1
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Majidpoor J, Moosavi MA, Taheri M. Exploring the role of non-coding RNAs in autophagy. Autophagy 2022; 18:949-970. [PMID: 33525971 PMCID: PMC9196749 DOI: 10.1080/15548627.2021.1883881] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
As a self-degradative mechanism, macroautophagy/autophagy has a role in the maintenance of energy homeostasis during critical periods in the development of cells. It also controls cellular damage through the eradication of damaged proteins and organelles. This process is accomplished by tens of ATG (autophagy-related) proteins. Recent studies have shown the involvement of non-coding RNAs in the regulation of autophagy. These transcripts mostly modulate the expression of ATG genes. Both long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been shown to modulate the autophagy mechanism. Levels of several lncRNAs and miRNAs are altered in this process. In the present review, we discuss the role of lncRNAs and miRNAs in the regulation of autophagy in diverse contexts such as cancer, deep vein thrombosis, spinal cord injury, diabetes and its complications, acute myocardial infarction, osteoarthritis, pre-eclampsia and epilepsy.Abbreviations: AMI: acute myocardial infarction; ATG: autophagy-related; lncRNA: long non-coding RNA; miRNA: microRNA.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Estrogen-related receptor α (ERRα) functions in the hypoxic injury of microglial cells. J Vet Res 2022; 66:131-140. [PMID: 35582481 PMCID: PMC8959695 DOI: 10.2478/jvetres-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/15/2022] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
Hypoxia is a common pathological condition after spinal cord injury. Oestrogen-related receptor alpha (ERRα), as a key regulator of energy metabolism and mitochondrial functions, plays an important role in maintaining cell homeostasis. However, its role in hypoxic spinal microglia has not been fully elaborated. This study investigated the receptor’s activity when these cells are hypoxic and used as an in vitro model.
Material and Methods
In this study, microglia (BV2) were exposed to cobalt chloride as a hypoxic model, and the inverse agonist of ERRα, XCT790, and pyrido[1,2-α]-pyrimidin-4-one were used to regulate the expression of the receptor to explore the ERRα-related mechanisms involved in hypoxic spinal cord injury (SCI).
Results
ERRα promoted autophagy in BV2 cells and inhibited the activation of the p38 mitogen-activated protein kinase (MAPK) pathway and the expression of anti-inflammatory factors under hypoxic conditions. It also promoted the expression of fibronectin type III domain containing protein 5 (FNDC5).
Conclusion
When a hypoxic SCI occurs, ERRα may maintain the homeostasis of spinal cord nerve cells by regulating autophagy and the p38MAPK/nuclear factor-kappa B cell and FNDC5/brain-derived neurotrophic factor signalling pathways, which are beneficial to the recovery of these cells.
Collapse
|
3
|
Yu KH, Hung HY. Synthetic strategy and structure-activity relationship (SAR) studies of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1, Lificiguat): a review. RSC Adv 2021; 12:251-264. [PMID: 35424505 PMCID: PMC8978903 DOI: 10.1039/d1ra08120a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023] Open
Abstract
Since 1994, YC-1 (Lificiguat, 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole) has been synthesized, and many targets for special bioactivities have been explored, such as stimulation of platelet-soluble guanylate cyclase, indirect elevation of platelet cGMP levels, and inhibition of hypoxia-inducible factor-1 (HIF-1) and NF-κB. Recently, Riociguat®, the first soluble guanylate cyclase (sGC) stimulator drug used to treat pulmonary hypertension and pulmonary arterial hypertension, was derived from the YC-1 structure. In this review, we aim to highlight the synthesis and structure–activity relationships in the development of YC-1 analogs and their possible indications. Since 1994, YC-1 (Lificiguat) has been synthesized, and many targets for special bioactivities have been explored, such as stimulation of platelet-soluble guanylate cyclase, indirect elevation of platelet cGMP levels, and inhibition of HIF-1 and NF-κB.![]()
Collapse
Affiliation(s)
- Ko-Hua Yu
- School of Pharmacy College of Medicine, National Cheng Kung University Tainan 701 Taiwan
| | - Hsin-Yi Hung
- School of Pharmacy College of Medicine, National Cheng Kung University Tainan 701 Taiwan
| |
Collapse
|
4
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
5
|
Ling X, Lu J, Yang J, Qin H, Zhao X, Zhou P, Zheng S, Zhu P. Non-Coding RNAs: Emerging Therapeutic Targets in Spinal Cord Ischemia-Reperfusion Injury. Front Neurol 2021; 12:680210. [PMID: 34566835 PMCID: PMC8456115 DOI: 10.3389/fneur.2021.680210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
Paralysis or paraplegia caused by transient or permanent spinal cord ischemia–reperfusion injury (SCIRI) remains one of the most devastating post-operative complications after thoracoabdominal aortic surgery, even though perioperative strategies and surgical techniques continue to improve. Uncovering the molecular and cellular pathophysiological processes in SCIRI has become a top priority. Recently, the expression, function, and mechanism of non-coding RNAs (ncRNAs) in various diseases have drawn wide attention. Non-coding RNAs contain a variety of biological functions but do not code for proteins. Previous studies have shown that ncRNAs play a critical role in SCIRI. However, the character of ncRNAs in attenuating SCIRI has not been systematically summarized. This review article will be the first time to assemble the knowledge of ncRNAs regulating apoptosis, inflammation, autophagy, and oxidative stress to attenuate SCIRI. A better understanding of the functional significance of ncRNAs following SCIRI could help us to identify novel therapeutic targets and develop potential therapeutic strategies. All the current research about the function of nRNAs in SCIRI will be summarized one by one in this review.
Collapse
Affiliation(s)
- Xiao Ling
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Lu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Yang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hanjun Qin
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingqi Zhao
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Chen F, Han J, Li X, Zhang Z, Wang D. Identification of the biological function of miR-9 in spinal cord ischemia-reperfusion injury in rats. PeerJ 2021; 9:e11440. [PMID: 34035993 PMCID: PMC8126262 DOI: 10.7717/peerj.11440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Spinal cord ischemia–reperfusion injury (SCII) is still a serious problem, and the mechanism is not fully elaborated. In the rat SCII model, qRT-PCR was applied to explore the altered expression of miR-9 (miR-9a-5p) after SCII. The biological function of miR-9 and its potential target genes based on bioinformatics analysis and experiment validation in SCII were explored next. Before the surgical procedure of SCII, miR-9 mimic and inhibitor were intrathecally infused. miR-9 mimic improved neurological function. In addition, miR-9 mimic reduced blood-spinal cord barrier (BSCB) disruption, inhibited apoptosis and decreased the expression of IL-6 and IL-1β after SCII. Gene Ontology (GO) analysis demonstrated that the potential target genes of miR-9 were notably enriched in several biological processes, such as “central nervous system development”, “regulation of growth” and “response to cytokine”. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the potential target genes of miR-9 were significantly enriched in several signaling pathways, including “Notch signaling pathway”, “MAPK signaling pathway”, “Focal adhesion” and “Prolactin signaling pathway”. We further found that the protein expression of MAP2K3 and Notch2 were upregulated after SCII while miR-9 mimic reduced the increase of MAP2K3 and Notch2 protein. miR-9 mimic or MAP2K3 inhibitor reduced the release of IL-6 and IL-1β. miR-9 mimic or si-Notch2 reduced the increase of cleaved-caspase3. Moreover, MAP2K3 inhibitor and si-Notch2 reversed the effects of miR-9 inhibitor. In conclusion, overexpression of miR-9 improves neurological outcomes after SCII and might inhibit BSCB disruption, neuroinflammation, and apoptosis through MAP2K3-, or Notch2-mediated signaling pathway in SCII.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jie Han
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaoqian Li
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zaili Zhang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dan Wang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Chen F, Han J, Wang D. Identification of key microRNAs and the underlying molecular mechanism in spinal cord ischemia-reperfusion injury in rats. PeerJ 2021; 9:e11454. [PMID: 34123589 PMCID: PMC8164840 DOI: 10.7717/peerj.11454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/23/2021] [Indexed: 01/06/2023] Open
Abstract
Spinal cord ischemia-reperfusion injury (SCII) is a pathological process with severe complications such as paraplegia and paralysis. Aberrant miRNA expression is involved in the development of SCII. Differences in the experimenters, filtering conditions, control selection, and sequencing platform may lead to different miRNA expression results. This study systematically analyzes the available SCII miRNA expression data to explore the key differently expressed miRNAs (DEmiRNAs) and the underlying molecular mechanism in SCII. A systematic bioinformatics analysis was performed on 23 representative rat SCII miRNA datasets from PubMed. The target genes of key DEmiRNAs were predicted on miRDB. The DAVID and TFactS databases were utilized for functional enrichment and transcription factor binding analyses. In this study, 19 key DEmiRNAs involved in SCII were identified, 9 of which were upregulated (miR-144-3p, miR-3568, miR-204, miR-30c, miR-34c-3p, miR-155-3p, miR-200b, miR-463, and miR-760-5p) and 10 downregulated (miR-28-5p, miR-21-5p, miR-702-3p, miR-291a-3p, miR-199a-3p, miR-352, miR-743b-3p, miR-125b-2-3p, miR-129-1-3p, and miR-136). KEGG enrichment analysis on the target genes of the upregulated DEmiRNAs revealed that the involved pathways were mainly the cGMP-PKG and cAMP signaling pathways. KEGG enrichment analysis on the target genes of the downregulated DEmiRNAs revealed that the involved pathways were mainly the Chemokine and MAPK signaling pathways. GO enrichment analysis indicated that the target genes of the upregulated DEmiRNAs were markedly enriched in biological processes such as brain development and the positive regulation of transcription from RNA polymerase II promoter. Target genes of the downregulated DEmiRNAs were mainly enriched in biological processes such as intracellular signal transduction and negative regulation of cell proliferation. According to the transcription factor analysis, the four transcription factors, including SP1, GLI1, GLI2, and FOXO3, had important regulatory effects on the target genes of the key DEmiRNAs. Among the upregulated DEmiRNAs, miR-3568 was especially interesting. While SCII causes severe neurological deficits of lower extremities, the anti-miRNA oligonucleotides (AMOs) of miR-3568 improve neurological function. Cleaved caspase-3 and Bax was markedly upregulated in SCII comparing to the sham group, and miR-3568 AMO reduced the upregulation. Bcl-2 expression levels showed a opposite trend as cleaved caspase-3. The expression of GATA6, GATA4, and RBPJ decreased after SCII and miR-3568 AMO attenuated this upregulation. In conclusion, 19 significant DEmiRNAs in the pathogenesis of SCII were identified, and the underlying molecular mechanisms were validated. The DEmiRNAs could serve as potential intervention targets for SCII. Moreover, inhibition of miR-3568 preserved hind limb function after SCII by reducing apoptosis, possibly through regulating GATA6, GATA4, and RBPJ in SCII.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| | - Jie Han
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| | - Dan Wang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| |
Collapse
|
8
|
Wang D, Fang B, Wang Z, Li X, Chen F. Sevoflurane pretreatment regulates abnormal expression of MicroRNAs associated with spinal cord ischemia/reperfusion injury in rats. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:752. [PMID: 34268365 PMCID: PMC8246196 DOI: 10.21037/atm-20-7864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/21/2021] [Indexed: 11/06/2022]
Abstract
Background Spinal cord ischemia/reperfusion injury (SCII) is one of the most serious spinal cord complications that stem from varied spine injuries or thoracoabdominal aortic surgery. Nevertheless, the molecular mechanisms underlying the SCII remain unclear. Methods Male Sprague-Dawley (SD) rats were randomly divided into 5 groups of sham, SCII 24 h, SCII 72 h, sevoflurane preconditioning SCII 24 h (SCII 24 h+sevo), and sevoflurane preconditioning SCII 72 h (SCII 72 h+sevo) group. We then analyzed the expression of differentially expressed micro RNAs (DEmiRNAs) in these groups and their target genes. Functional enrichment analysis of their target genes was further performed using Metascape software. The microRNA-messenger RNA-pathway (miRNA-mRNA-pathway) network and the sevoflurane-miRNA-mRNA-pathway integrative network were further constructed to explore the molecular mechanisms underlying SCII and neuroprotective effects of sevoflurane against SCII. Molecular docking was also performed to evaluate the interactions between hub targets and sevoflurane. Finally, the expression levels of miR-21-5p and its target genes [mitogen-activated protein kinase kinase 3 and protein phosphatase 1 regulatory subunit 3B (MAP2K3 and PPP1R3B)] were measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses. Results We found that sevoflurane alters several miRNA expression following SCII at 24 and 72 h after reperfusion. It was shown that miR-221-3p, miR-181a-1-3p, and miR-21-5p were upregulated both at 24 and 72 h in the sevoflurane pre-treatment reperfusion groups. Functional enrichment analysis revealed that target genes for the above co-DEmiRNAs at 24 and 72 h in the SCII group with sevoflurane pretreatment participated in the mitogen-activated protein kinase (MAPK), ErbB, apoptosis, and transforming growth factor-beta (TGF-beta) signaling pathways. Both MAP2K3 and PPP1R3B were found to be common targets for sevoflurane and miRNA-mRNA-pathway (rno-miR-21-5p). It was shown that MAP2K3 regulates the MAPK signaling and the T cell receptor signaling pathways, whereas PPP1R3B regulates the ErbB signaling pathway. Molecular docking further revealed that sevoflurane strongly binds the MAP2K3 and PPP1R3B proteins. Compared to the sham group, SCII induced significant under-expression of miR-21-5p but upregulated PPP1R3B and MAP2K3 proteins; sevoflurane pretreatment increased the expression of miR-21-5p but decreased those of PPP1R3B and MAP2K3 proteins. Conclusions In general, sevoflurane regulates the expression of several miRNAs following SCII. In particular, sevoflurane might protect against SCII via regulating the expression of miR-21-5p, its target genes (MAP2K3 and PPP1R3B), and related signaling pathways.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Bo Fang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Zhilin Wang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Xiaoqian Li
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Fengshou Chen
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Lan W, Lin J, Liu W, Wang F, Xie Y. Sulfiredoxin-1 protects spinal cord neurons against oxidative stress in the oxygen-glucose deprivation/reoxygenation model through the bax/cytochrome c/caspase 3 apoptosis pathway. Neurosci Lett 2021; 744:135615. [PMID: 33421493 DOI: 10.1016/j.neulet.2020.135615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal cord ischemia/reperfusion injury is a common clinical, pathophysiological phenomenon with complex molecular mechanisms. Currently, there are no therapeutics available to alleviate the same. This study investigates the protective effects of sulfiredoxin-1 (Srxn 1) on spinal cord neurons following exposure to oxygen-glucose deprivation/reoxygenation (OGD/R) treatment. MATERIALS AND METHODS Primary spinal cord neurons were cultured, detected by anti-tubulin βⅢ, and transfected with adeno-associated virus (AAV)-Srxn 1 to overexpress Srxn 1. They were identified by their morphology and CCK-8 assay. The superoxide dismutase level was measured by superoxide dismutase assay. Malondialdehyde level was measured by malondialdehyde assay. The apoptosis ratio was calculated by Hoechst 33342 and Annexin V-PE/7-AAD staining. Mitochondrial transmembrane potential (Δψm) was detected by tetramethylrhodamine-methyl ester-perchlorate (TMRM) staining. The mRNA expression levels of Srxn 1 and caspase 3 were detected by quantitative reverse transcription-polymerase chain reaction, and the protein expression levels of Srxn 1, bax, bcl-2, cytosolic cytochrome c, and caspase 3 were detected by western blotting. RESULTS AAV-Srxn 1 up-regulated mRNA and protein levels of Srxn 1 in spinal cord neurons. Following exposure to OGD/R, overexpression of Srxn 1 improved the neuronal viability, alleviated the neuron apoptosis, enhanced the mitochondrial transmembrane potential, increased the SOD level, decreased the MDA level, inhibited the expression of cytosolic cytochrome c, bax, and caspase 3, and promoted the expression of bcl-2. CONCLUSION Srxn 1 plays a significant role in anti-apoptosis of spinal cord neurons, and Srxn 1 may be a potential therapeutic target for spinal cord I/R injury.
Collapse
Affiliation(s)
- Wenbin Lan
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China; The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Jianhua Lin
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China; The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Weinan Liu
- Department of Orthopedics, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350004, China
| | - Fasheng Wang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China; The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Yun Xie
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China; The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350005, China.
| |
Collapse
|
10
|
Shi Y, He R, Yang Y, He Y, Zhan L, Wei B. Potential relationship between Sirt3 and autophagy in ovarian cancer. Oncol Lett 2020; 20:162. [PMID: 32934730 PMCID: PMC7471650 DOI: 10.3892/ol.2020.12023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Sirtuin 3 (Sirt3) is an important member of the sirtuin protein family. It is a deacetylase that was previously reported to modulate the level of reactive oxygen species (ROS) production and limit the extent of oxidative damage in cellular components. As an important member of the class III type of histone deacetylases, Sirt3 has also been documented to mediate nuclear gene expression, metabolic control, neuroprotection, cell cycle and proliferation. In ovarian cancer (OC), Sirt3 has been reported to regulate cellular metabolism, apoptosis and autophagy. Sirt3 can regulate autophagy through a variety of different molecular signaling pathways, including the p62, 5'AMP-activated protein kinase and mitochondrial ROS-superoxide dismutase pathways. However, autophagy downstream of Sirt3 and its association with OC remains poorly understood. In the present review, the known characteristics of Sirt3 and autophagy were outlined, and their potential functional roles were discussed. Following a comprehensive analysis of the current literature, Sirt3 and autophagy may either serve positive or negative roles in the regulation of OC. Therefore, it is important to identify the appropriate expression level of Sirt3 to control the activation of autophagy in OC cells. This strategy may prove to be a novel therapeutic method to reduce the mortality of patients with OC. Finally, potential research directions into the association between Sirt3 and other signaling pathways were provided.
Collapse
Affiliation(s)
- Yuchuan Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Runhua He
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yu Yang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yu He
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Lei Zhan
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Bing Wei
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
11
|
Fang H, Yang M, Pan Q, Jin HL, Li HF, Wang RR, Wang QY, Zhang JP. MicroRNA-22-3p alleviates spinal cord ischemia/reperfusion injury by modulating M2 macrophage polarization via IRF5. J Neurochem 2020; 156:106-120. [PMID: 32406529 DOI: 10.1111/jnc.15042] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 02/05/2023]
Abstract
Cell death after spinal cord ischemia/reperfusion (I/R) can occur through necrosis, apoptosis, and autophagy, resulting in changes to the immune environment. However, the molecular mechanism of this immune regulation is not clear. Accumulating evidence indicates that microRNAs (miRs) play a crucial role in the pathogenesis of spinal cord I/R injury. Here, we hypothesized miR-22-3p may be involved in spinal cord I/R injury by interacting with interferon regulatory factor (IRF) 5. Rat models of spinal cord I/R injury were established by 12-min occlusion of the aortic arch followed by 48-hr reperfusion, with L4-6 segments of spinal cord tissues collected. MiR-22-3p agomir, a lentivirus-delivered siRNA specific for IRF5, or a lentivirus expressing wild-type IRF5 was injected intrathecally to rats with I/R injury to evaluate the effects of miR-22-3p and IRF5 on hindlimb motor function. Macrophages isolated from rats were treated with miR-22-3p mimic or siRNA specific for IRF5 to evaluate their effects on macrophage polarization. The levels of IL-1β and TNF-α in spinal cord tissues were detected by ELISA. miR-22-3p was down-regulated, whereas IRF5 was up-regulated in rat spinal cord tissues following I/R. IRF5 was a target gene of miR-22-3p and could be negatively regulated by miR-22-3p. Silencing IRF5 or over-expressing miR-22-3p relieved inflammation, elevated Tarlov score, and reduced the degree of severity of spinal cord I/R injury. Increased miR-22-3p facilitated M2 polarization of macrophages and inhibited inflammation in tissues by inhibiting IRF5, thereby attenuating spinal cord I/R injury. Taken together, these results demonstrate that increased miR-22-3p can inhibit the progression of spinal cord I/R injury by repressing IRF5 in macrophages, highlighting the discovery of a promising new target for spinal cord I/R injury treatment.
Collapse
Affiliation(s)
- Hua Fang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Miao Yang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Qin Pan
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Hon-Ling Jin
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Hua-Feng Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Ru-Rong Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Quan-Yun Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jian-Ping Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| |
Collapse
|
12
|
Yeh LY, Yang CC, Wu HL, Kao SY, Liu CJ, Chen YF, Lin SC, Chang KW. The miR-372-ZBTB7A Oncogenic Axis Suppresses TRAIL-R2 Associated Drug Sensitivity in Oral Carcinoma. Front Oncol 2020; 10:47. [PMID: 32083004 PMCID: PMC7005910 DOI: 10.3389/fonc.2020.00047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/10/2020] [Indexed: 01/31/2023] Open
Abstract
miR-372 has been shown a potent oncogenic miRNA in the pathogenesis of oral squamous cell carcinoma (OSCC). The zinc finger and BTB domain containing 7A protein (ZBTB7A) is a transcriptional regulator that is involved in a great diversity of physiological and oncogenic regulation. However, the modulation of ZBTB7A in OSCC remains unclear. Tissue analysis identifies a reverse correlation in expression between miR-372 and ZBTB7A in OSCC tumors. When OSCC cells have stable knockdown of ZBTB7A, their oncogenic potential and drug resistance is increased. By way of contrast, such an increase is attenuated by expression of ZBTB7A. Screening and validation confirms that ZBTB7A is able to modulate expression of the death receptors TRAIL-R1, TRAIL-R2, Fas and p53 phosphorylated at serine-15. In addition, ZBTB7A transactivates TRAIL-R2, which sensitizes cells to cisplatin-induced apoptosis. The ZBTB7A-TRAIL-R2 cascade is involved in both the extrinsic and intrinsic cisplatin-induced pathways of apoptosis. Database analysis indicates that the expression level of and the copy status of ZBTB7A and TRAIL-R2 are important survival predictors for head and neck cancers. Collectively, this study indicates the importance of the miR-372-ZBTB7A-TRAIL-R2 axis in mediating OSCC pathogenesis and in controlling OSCC drug resistance. Therefore, silencing miR-372 and/or upregulating ZBTB7A would seem to be promising strategies for enhancing the sensitivity of OSCC to cisplatin therapy.
Collapse
Affiliation(s)
- Li-Yin Yeh
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiao-Li Wu
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Fen Chen
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Chun Lin
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
13
|
Wu Q, Zhang M, Liu X, Zhang J, Wang H. CB2R orchestrates neuronal autophagy through regulation of the mTOR signaling pathway in the hippocampus of developing rats with status epilepticus. Int J Mol Med 2019; 45:475-484. [PMID: 31894322 PMCID: PMC6984801 DOI: 10.3892/ijmm.2019.4439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
Neuronal loss and gliosis are the major pathological changes after status epilepticus (SE). The authors' previous study revealed the time-dependent changes of cannabinoid receptor type 2 (CB2R) in hippocampal neurons of developing rats after SE, which were accompanied by a decrease in the number of neurons. Meanwhile, growing evidence indicates that CB2R stimulation exerts anti-convulsant properties in seizure models. However, the activation of CB2R in neuronal repair in response to the damage after SE is still unclear. In this experiment, a highly-selective CB2R agonist JWH133 and antagonist AM630 were administered to determine the activity of CB2R in neuronal autophagy and apoptosis of the post-SE repair in developing rats. The present results revealed that activation of CB2R by JWH133, not only obviously lowered the success rate, 24-h death rate and the Racine stage in the model, but also extended the latency period to SE. In addition, compared with the vehicle control group, CB2R activation increased neuronal autophagy and the expression of phosphorylated-mammalian target of rapamycin (p-mTOR)/mTOR, Beclin-1, and LC3II/LC3I while decreasing the expression of p-Unc-51-like autophagy-activating kinase 1 (ULK-1)/ULK1, p62, and cleaved caspase-3. These results were dose-dependent and were especially evident in the high-dose group, and interestingly the opposite results were obtained in the AM630 group. Thus, CB2R orchestrates neuronal autophagy through regulation of the mTOR signaling pathway in the hippocampus of developing rats with SE. These findings might provide an important basis for further investigation of the therapeutic role of CB2R in ameliorating epilepsy-related neuronal damage.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning 110122, P.R. China
| | - Xueyan Liu
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Junmei Zhang
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hua Wang
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
14
|
Hao J, Wang P, Pei D, Jia B, Hu Q. Rhein lysinate improves motor function in rats with spinal cord injury via inhibiting p38 MAPK pathway. Kaohsiung J Med Sci 2019; 35:765-771. [PMID: 31483087 DOI: 10.1002/kjm2.12123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jian Hao
- Department of Orthopedic SurgeryShenzhen Pingle Orthopedic Hospital Shenzhen China
| | - Ping Wang
- Department of Orthopedic SurgeryShenzhen Pingle Orthopedic Hospital Shenzhen China
| | - Dai‐Ping Pei
- Department of Orthopedic SurgeryShenzhen Pingle Orthopedic Hospital Shenzhen China
| | - Bin Jia
- Department of Orthopedic SurgeryShenzhen Pingle Orthopedic Hospital Shenzhen China
| | - Qun‐Sheng Hu
- Department of Orthopedic SurgeryShenzhen Pingle Orthopedic Hospital Shenzhen China
| |
Collapse
|
15
|
Liu S, He Y, Shi J, Liu L, Ma H, He L, Guo Y. Downregulation of miRNA-30a enhanced autophagy in osthole-alleviated myocardium ischemia/reperfusion injury. J Cell Physiol 2019. [PMID: 31017665 DOI: 10.1002/jcp.28556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/23/2019] [Accepted: 03/06/2019] [Indexed: 02/05/2023]
Abstract
Osthole could alleviate myocardial ischemia/reperfusion (I/R) injury. However, the underlying mechanism remains unclear. In this study, we explored whether microRNA (miR)-30a and its target autophagy marker Beclin-1 involved in the osthole protective role in the rat and cells myocardial I/R injury models. The myocardial damages including increases in myocardial collagen content and cell apoptosis in I/R injury model were observed by Masson's Trichrome Staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays. Osthole significantly inhibited the myocardial damages. Osthole inhibited the induction of miR-30a expression by I/R in rat and hypoxia/reoxygenation (H/R) in myocardial cells. After knockdown, the expression of miR-30a by miR-30a inhibitor, H/R induced cell apoptosis was significantly inhibited. The level of Beclin-1 expression and ratio of LC3BII/LC3BI were inhibited by I/R in rat and H/R in myocardial cells, whereas osthole significantly increased them. Knockdown of miR-30a significantly upregulated the Beclin-1 expression and ratio of LC3BII/LC3BI. Inhibition of autophagy by 3-MA significantly reversed the protective role of osthole in H/R myocardial cell. Therefore, we concluded that the mechanism by which osthole alleviate myocardial I/R injury may be achieved by enhancing the autophagy partially via inhibiting the expression of miR-30a.
Collapse
Affiliation(s)
- Shengzhong Liu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cardiac Surgery Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Ying He
- Psychosomatic Medicine Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Jun Shi
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lulu Liu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Ma
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li He
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Tang B, Bao N, He G, Wang J. Long noncoding RNA HOTAIR regulates autophagy via the miR-20b-5p/ATG7 axis in hepatic ischemia/reperfusion injury. Gene 2019; 686:56-62. [DOI: 10.1016/j.gene.2018.10.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 02/08/2023]
|