1
|
Wang H, Liu S, Sun Y, Chen C, Hu Z, Li Q, Long J, Yan Q, Liang J, Lin Y, Yang S, Lin M, Liu X, Wang H, Yu J, Yi F, Tan Y, Yang Y, Chen N, Ai Q. Target modulation of glycolytic pathways as a new strategy for the treatment of neuroinflammatory diseases. Ageing Res Rev 2024; 101:102472. [PMID: 39233146 DOI: 10.1016/j.arr.2024.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
Neuroinflammation is an innate and adaptive immune response initiated by the release of inflammatory mediators from various immune cells in response to harmful stimuli. While initially beneficial and protective, prolonged or excessive neuroinflammation has been identified in clinical and experimental studies as a key pathological driver of numerous neurological diseases and an accelerant of the aging process. Glycolysis, the metabolic process that converts glucose to pyruvate or lactate to produce adenosine 5'-triphosphate (ATP), is often dysregulated in many neuroinflammatory disorders and in the affected nerve cells. Enhancing glucose availability and uptake, as well as increasing glycolytic flux through pharmacological or genetic manipulation of glycolytic enzymes, has shown potential protective effects in several animal models of neuroinflammatory diseases. Modulating the glycolytic pathway to improve glucose metabolism and ATP production may help alleviate energy deficiencies associated with these conditions. In this review, we examine six neuroinflammatory diseases-stroke, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and depression-and provide evidence supporting the role of glycolysis in their treatment. We also explore the potential link between inflammation-induced aging and glycolysis. Additionally, we briefly discuss the critical role of glycolysis in three types of neuronal cells-neurons, microglia, and astrocytes-within physiological processes. This review highlights the significance of glycolysis in the pathology of neuroinflammatory diseases and its relevance to the aging process.
Collapse
Affiliation(s)
- Hanlong Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ziyi Hu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qinqin Li
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingbo Yu
- Technology Innovation Center/National Key Laboratory Breeding Base of Chinese Medicine Powders and Innovative Drugs, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
2
|
Soares P, Silva C, Chavarria D, Silva FSG, Oliveira PJ, Borges F. Drug discovery and amyotrophic lateral sclerosis: Emerging challenges and therapeutic opportunities. Ageing Res Rev 2023; 83:101790. [PMID: 36402404 DOI: 10.1016/j.arr.2022.101790] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of upper and lower motor neurons (MNs) leading to paralysis and, ultimately, death by respiratory failure 3-5 years after diagnosis. Edaravone and Riluzole, the only drugs currently approved for ALS treatment, only provide mild symptomatic relief to patients. Extraordinary progress in understanding the biology of ALS provided new grounds for drug discovery. Over the last two decades, mitochondria and oxidative stress (OS), iron metabolism and ferroptosis, and the major regulators of hypoxia and inflammation - HIF and NF-κB - emerged as promising targets for ALS therapeutic intervention. In this review, we focused our attention on these targets to outline and discuss current advances in ALS drug development. Based on the challenges and the roadblocks, we believe that the rational design of multi-target ligands able to modulate the complex network of events behind the disease can provide effective therapies in a foreseeable future.
Collapse
Affiliation(s)
- Pedro Soares
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| | - Catia Silva
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Filomena S G Silva
- CNC - CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paulo J Oliveira
- CNC - CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
3
|
Jiang Y, Kang Y, Liu J, Yin S, Huang Z, Shao L. Nanomaterials alleviating redox stress in neurological diseases: mechanisms and applications. J Nanobiotechnology 2022; 20:265. [PMID: 35672765 PMCID: PMC9171999 DOI: 10.1186/s12951-022-01434-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Overproduced reactive oxygen and reactive nitrogen species (RONS) in the brain are involved in the pathogenesis of several neurological diseases, such as Alzheimer's disease, Parkinson's disease, traumatic brain injury, and stroke, as they attack neurons and glial cells, triggering cellular redox stress. Neutralizing RONS, and, thus, alleviating redox stress, can slow down or stop the progression of neurological diseases. Currently, an increasing number of studies are applying nanomaterials (NMs) with anti-redox activity and exploring the potential mechanisms involved in redox stress-related neurological diseases. In this review, we summarize the anti-redox mechanisms of NMs, including mimicking natural oxidoreductase activity and inhibiting RONS generation at the source. In addition, we propose several strategies to enhance the anti-redox ability of NMs and highlight the challenges that need to be resolved in their application. In-depth knowledge of the mechanisms and potential application of NMs in alleviating redox stress will help in the exploration of the therapeutic potential of anti-redox stress NMs in neurological diseases.
Collapse
Affiliation(s)
- Yanping Jiang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Suhan Yin
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Zhendong Huang
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Martín-Cámara O, Arribas M, Wells G, Morales-Tenorio M, Martín-Requero Á, Porras G, Martínez A, Giorgi G, López-Alvarado P, Lastres-Becker I, Menéndez JC. Multitarget Hybrid Fasudil Derivatives as a New Approach to the Potential Treatment of Amyotrophic Lateral Sclerosis. J Med Chem 2022; 65:1867-1882. [PMID: 34985276 PMCID: PMC9132363 DOI: 10.1021/acs.jmedchem.1c01255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 12/12/2022]
Abstract
Hybrid compounds containing structural fragments of the Rho kinase inhibitor fasudil and the NRF2 inducers caffeic and ferulic acids were designed with the aid of docking and molecular mechanics studies. Following the synthesis of the compounds using a peptide-coupling methodology, they were characterized for their ROCK2 inhibition, radical scavenging, effects on cell viability (MTT assay), and NRF2 induction (luciferase assay). One of the compounds (1d) was selected in view of its good multitarget profile and good tolerability. It was able to induce the NRF2 signature, promoting the expression of the antioxidant response enzymes HO-1 and NQO1, via a KEAP1-dependent mechanism. Analysis of mRNA and protein levels of the NRF2 pathway showed that 1d induced the NRF2 signature in control and SOD1-ALS lymphoblasts but not in sALS, where it was already increased in the basal state. These results show the therapeutic potential of this compound, especially for ALS patients with a SOD1 mutation.
Collapse
Affiliation(s)
- Olmo Martín-Cámara
- Unidad
de Química Orgánica y Farmacéutica, Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Marina Arribas
- Instituto
de Investigaciones Biomédicas “Alberto Sols”
UAM-CSIC, Department of Biochemistry, School of Medicine, and Institute
Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Geoffrey Wells
- UCL
School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Marcos Morales-Tenorio
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ángeles Martín-Requero
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Neurodegenerativas
(CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Gracia Porras
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martínez
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Neurodegenerativas
(CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Giorgio Giorgi
- Unidad
de Química Orgánica y Farmacéutica, Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Pilar López-Alvarado
- Unidad
de Química Orgánica y Farmacéutica, Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto
de Investigaciones Biomédicas “Alberto Sols”
UAM-CSIC, Department of Biochemistry, School of Medicine, and Institute
Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Neurodegenerativas
(CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - J. Carlos Menéndez
- Unidad
de Química Orgánica y Farmacéutica, Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| |
Collapse
|
5
|
Lin B, Youdim MBH. The protective, rescue and therapeutic potential of multi-target iron-chelators for retinitis pigmentosa. Free Radic Biol Med 2021; 174:1-11. [PMID: 34324978 DOI: 10.1016/j.freeradbiomed.2021.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited diseases in which mutations result in the initial loss of night vision, followed by complete blindness. There is currently no effective therapeutic option for RP patients. Given the extremely heterogeneous nature of RP, any causative gene-specific therapy would be practical in a small fraction of patients with RP. Non-gene-specific therapeutics that is applicable to the majority of RP patients regardless of causative mutations may have an enormous impact on RP treatment. Several theories including apoptosis, oxidative stress and neuroinflammation have been proposed as possible underlying mechanisms for photoreceptor death in RP. We have designed and synthesized a series of iron-chelating compounds that possess diverse pharmacological properties and can act in a non-gene-specific manner on multiple pathological features ascribed to Alzheimer's disease, Parkinson's disease and RP. In this review, we discuss the multiple effects of several brain-permeable multi target iron-chelating compounds on photoreceptor degeneration in a mouse model of human RP. Specifically, we focus on the anti-apototic, neuroprotective and neurorescue effects of the compound VK28, M30 and VAR10303 on the histologic and functional preservation of photoreceptors in a mouse model of RP. We consider such drugs as potential therapeutic agents for RP patients.
Collapse
Affiliation(s)
- Bin Lin
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| | - Moussa B H Youdim
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
6
|
Bell SM, Burgess T, Lee J, Blackburn DJ, Allen SP, Mortiboys H. Peripheral Glycolysis in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E8924. [PMID: 33255513 PMCID: PMC7727792 DOI: 10.3390/ijms21238924] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are a group of nervous system conditions characterised pathologically by the abnormal deposition of protein throughout the brain and spinal cord. One common pathophysiological change seen in all neurodegenerative disease is a change to the metabolic function of nervous system and peripheral cells. Glycolysis is the conversion of glucose to pyruvate or lactate which results in the generation of ATP and has been shown to be abnormal in peripheral cells in Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Changes to the glycolytic pathway are seen early in neurodegenerative disease and highlight how in multiple neurodegenerative conditions pathology is not always confined to the nervous system. In this paper, we review the abnormalities described in glycolysis in the three most common neurodegenerative diseases. We show that in all three diseases glycolytic changes are seen in fibroblasts, and red blood cells, and that liver, kidney, muscle and white blood cells have abnormal glycolysis in certain diseases. We highlight there is potential for peripheral glycolysis to be developed into multiple types of disease biomarker, but large-scale bio sampling and deciphering how glycolysis is inherently altered in neurodegenerative disease in multiple patients' needs to be accomplished first to meet this aim.
Collapse
Affiliation(s)
- Simon M. Bell
- Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield S10 2HQ, UK; (T.B.); (J.L.); (D.J.B.); (S.P.A.); (H.M.)
| | | | | | | | | | | |
Collapse
|
7
|
Marini C, Cossu V, Bonifacino T, Bauckneht M, Torazza C, Bruno S, Castellani P, Ravera S, Milanese M, Venturi C, Carlone S, Piccioli P, Emionite L, Morbelli S, Orengo AM, Donegani MI, Miceli A, Raffa S, Marra S, Signori A, Cortese K, Grillo F, Fiocca R, Bonanno G, Sambuceti G. Mechanisms underlying the predictive power of high skeletal muscle uptake of FDG in amyotrophic lateral sclerosis. EJNMMI Res 2020; 10:76. [PMID: 32638178 PMCID: PMC7340686 DOI: 10.1186/s13550-020-00666-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Background We recently reported that enhanced [18F]-fluorodeoxyglucose (FDG) uptake in skeletal muscles predicts disease aggressiveness in patients with amyotrophic lateral sclerosis (ALS). The present experimental study aimed to assess whether this predictive potential reflects the link between FDG uptake and redox stress that has been previously reported in different tissues and disease models. Methods The study included 15 SOD1G93A mice (as experimental ALS model) and 15 wildtype mice (around 120 days old). Mice were submitted to micro-PET imaging. Enzymatic pathways and response to oxidative stress were evaluated in harvested quadriceps and hearts by biochemical, immunohistochemical, and immunofluorescence analysis. Colocalization between the endoplasmic reticulum (ER) and the fluorescent FDG analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) was performed in fresh skeletal muscle sections. Finally, mitochondrial ultrastructure and bioenergetics were evaluated in harvested quadriceps and hearts. Results FDG retention was significantly higher in hindlimb skeletal muscles of symptomatic SOD1G93A mice with respect to control ones. This difference was not explained by any acceleration in glucose degradation through glycolysis or cytosolic pentose phosphate pathway (PPP). Similarly, it was independent of inflammatory infiltration. Rather, the high FDG retention in SOD1G93A skeletal muscle was associated with an accelerated generation of reactive oxygen species. This redox stress selectively involved the ER and the local PPP triggered by hexose-6P-dehydrogenase. ER involvement was confirmed by the colocalization of the 2-NBDG with a vital ER tracker. The oxidative damage in transgenic skeletal muscle was associated with a severe impairment in the crosstalk between ER and mitochondria combined with alterations in mitochondrial ultrastructure and fusion/fission balance. The expected respiratory damage was confirmed by a deceleration in ATP synthesis and oxygen consumption rate. These same abnormalities were represented to a markedly lower degree in the myocardium, as a sample of non-voluntary striated muscle. Conclusion Skeletal muscle of SOD1G93A mice reproduces the increased FDG uptake observed in ALS patients. This finding reflects the selective activation of the ER-PPP in response to significant redox stress associated with alterations of mitochondrial ultrastructure, networking, and connection with the ER itself. This scenario is less severe in cardiomyocytes suggesting a relevant role for either communication with synaptic plaque or contraction dynamics.
Collapse
Affiliation(s)
- Cecilia Marini
- CNR Institute of Molecular Bioimaging and Physiology (IBFM), Milano, Italy. .,Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.
| | - Vanessa Cossu
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| | - Carola Torazza
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | | | - Silvia Ravera
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | - Marco Milanese
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Consuelo Venturi
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | | | | | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Silvia Morbelli
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| | - Anna Maria Orengo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy
| | | | - Alberto Miceli
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Stefano Raffa
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Stefano Marra
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Alessio Signori
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Katia Cortese
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | - Federica Grillo
- Department of Surgical Sciences and Integrated Diagnostics, Pathology Unit, University of Genoa, Genova, Italy
| | - Roberto Fiocca
- Department of Surgical Sciences and Integrated Diagnostics, Pathology Unit, University of Genoa, Genova, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy.,Pharmacology and Toxicology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| |
Collapse
|
8
|
Disease-modifying therapies in amyotrophic lateral sclerosis. Neuropharmacology 2020; 167:107986. [DOI: 10.1016/j.neuropharm.2020.107986] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 02/08/2023]
|
9
|
Halon-Golabek M, Borkowska A, Herman-Antosiewicz A, Antosiewicz J. Iron Metabolism of the Skeletal Muscle and Neurodegeneration. Front Neurosci 2019; 13:165. [PMID: 30949015 PMCID: PMC6436082 DOI: 10.3389/fnins.2019.00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies clearly indicate that the endocrine function of the skeletal muscle is essential for a long and healthy life. Regular exercise, which has been shown to stimulate the release of myokines, lowers the risk of many diseases, including Alzheimer’s and Parkinson’s disease, emphasizing the role of skeletal muscle in proper functioning of other tissues. In addition, exercise increases insulin sensitivity, which may also impact iron metabolism. Even though the role of iron in neurodegeneration is well established, the exact mechanisms of iron toxicity are not known. Interestingly, exercise has been shown to modulate iron metabolism, mainly by reducing body iron stores. Insulin signaling and iron metabolism are interconnected, as high tissue iron stores are associated with insulin resistance, and conversely, impaired insulin signaling may lead to iron accumulation in an affected tissue. Excess iron accumulation in tissue triggers iron-dependent oxidative stress. Further, iron overload in the skeletal muscle not only negatively affects muscle contractility but also might impact its endocrine function, thus possibly affecting the clinical outcome of diseases, including neurodegenerative diseases. In this review, we discuss possible mechanisms of iron dependent oxidative stress in skeletal muscle, its impact on muscle mass and endocrine function, as well as on neurodegeneration processes.
Collapse
Affiliation(s)
- Malgorzata Halon-Golabek
- Department of Physiotherapy, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| | - Andzelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jedrzej Antosiewicz
- Department of Biochemistry, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| |
Collapse
|
10
|
Joppe K, Roser AE, Maass F, Lingor P. The Contribution of Iron to Protein Aggregation Disorders in the Central Nervous System. Front Neurosci 2019; 13:15. [PMID: 30723395 PMCID: PMC6350163 DOI: 10.3389/fnins.2019.00015] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023] Open
Abstract
The homeostasis of iron is of fundamental importance in the central nervous system (CNS) to ensure biological processes such as oxygen transport, mitochondrial respiration or myelin synthesis. Dyshomeostasis and accumulation of iron can be observed during aging and both are shared characteristics of several neurodegenerative diseases. Iron-mediated generation of reactive oxygen species (ROS) may lead to protein aggregation and cellular toxicity. The process of misfolding and aggregation of neuronal proteins such as α-synuclein, Tau, amyloid beta (Aβ), TDP-43 or SOD1 is a common hallmark of many neurodegenerative disorders and iron has been shown to facilitate protein aggregation. Thus, both, iron and aggregating proteins are proposed to amplify their detrimental effects in the disease state. In this review, we give an overview on effects of iron on aggregation of different proteins involved in neurodegeneration. Furthermore, we discuss the proposed mechanisms of iron-mediated toxicity and protein aggregation emphasizing the red-ox chemistry and protein-binding properties of iron. Finally, we address current therapeutic approaches harnessing iron chelation as a disease-modifying intervention in neurodegenerative disorders, such as Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Karina Joppe
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Anna-Elisa Roser
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,German Center for Neurodegenerative Diseases, Göttingen, Germany.,Rechts der Isar Hospital, Technical University of Munich, Munich, Germany
| |
Collapse
|
11
|
Sepehri Z, Arefi D, Mirzaei N, Afshari A, Kiani Z, Sargazi A, Panahi Mishkar A, Oskoee HO, Masjedi MR, Sargazi A, Ghavami S. Changes in serum level of trace elements in pulmonary tuberculosis patients during anti-tuberculosis treatment. J Trace Elem Med Biol 2018; 50:161-166. [PMID: 30262275 DOI: 10.1016/j.jtemb.2018.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/17/2018] [Accepted: 06/26/2018] [Indexed: 11/30/2022]
Abstract
INTRODUCTIONS Tuberculosis is spreading throughout the globe, while it is a crucial cause of death in developing countries. In this study, trace elements concentrations and their alterations were determined in TB patients during anti-tuberculosis treatment period. MATERIALS AND METHODS We have collected blood samples from a total of 180 TB patients with pulmonary Tuberculosis, and 180 healthy controls in Sistan, Iran. The serum iron, copper, lead, calcium, arsenic and selenium concentrations were detected at the beginning of anti-TB chemotherapy, at the end of 2nd, 4th and 6th month after treatment initiation. Data were then analyzed using SPSS version 20. RESULTS AND DISCUSSIONS Although Ca, Pb, and As levels did not change during the treatment period, serum concentrations of Fe, Zn, Cu, and Se were diminished in TB patients significantly during treatment in comparison with controls (P < 0.001).We also found that there was a significant difference in the Cu/Se and Cu/Zn ratios in tuberculosis patients in comparison with healthy individuals (P < 0.001). CONCLUSIONS Trace elements serum concentrations are affected by TB infection and anti-TB therapy. Their serum levels were strongly perturbed during infection as well as anti-TB treatment.
Collapse
Affiliation(s)
- Zahra Sepehri
- Department of Internal Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Donya Arefi
- Zabol University of Medical Sciences, Zabol, Iran
| | - Nima Mirzaei
- Zabol University of Medical Sciences, Zabol, Iran; Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 3P4, Canada
| | - Asma Afshari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohre Kiani
- Students Research Committee, Zabol University of Medical Sciences, Zabol, Iran; Students Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Sargazi
- Students Research Committee, Zabol University of Medical Sciences, Zabol, Iran
| | | | - Hamid Owaysee Oskoee
- Department of Infectious Disease, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Masjedi
- Telemedicine Research Center, Shahid Beheshty University of Medical Sciences, Tehran, Iran
| | - Aliyeh Sargazi
- Students Research Committee, Zabol University of Medical Sciences, Zabol, Iran.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 3P4, Canada
| |
Collapse
|
12
|
Nuñez MT, Chana-Cuevas P. New Perspectives in Iron Chelation Therapy for the Treatment of Neurodegenerative Diseases. Pharmaceuticals (Basel) 2018; 11:ph11040109. [PMID: 30347635 PMCID: PMC6316457 DOI: 10.3390/ph11040109] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Iron chelation has been introduced as a new therapeutic concept for the treatment of neurodegenerative diseases with features of iron overload. At difference with iron chelators used in systemic diseases, effective chelators for the treatment of neurodegenerative diseases must cross the blood–brain barrier. Given the promissory but still inconclusive results obtained in clinical trials of iron chelation therapy, it is reasonable to postulate that new compounds with properties that extend beyond chelation should significantly improve these results. Desirable properties of a new generation of chelators include mitochondrial destination, the center of iron-reactive oxygen species interaction, and the ability to quench free radicals produced by the Fenton reaction. In addition, these chelators should have moderate iron binding affinity, sufficient to chelate excessive increments of the labile iron pool, estimated in the micromolar range, but not high enough to disrupt physiological iron homeostasis. Moreover, candidate chelators should have selectivity for the targeted neuronal type, to lessen unwanted secondary effects during long-term treatment. Here, on the basis of a number of clinical trials, we discuss critically the current situation of iron chelation therapy for the treatment of neurodegenerative diseases with an iron accumulation component. The list includes Parkinson’s disease, Friedreich’s ataxia, pantothenate kinase-associated neurodegeneration, Huntington disease and Alzheimer’s disease. We also review the upsurge of new multifunctional iron chelators that in the future may replace the conventional types as therapeutic agents for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Marco T Nuñez
- Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago 7800024, Chile.
| | - Pedro Chana-Cuevas
- Center for the Treatment of Movement Disorders, Universidad de Santiago de Chile, Belisario Prat 1597, Santiago 83800000, Chile.
| |
Collapse
|
13
|
Oggiano R, Solinas G, Forte G, Bocca B, Farace C, Pisano A, Sotgiu MA, Clemente S, Malaguarnera M, Fois AG, Pirina P, Montella A, Madeddu R. Trace elements in ALS patients and their relationships with clinical severity. CHEMOSPHERE 2018; 197:457-466. [PMID: 29366958 DOI: 10.1016/j.chemosphere.2018.01.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/06/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
An exploratory study of trace elements in ALS and their relationships with clinical severity was detected. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that causes irreversible damage in humans, with the consequent loss of function of motoneurons (MNs), with a prognosis up to 5 years after diagnosis. Except to genetic rare cases it is not known the etiology of the disorder. Aim of our research is to investigate the possible role of heavy metals in the severity of the disease. In this study, by the use of plasma mass (ICP-MS), we have analyzed the content of essential and heavy metals such: Pb, Cd, Al, Hg, Mn, Fe, Cu, Zn, Se, Mg, and Ca, in blood, urine and hair of ALS patients and controls; moreover we divided the patients in two groups for disease severity and analyzed the difference among the groups, in order to study a possible involvement of metals in the severity of the damage. Our results suggest a protective role of Selenium, involved in protective antioxidant mechanisms, and a risk factor in the case of presence of Lead in blood. The levels of the other metals are not easy to interpret, because these may be due to life style and for essential metals a consequence of the disease condition, not a cause.
Collapse
Affiliation(s)
- Riccardo Oggiano
- Department of Biomedical Sciences - Histology, University of Sassari, Sassari, Italy
| | - Giuliana Solinas
- Department of Biomedical Sciences - Hygiene, University of Sassari, Sassari, Italy
| | - Giovanni Forte
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Cristiano Farace
- Department of Biomedical Sciences - Histology, University of Sassari, Sassari, Italy
| | - Andrea Pisano
- Department of Biomedical Sciences - Histology, University of Sassari, Sassari, Italy
| | | | | | - Michele Malaguarnera
- Department of Medical and Pediatric Science, Research Centre "The Great Senescence", University of Catania, Catania, Italy
| | - Alessandro Giuseppe Fois
- Department of Clinical and Experimental Medicine - Institute of Respiratory Diseases, University of Sassari, Sassari, Italy
| | - Pietro Pirina
- Department of Clinical and Experimental Medicine - Institute of Respiratory Diseases, University of Sassari, Sassari, Italy
| | - Andrea Montella
- Department of Biomedical Sciences- Human Anatomy, University of Sassari, Sassari, Italy
| | - Roberto Madeddu
- Department of Biomedical Sciences - Histology, University of Sassari, Sassari, Italy; National Institute of Biostructures and Biosystems, Rome, Italy.
| |
Collapse
|
14
|
Günther R, Balck A, Koch JC, Nientiedt T, Sereda M, Bähr M, Lingor P, Tönges L. Rho Kinase Inhibition with Fasudil in the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis-Symptomatic Treatment Potential after Disease Onset. Front Pharmacol 2017; 8:17. [PMID: 28197100 PMCID: PMC5281550 DOI: 10.3389/fphar.2017.00017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/10/2017] [Indexed: 11/24/2022] Open
Abstract
Despite an improved understanding of the genetic background and the pathomechanisms of amyotrophic lateral sclerosis (ALS) no novel disease-modifying therapies have been successfully implemented in clinical routine. Riluzole still remains the only clinically approved substance in human ALS treatment with limited efficacy. We have previously identified pharmacological rho kinase (ROCK) inhibitors as orally applicable substances in SOD1.G93A transgenic ALS mice (SOD1G93A), which are able to extend survival time and improve motor function after presymptomatic treatment. Here, we have evaluated the therapeutic effect of the orally administered ROCK inhibitor Fasudil starting at a symptomatic disease stage, more realistically reflecting the clinical situation. Oral Fasudil treatment was initiated at a symptomatic stage at 80 days of life (d80) with 30 or 100 mg/kg body weight in both female and male mice. While baseline neurological scoring and survival were not influenced, Fasudil significantly improved motor behavior in male mice. Spinal cord pathology of motoneurons (MN) and infiltrating microglial cells (MG) at disease end-stage were not significantly modified. Although treatment after symptom onset was less potent than treatment in asymptomatic animals, our study shows the therapeutic benefits of this well-tolerated substance, which is already in clinical use for other indications.
Collapse
Affiliation(s)
- René Günther
- Department of Neurology, University Medicine GöttingenGöttingen, Germany; Department of Neurology, Technische Universität DresdenDresden, Germany
| | - Alexander Balck
- Department of Neurology, University Medicine GöttingenGöttingen, Germany; Institute of Neurogenetics, University of LübeckLübeck, Germany
| | - Jan C Koch
- Department of Neurology, University Medicine Göttingen Göttingen, Germany
| | - Tobias Nientiedt
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine Göttingen, Germany
| | - Michael Sereda
- Department of Neurogenetics, Max-Planck-Institute of Experimental MedicineGöttingen, Germany; Department of Clinical NeurophysiologyGöttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medicine GöttingenGöttingen, Germany; Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the BrainGöttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medicine GöttingenGöttingen, Germany; Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the BrainGöttingen, Germany
| | - Lars Tönges
- Department of Neurology, University Medicine GöttingenGöttingen, Germany; Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the BrainGöttingen, Germany; Department of Neurology, St. Josef-Hospital, Ruhr University BochumBochum, Germany
| |
Collapse
|
15
|
Eid R, Arab NTT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:399-430. [PMID: 27939167 DOI: 10.1016/j.bbamcr.2016.12.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
16
|
Angiogenic and Osteogenic Coupling Effects of Deferoxamine-Loaded Poly(lactide-co-glycolide)-Poly(ethylene glycol)-Poly(lactide-co-glycolide) Nanoparticles. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6100290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|