1
|
Napoli AJ, Laderwager S, Zoodsma JD, Biju B, Mucollari O, Schubel SK, Aprea C, Sayed A, Morgan K, Napoli A, Flanagan S, Wollmuth LP, Sirotkin HI. Developmental loss of NMDA receptors results in supernumerary forebrain neurons through delayed maturation of transit-amplifying neuroblasts. Sci Rep 2024; 14:3395. [PMID: 38336823 PMCID: PMC10858180 DOI: 10.1038/s41598-024-53910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Developmental neurogenesis is a tightly regulated spatiotemporal process with its dysregulation implicated in neurodevelopmental disorders. NMDA receptors are glutamate-gated ion channels that are widely expressed in the early nervous system, yet their contribution to neurogenesis is poorly understood. Notably, a variety of mutations in genes encoding NMDA receptor subunits are associated with neurodevelopmental disorders. To rigorously define the role of NMDA receptors in developmental neurogenesis, we used a mutant zebrafish line (grin1-/-) that lacks all NMDA receptors yet survives to 10 days post-fertilization, offering the opportunity to study post-embryonic neurodevelopment in the absence of NMDA receptors. Focusing on the forebrain, we find that these fish have a progressive supernumerary neuron phenotype confined to the telencephalon at the end of embryonic neurogenesis, but which extends to all forebrain regions during postembryonic neurogenesis. This enhanced neuron population does not arise directly from increased numbers or mitotic activity of radial glia cells, the principal neural stem cells. Rather, it stems from a lack of timely maturation of transit-amplifying neuroblasts into post-mitotic neurons, as indicated by a decrease in expression of the ontogenetically-expressed chloride transporter, KCC2. Pharmacological blockade with MK-801 recapitulates the grin1-/- supernumerary neuron phenotype, indicating a requirement for ionotropic signaling. Thus, NMDA receptors are required for suppression of indirect, transit amplifying cell-driven neurogenesis by promoting maturational termination of mitosis. Loss of suppression results in neuronal overpopulation that can fundamentally change brain circuitry and may be a key factor in pathogenesis of neurodevelopmental disorders caused by NMDA receptor dysfunction.
Collapse
Affiliation(s)
- Amalia J Napoli
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Stephanie Laderwager
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Josiah D Zoodsma
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Bismi Biju
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Olgerta Mucollari
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Sarah K Schubel
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Christieann Aprea
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Aaliya Sayed
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Kiele Morgan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Annelysia Napoli
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Stephanie Flanagan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Howard I Sirotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA.
| |
Collapse
|
2
|
Napoli AJ, Laderwager S, Zoodsma JD, Biju B, Mucollari O, Schubel SK, Aprea C, Sayed A, Morgan K, Napoli A, Flanagan S, Wollmuth LP, Sirotkin HI. Loss of NMDA receptor function during development results in decreased KCC2 expression and increased neurons in the zebrafish forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554812. [PMID: 37786708 PMCID: PMC10541604 DOI: 10.1101/2023.08.25.554812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Developmental neurogenesis is a tightly regulated spatiotemporal process with its dysregulation implicated in neurodevelopmental disorders. NMDA receptors are glutamate-gated ion channels that are widely expressed in the early nervous system, yet their contribution to neurogenesis is poorly understood. Notably, a variety of mutations in genes encoding NMDA receptor subunits are associated with neurodevelopmental disorders. To rigorously define the role of NMDA receptors in developmental neurogenesis, we used a mutant zebrafish line ( grin1 -/- ) that lacks all NMDA receptors yet survives to 10 days post-fertilization, offering the opportunity to study post-embryonic neurodevelopment in the absence of NMDA receptors. Focusing on the forebrain, we find that these fish have a progressive supernumerary neuron phenotype confined to the telencephalon at the end of embryonic neurogenesis, but which extends to all forebrain regions during postembryonic neurogenesis. This enhanced neuron population does not arise directly from increased numbers or mitotic activity of radial glia cells, the principal neural stem cells. Rather, it stems from a lack of timely maturation of transit-amplifying neuroblasts into post-mitotic neurons, as indicated by a decrease in expression of the ontogenetically-expressed chloride transporter, KCC2. Pharmacological blockade with MK-801 recapitulates the grin1 -/- supernumerary neuron phenotype, indicating a requirement for ionotropic signaling. Thus, NMDA receptors are required for suppression of indirect, transit amplifying cell-driven neurogenesis by promoting maturational termination of mitosis. Loss of suppression results in neuronal overpopulation that can fundamentally change brain circuitry and may be a key factor in pathogenesis of neurodevelopmental disorders caused by NMDA receptor dysfunction.
Collapse
|
3
|
Gao X, Chen F, Xu X, Liu J, Dong F, Liu Y. Ro25-6981 alleviates neuronal damage and improves cognitive deficits by attenuating oxidative stress via the Nrf2/ARE pathway in ischemia/reperfusion rats. J Stroke Cerebrovasc Dis 2023; 32:106971. [PMID: 36586245 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Oxidative stress plays a crucial role in the initiation and progression of cerebral ischemia‒reperfusion injury (CIRI). Therefore, ameliorating oxidative damage is considered to be a beneficial strategy for the treatment of CIRI. NMDAR NR2B subunit antagonists have been reported to be beneficial for synaptic plasticity, neuropathic pain, epilepsy, and cerebral ischemia. However, it remains unclear whether the NR2B subunit antagonist Ro25-6981 has any effect on CIRI. METHODS In this study, the Morris water maze test and passive avoidance test were used to detect spatial learning and memory. Neuronal loss was measured by Nissl staining. The expression of NSE was assayed by immunohistochemistry. The activities of MDA, 8-OHdG, SOD, GSH-Px, GST and CAT were detected by assay kits. Real-time PCR was used to detect the mRNA levels of hippocampal SOD, GSH-Px and HO-1. Western blotting was used to measure the activation of the Nrf2/ARE pathway by Ro25-6981. RESULTS Ro25-6981 ameliorated cognitive deficits and neuronal damage induced by ischemia‒reperfusion (I/R). Neuronal injury was decreased and the expression of NSE was increased in the CA1 regions of the hippocampus of I/R rats after Ro25-6981 treatment. Moreover, Ro25-6981 alleviated the levels of MDA and 8-OHdG by elevating the activities of SOD, GSH-Px, GST and CAT. Meanwhile, the mRNA levels of SOD, GSH-Px and HO-1 were increased in I/R rats after Ro25-6981 treatment. Furthermore, Ro25-6981 promoted the translocation of Nrf2 to the nucleus, promoting the expression of the Nrf2 downstream genes HO-1 and NQO1. CONCLUSION The present study indicated that the improvement in the antioxidant properties of Ro25-6981 is mediated by the Nrf2/ARE pathway. This is the first study to demonstrate a favorable effect of Ro25-6981 on cognitive impairment in a CIRI rat model, rendering this NR2B subunit antagonist a promising agent for the treatment or prevention of CIRI.
Collapse
Affiliation(s)
- Xiuxian Gao
- Department of Neurology, The First People's Hospital of Jiujiang, 48 Taling South Road, Jiujiang, Jiangxi Province 332000, China
| | - Fei Chen
- The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221004, China
| | - Xinqi Xu
- The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221004, China
| | - Jinfeng Liu
- School of Life Science, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221004, China
| | - Fuxing Dong
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Yaping Liu
- Laboratory of National Experimental Teaching and Demonstration Center of Basic Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
4
|
Targeting the dysfunction of glutamate receptors for the development of novel antidepressants. Pharmacol Ther 2021; 226:107875. [PMID: 33901503 DOI: 10.1016/j.pharmthera.2021.107875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
Increasing evidence indicates that dysfunction of glutamate receptors is involved in the pathophysiology of major depressive disorder (MDD). Although accumulating efforts have been made to elucidate the applications and mechanisms underlying antidepressant-like effects of ketamine, a non-selective antagonist of N-methyl-d-aspartate receptor (NMDAR), the role of specific glutamate receptor subunit in regulating depression is not completely clear. The current review aims to discuss the relationships between glutamate receptor subunits and depressive-like behaviors. Research literatures were searched from inception to July 2020. We summarized the alterations of glutamate receptor subunits in patients with MDD and animal models of depression. Animal behaviors in response to dysfunction of glutamate receptor subunits were also surveyed. To fully understand mechanisms underlying antidepressant-like effects of modulators targeting glutamate receptors, we discussed effects of each glutamate receptor subunit on serotonin system, synaptic plasticity, neurogenesis and neuroinflammation. Finally, we collected most recent clinical applications of glutamate receptor modulators and pointed out the limitations of these candidates in the treatment of MDD.
Collapse
|
5
|
Ugale V, Dhote A, Narwade R, Khadse S, Reddy PN, Shirkhedkar A. GluN2B/N-methyl-D-aspartate Receptor Antagonists: Advances in Design, Synthesis, and Pharmacological Evaluation Studies. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:822-862. [PMID: 33687902 DOI: 10.2174/1871527320666210309141627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/13/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
Selective GluN2B/N-methyl-D-aspartate receptor (NMDAR) antagonists have exposed their clinical effectiveness in a cluster of neurodegenerative diseases, such as epilepsy, Alzheimer's disease, Parkinson's disease, pain, and depression. Hence, GluN2B/NMDARs are considered to be a prospective target for the management of neurodegenerative diseases. Here, we have discussed the current results and significance of subunit selective GluN2B/NMDAR antagonists to pave the way for the establishment of new, safe, and economical drug candidates in the near future. By using summarized data of selective GluN2B/NMDAR antagonists, medicinal chemists are certainly a step closer to the goal of improving the therapeutic and side effect profile of selective antagonists. Outlined summary of designing strategies, synthetic schemes, and pharmacological evaluation studies reinvigorate efforts to identify, modify, and synthesize novel GluN2B/NMDAR antagonists for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Vinod Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - Ashish Dhote
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - Rushikesh Narwade
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - Saurabh Khadse
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - P Narayana Reddy
- Department of Chemistry, Gitam School of Technology, Gitam University, Hyderabad (T.S), India
| | - Atul Shirkhedkar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| |
Collapse
|
6
|
The role of glutamate receptors and their interactions with dopamine and other neurotransmitters in the development of tardive dyskinesia: preclinical and clinical results. Behav Pharmacol 2020; 31:511-523. [PMID: 32459694 DOI: 10.1097/fbp.0000000000000563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tardive dyskinesia is a serious, disabling, movement disorder associated with the ongoing use of antipsychotic medication. Current evidence regarding the pathophysiology of tardive dyskinesia is mainly based on preclinical animal models and is still not completely understood. The leading preclinical hypothesis of tardive dyskinesia development includes dopaminergic imbalance in the direct and indirect pathways of the basal ganglia, cholinergic deficiency, serotonin receptor disturbances, neurotoxicity, oxidative stress, and changes in synaptic plasticity. Although, the role of the glutamatergic system has been confirmed in preclinical tardive dyskinesia models it seems to have been neglected in recent reviews. This review focuses on the role and interactions of glutamate receptors with dopamine, acetylcholine, and serotonin in the neuropathology of tardive dyskinesia development. Moreover, preclinical and clinical results of the differentiated effectiveness of N-methyl-D-aspartate (NMDA) receptor antagonists are discussed with a special focus on antagonists that bind with the GluN2B subunit of NMDA receptors. This review also presents new combinations of drugs that are worth considering in the treatment of tardive dyskinesia.
Collapse
|
7
|
Role of adult-born granule cells in the hippocampal functions: Focus on the GluN2B-containing NMDA receptors. Eur Neuropsychopharmacol 2019; 29:1065-1082. [PMID: 31371103 DOI: 10.1016/j.euroneuro.2019.07.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
Abstract
Adult-born granule cells constitute a small subpopulation of the dentate gyrus (DG) in the hippocampus. However, they greatly influence several hippocampus-dependent behaviors, suggesting that adult-born granule cells have specific roles that influence behavior. In order to understand how exactly these adult-born granule cells contribute to behavior, it is critical to understand the underlying electrophysiology and neurochemistry of these cells. Here, this review simultaneously focuses on the specific electrophysiological properties of adult-born granule cells, relying on the GluN2B subunit of NMDA glutamate receptors, and how it influences neurochemistry throughout the brain. Especially in a critical age from 4 to 6 weeks post-division during which they modulate hippocampal functions, adult-born granule cells exhibit a higher intrinsic excitability and an enhanced long-term potentiation. Their stimulation decreases the overall excitation/inhibition balance of the DG via recruitment of local interneurons, and in the CA3 region of the hippocampus. However, the link between neurochemical effects of adult-born granule cells and behavior remain to be further examined.
Collapse
|
8
|
Amidfar M, Woelfer M, Réus GZ, Quevedo J, Walter M, Kim YK. The role of NMDA receptor in neurobiology and treatment of major depressive disorder: Evidence from translational research. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109668. [PMID: 31207274 DOI: 10.1016/j.pnpbp.2019.109668] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022]
Abstract
There is accumulating evidence demonstrating that dysfunction of glutamatergic neurotransmission, particularly via N-methyl-d-aspartate (NMDA) receptors, is involved in the pathophysiology of major depressive disorder (MDD). Several studies have revealed an altered expression of NMDA receptor subtypes and impaired NMDA receptor-mediated intracellular signaling pathways in brain circuits of patients with MDD. Clinical studies have demonstrated that NMDA receptor antagonists, particularly ketamine, have rapid antidepressant effects in treatment-resistant depression, however, neurobiological mechanisms are not completely understood. Growing body of evidence suggest that signal transduction pathways involved in synaptic plasticity play critical role in molecular mechanisms underlying rapidly acting antidepressant properties of ketamine and other NMDAR antagonists in MDD. Discovering the molecular mechanisms underlying the unique antidepressant actions of ketamine will facilitate the development of novel fast acting antidepressants which lack undesirable effects of ketamine. This review provides a critical examination of the NMDA receptor involvement in the neurobiology of MDD including analyses of alterations in NMDA receptor subtypes and their interactive signaling cascades revealed by postmortem studies. Furthermore, to elucidate mechanisms underlying rapid-acting antidepressant properties of NMDA receptor antagonists we discussed their effects on the neuroplasticity, mostly based on signaling systems involved in synaptic plasticity of mood-related neurocircuitries.
Collapse
Affiliation(s)
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory, University Magdeburg, Germany; New Jersey Institute of Technology, Newark, NJ, USA
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, University Magdeburg, Germany; Department of Psychiatry, University Tuebingen, Germany
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|