|
37
|
Machelska H, Celik MÖ. Recent advances in understanding neuropathic pain: glia, sex differences, and epigenetics. F1000Res 2016; 5:2743. [PMID: 28105313 PMCID: PMC5224690 DOI: 10.12688/f1000research.9621.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 12/17/2022] Open
Abstract
Neuropathic pain results from diseases or trauma affecting the nervous system. This pain can be devastating and is poorly controlled. The pathophysiology is complex, and it is essential to understand the underlying mechanisms in order to identify the relevant targets for therapeutic intervention. In this article, we focus on the recent research investigating neuro-immune communication and epigenetic processes, which gain particular attention in the context of neuropathic pain. Specifically, we analyze the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the modulation of the central nervous system inflammation triggered by neuropathy. Considering epigenetics, we address DNA methylation, histone modifications, and the non-coding RNAs in the regulation of ion channels, G-protein-coupled receptors, and transmitters following neuronal damage. The goal was not only to highlight the emerging concepts but also to discuss controversies, methodological complications, and intriguing opinions.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Melih Ö Celik
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|