1
|
Expression of Cysteine-Rich Secreted Acidic Protein in Multiple Myeloma and Its Effect on the Biological Behavior of Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6101060. [PMID: 34737780 PMCID: PMC8563126 DOI: 10.1155/2021/6101060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022]
Abstract
The multiple myeloma is a malignant clonal tumor of bone marrow plasma cells that is incurable and inevitably recurrent. The mechanisms of progression include tumor cell metastasis, immune escape, resistance to apoptosis, and malignant proliferation. The cysteine-rich secreted acidic protein is closely related to the growth, development, remodeling, and repair of cells and tissues. In our study, we divided myeloma patients and patients with other blood diseases into groups and measured the cysteine-rich secreted acidic protein (SPARC) content in the serum of different groups of patients as well as the prognostic differences. The U266 cells were transfected with interfering vectors and overexpressed SPARC vectors to determine the physiological functions of MM cells. Our results showed that SPARC was highly expressed in MM and the survival rate of the high SPARC expression group was lower than that of the low expression group. Interfering SPARC vectors inhibited cancer cell proliferation, migration, and invasion and promoted apoptosis. Overexpression of SPARC vectors promoted cancer cell development. SPARC affected the patient's disease development by regulating the biological behavior of the MM cells.
Collapse
|
2
|
Chen S, Zou Q, Chen Y, Kuang X, Wu W, Guo M, Cai Y, Li Q. Regulation of SPARC family proteins in disorders of the central nervous system. Brain Res Bull 2020; 163:178-189. [DOI: 10.1016/j.brainresbull.2020.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
|
3
|
Tan X, Li T, Zhu S, Zhong W, Li F, Wang Y. Induction of SPARC on Oxidative Stress, Inflammatory Phenotype Transformation, and Apoptosis of Human Brain Smooth Muscle Cells Via TGF-β1-NOX4 Pathway. J Mol Neurosci 2020; 70:1728-1741. [PMID: 32495004 DOI: 10.1007/s12031-020-01566-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 04/22/2020] [Indexed: 11/30/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) has a close association with inflammatory response and oxidative stress in tissues and is widely expressed in intracranial aneurysms (IAs), especially in smooth muscle cells. Therefore, it is inferred that SPARC might be involved in the formation and development of IAs through the inflammatory response pathway or oxidative stress pathway. The aim of this study is to investigate the pathological mechanism of SPARC in oxidative stress, inflammation, and apoptosis during the formation of IAs, as well as the involvement of TGF-β1 and NOX4 molecules. Human brain vascular smooth muscle cells (HBVSMCs) were selected as experimental objects. After the cells were stimulated by recombinant human SPARC protein in vitro, the ROS level in the cells was measured using an ID/ROS fluorescence analysis kit combined with fluorescence microscope and flow cytometry. The related protein expression in HBVSMCs was measured using western blotting. The mitochondrial membrane potential change was detected using a mitochondrial membrane potential kit and laser confocal microscope. The mechanism was explored by intervention with reactive oxygen scavengers N-acetylcysteine (NAC), TGF-β1 inhibitor (SD-208), and siRNA knockout. The results showed that SPARC upregulated the expression of NOX4 through the TGF-β1-dependent signaling pathway, leading to oxidative stress and pro-inflammatory matrix behavior and apoptosis in HBVSMCs. These findings demonstrated that SPARC may promote the progression of IAs.
Collapse
Affiliation(s)
- Xianjun Tan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Neurosurgery, People's Hospital of Chiping City, Liaocheng City, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China
| | - Tao Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China.,Department of Neurosurgery, the No.4 People's Hospital of Jinan, Jinan City, Shandong Province, China
| | - Shaowei Zhu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China
| | - Weiying Zhong
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China
| | - Feng Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunyan Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China.
| |
Collapse
|
4
|
Li T, Tan X, Zhu S, Zhong W, Huang B, Sun J, Li F, Wang Y. SPARC induces phenotypic modulation of human brain vascular smooth muscle cells via AMPK/mTOR-mediated autophagy. Neurosci Lett 2019; 712:134485. [DOI: 10.1016/j.neulet.2019.134485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022]
|