1
|
Zhong P, Mao X, Li N, Chen L, Sun J. Development of Nitric Oxide Releasing Oxoisoaporphines with Antidepressant Activities by Simultaneously Regulating MAO-A and SERT. J Med Chem 2024; 67:15509-15520. [PMID: 39189331 DOI: 10.1021/acs.jmedchem.4c01161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The occurrence of depression is closely related to the decrease in serotonin (5-HT) levels in the synaptic cleft. Designing negative regulators aiming at intervening in MAO-A and serotonin transporter (SERT) could work synergistically to elevate synaptic 5-HT levels and thus might exhibit superior antidepressant efficacy. By linking the lead compound oxoisoaporphine to various nitric oxide donors, we endeavored to design and synthesize 10 synergistic negative regulators. The overarching objective was to maintain the original inhibitory effect on MAO-A while concurrently mitigating SERT-mediated reuptake of 5-HT. Within the spectrum of inhibitory compounds, I7 showcased the most formidable neuroprotective efficacy in a cellular depression model. In vivo experiments demonstrated that I7 significantly improved depressive behavior in both zebrafish and mice. Further research indicated that the antidepressant mechanism of I7 was associated with the downregulation of both MAO-A and SERT.
Collapse
Affiliation(s)
- Peisen Zhong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xinyu Mao
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Na Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
2
|
Qiu Y, Su Y, Song J, Mou F, Gou J, Geng X, Li X, Nie Z, Wang J, Zheng Y, Wang M. Carboxymethylation of the polysaccharide from the fermentation broth of Marasmius androsaceus and its antidepressant mechanisms. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Zhang J, Zhang WH, Morisseau C, Zhang M, Dong HJ, Zhu QM, Huo XK, Sun CP, Hammock BD, Ma XC. Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase attenuated particulate matter 2.5 exposure mediated lung injury. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131890. [PMID: 37406527 PMCID: PMC10699546 DOI: 10.1016/j.jhazmat.2023.131890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Accepted: 06/17/2023] [Indexed: 07/07/2023]
Abstract
Air pollution represented by particulate matter 2.5 (PM2.5) is closely related to diseases of the respiratory system. Although the understanding of its mechanism is limited, pulmonary inflammation is closely correlated with PM2.5-mediated lung injury. Soluble epoxide hydrolase (sEH) and epoxy fatty acids play a vital role in the inflammation. Herein, we attempted to use the metabolomics of oxidized lipids for analyzing the relationship of oxylipins with lung injury in a PM2.5-mediated mouse model, and found that the cytochrome P450 oxidases/sEH mediated metabolic pathway was involved in lung injury. Furthermore, the sEH overexpression was revealed in lung injury mice. Interestingly, sEH genetic deletion or the selective sEH inhibitor TPPU increased levels of epoxyeicosatrienoic acids (EETs) in lung injury mice, and inactivated pulmonary macrophages based on the MAPK/NF-κB pathway, resulting in protection against PM2.5-mediated lung injury. Additionally, a natural sEH inhibitor luteolin from Inula japonica displayed a pulmonary protective effect towards lung injury mediated by PM2.5 as well. Our results are consistent with the sEH message and protein being both a marker and mechanism for PM2.5-induced inflammation, which suggest its potential as a pharmaceutical target for treating diseases of the respiratory system.
Collapse
Affiliation(s)
- Juan Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518061, People's Republic of China
| | - Wen-Hao Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Min Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Hong-Jun Dong
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Qi-Meng Zhu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xiao-Kui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Cheng-Peng Sun
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China; School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States.
| | - Xiao-Chi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, People's Republic of China.
| |
Collapse
|
4
|
Aranaz I, Acosta N, Revuelta J, Bastida A, Gómez-Casado V, Civera C, Garrido L, García-Junceda E, Heras Á, Alcántara AR, Fernández-Mayoralas A, Doncel-Pérez E. Fast and Sustained Axonal Growth by BDNF Released from Chitosan Microspheres. Mar Drugs 2023; 21:md21020091. [PMID: 36827132 PMCID: PMC9959400 DOI: 10.3390/md21020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates dendritic branching and dendritic spine morphology, as well as synaptic plasticity and long-term potentiation. Consequently, BDNF deficiency has been associated with some neurological disorders such as Alzheimer's, Parkinson's or Huntington's diseases. In contrast, elevated BDNF levels correlate with recovery after traumatic central nervous system (CNS) injuries. The utility of BDNF as a therapeutic agent is limited by its short half-life in a pathological microenvironment and its low efficacy caused by unwanted consumption of non-neuronal cells or inappropriate dosing. Here, we tested the activity of chitosan microsphere-encapsulated BDNF to prevent clearance and prolong the efficacy of this neurotrophin. Neuritic growth activity of BDNF release from chitosan microspheres was observed in the PC12 rat pheochromocytoma cell line, which is dependent on neurotrophins to differentiate via the neurotrophin receptor (NTR). We obtained a rapid and sustained increase in neuritic out-growth of cells treated with BDNF-loaded chitosan microspheres over control cells (p < 0.001). The average of neuritic out-growth velocity was three times higher in the BDNF-loaded chitosan microspheres than in the free BDNF. We conclude that the slow release of BDNF from chitosan microspheres enhances signaling through NTR and promotes axonal growth in neurons, which could constitute an important therapeutic agent in neurodegenerative diseases and CNS lesions.
Collapse
Affiliation(s)
- Inmaculada Aranaz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Niuris Acosta
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Julia Revuelta
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Agatha Bastida
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Víctor Gómez-Casado
- Laboratorio de Química Neuro-Regenerativa, Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Concepción Civera
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Leoncio Garrido
- Departamento de Química-Física, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Eduardo García-Junceda
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ángeles Heras
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Andrés R. Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Alfonso Fernández-Mayoralas
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ernesto Doncel-Pérez
- Laboratorio de Química Neuro-Regenerativa, Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain
- Correspondence:
| |
Collapse
|
5
|
Sun X, Li N, Zhong P, Chen L, Sun J. Development of MAO-A and 5-HT 2AR Dual Inhibitors with Improved Antidepressant Activity. J Med Chem 2022; 65:13385-13400. [PMID: 36173886 DOI: 10.1021/acs.jmedchem.2c01271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Designing dual-target inhibitors targeting 5-HT2AR and MAO-A could synergistically promote interstitial 5-HT levels, so as to exhibit a more efficient antidepressant effect. On the premise of maintaining the original pharmacophore binding, arylpiperazine scaffolds and 5-oxygen-substituted oxoisoaporphines were hybridized to afford 15 dual-target inhibitors through suitable linkers. Among all inhibitors, I14 exhibited the best inhibitory activities against 5-HT2AR and MAO-A. In vitro cell proliferation assays showed that most compounds were nontoxic to neuronal cells and normal hepatocytes. I14 also significantly ameliorated the depression-like behavior of zebrafish and mice. Further study revealed that I14 was able to occupy the active cavity of 5-HT2AR and MAO-A with multiple hydrogen bonding forces and π-π stacking interaction. I14 was also able to repair the damage of mice hippocampal neuronal cells and reduce the expression of 5-HT2AR in mice brain tissue. In conclusion, I14 could be a potential antidepressant candidate for further study.
Collapse
Affiliation(s)
- Xiaona Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing210009, China
| | - Na Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing210009, China
| | - Peisen Zhong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing210009, China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing210009, China
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing210009, China
| |
Collapse
|
6
|
Wu Q, Lin M, Wu P, Zhao C, Yang S, Yu H, Xian W, Song J. TPPU Downregulates Oxidative Stress Damage and Induces BDNF Expression in PC-12 Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7083022. [PMID: 35872930 PMCID: PMC9300306 DOI: 10.1155/2022/7083022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
Abstract
Objective Ischemia-reperfusion is an ongoing clinical challenge that can lead to a series of pathological changes including oxidative stress. The inhibition of soluble epoxide hydrolase inhibitor (sEH) by 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU) results in an anti-inflammatory, cardioprotective, and blood vessel growth-promoting effects. Therefore, this study focused on the protective effect of TPPU on a rat pheochromocytoma (PC-12) cell oxidative stress model induced by H2O2. Methods CCK-8 and Hoechst 33342 were used to evaluate cell apoptosis and western blot to detect the apoptotic proteins and brain-derived neurotrophic factor (BDNF) expression. Result The incubation with 100 μM, 50 μM, and 25 μM TPPU significantly increased PC-12 cell viability. Epoxyeicosatrienoic acid (EET) pretreatment also protected PC-12 cells from oxidative stress. In addition, TPPU reduced caspase-3 and Bax expression and induced Bcl-2 expression, and EETs exerted the same effect on caspase-3 expression as TPPU. A positive relationship was found between TPPU or EET incubation and BDNF expression. Conclusion These results revealed that TPPU reduced PC-12 cell oxidative stress injury induced by H2O2 and promoted BDNF expression.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Basic Medicine, Guangdong Jiangmen Chinese Medicine College, Jiangmen, Guangdong Province, China 529000
| | - Minlin Lin
- Department of Basic Medicine, Guangdong Jiangmen Chinese Medicine College, Jiangmen, Guangdong Province, China 529000
| | - Peng Wu
- Department of General Surgery, Jiangmen Wuyi Hospital of TCM, Jiangmen, Guangdong Province, China 529000
| | - Chongyan Zhao
- Department of Basic Medicine, Guangdong Jiangmen Chinese Medicine College, Jiangmen, Guangdong Province, China 529000
| | - Shuang Yang
- Department of General Surgery, Jiangmen Wuyi Hospital of TCM, Jiangmen, Guangdong Province, China 529000
| | - Haiying Yu
- Department of Basic Medicine, Guangdong Jiangmen Chinese Medicine College, Jiangmen, Guangdong Province, China 529000
| | - Wenjiao Xian
- Department of Basic Medicine, Guangdong Jiangmen Chinese Medicine College, Jiangmen, Guangdong Province, China 529000
| | - Jingfang Song
- Department of General Surgery, Jiangmen Wuyi Hospital of TCM, Jiangmen, Guangdong Province, China 529000
| |
Collapse
|
7
|
Shan J, Hashimoto K. Soluble Epoxide Hydrolase as a Therapeutic Target for Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094951. [PMID: 35563342 PMCID: PMC9099663 DOI: 10.3390/ijms23094951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
It has been found that soluble epoxide hydrolase (sEH; encoded by the EPHX2 gene) in the metabolism of polyunsaturated fatty acids (PUFAs) plays a key role in inflammation, which, in turn, plays a part in the pathogenesis of neuropsychiatric disorders. Meanwhile, epoxy fatty acids such as epoxyeicosatrienoic acids (EETs), epoxyeicosatetraenoic acids (EEQs), and epoxyeicosapentaenoic acids (EDPs) have been found to exert neuroprotective effects in animal models of neuropsychiatric disorders through potent anti-inflammatory actions. Soluble expoxide hydrolase, an enzyme present in all living organisms, metabolizes epoxy fatty acids into the corresponding dihydroxy fatty acids, which are less active than the precursors. In this regard, preclinical findings using sEH inhibitors or Ephx2 knock-out (KO) mice have indicated that the inhibition or deficiency of sEH can have beneficial effects in several models of neuropsychiatric disorders. Thus, this review discusses the current findings of the role of sEH in neuropsychiatric disorders, including depression, autism spectrum disorder (ASD), schizophrenia, Parkinson’s disease (PD), and stroke, as well as the potential mechanisms underlying the therapeutic effects of sEH inhibitors.
Collapse
|
8
|
Chen X, Li Z, Zhang B, Liu T, Yao W, Wan L, Zhang C, Zhang Y. Antinociception role of 14,15-epoxyeicosatrienoic acid in a central post-stroke pain model in rats mediated by anti-inflammation and anti-apoptosis effect. Neurochem Int 2022; 154:105291. [PMID: 35074479 DOI: 10.1016/j.neuint.2022.105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/24/2021] [Accepted: 01/20/2022] [Indexed: 11/18/2022]
Abstract
Central post stroke pain (CPSP) is an intractable neuropathic pain syndrome that occurs after the acute focal lesion of the central nervous system (CNS) due to a cerebrovascular cause. Epoxyeicosatrienoic acids (EETs) exert many pharmacological effects in vivo and in vitro, such as anti-apoptosis, anti-inflammatory, and anti-oxidative stress. Neuroinflammation and apoptosis are the potential pathophysiological mechanisms of neuropathic pain. This study aimed to investigate whether 14,15-EET has an antinociception effect on CPSP rats through its anti-inflammation and anti-apoptosis mechanisms. Rats were treated with type IV collagenase (CPSP group) or saline (Sham group) via injection with a Hamilton syringe into the ventral posterior lateral nucleus (VPL) according to the stereotaxic coordinates. We first tested the mechanical withdrawal threshold, as well as neuroinflammation- and apoptosis-related protein expressions in the per-lesion site of CPSP and Sham rats. Sprague-Dawley rats were randomly divided into five groups, as follows: vehicle; EET at 0.025, 0.05, and 0.1 μg; and EET (0.1 μg) + EEZE (3.25 ng). EET or and vehicle were administered into VPL nuclei three consecutive days after hemorrhagic stroke. Immunostaining, ELISA, and Western blot were performed to evaluate neuroinflammation and apoptosis. Hemorrhagic stroke induced mechanical allodynia, glial activation, neuroinflammation, and apoptosis-related protein upregulation. However, early treatment with 14,15-EET inhibited glial cell activation, decreased proinflammatory cytokines and apoptosis-related protein, and alleviated the pain behavior of CPSP rats. Our results provided strong evidence that antinociception produced by 14,15-EET is partly mediated by the inhibition of neuroinflammation and apoptosis.
Collapse
Affiliation(s)
- Xuhui Chen
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zuofan Li
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Zhang
- Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tongtong Liu
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenlong Yao
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Wan
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuanhan Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Abstract
Evidence suggests that around 30 % of patients with depression do not respond to antidepressant treatment, with most of them having sub-chronic levels of inflammation. Soluble epoxide hydrolases (sEH) are enzymes present in all living organisms, which metabolize cytochrome P (CYP)-derived epoxy fatty acids to their corresponding diols. Accumulating evidence suggests that sEH plays a key role in the anti-inflammatory properties exerted by the metabolism of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). Crucial evidence demonstrates that protein expression of sEH in the brain of mice experiencing depressive-like behaviour, as well as in patients with major depressive disorder is higher than in controls. Of note, treatment with sEH inhibitors exert anti-inflammatory, neurogenic and antidepressant-like effects in pre-clinical models of depression. In this review, the author discusses the role of sEH in the metabolism of ω-3 PUFAs in the context of depression, and the clinical value of sEH inhibitors as alternative therapeutic strategies for patients suffering from this condition.
Collapse
Affiliation(s)
- Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, UK
| |
Collapse
|
10
|
Matin N, Fisher C, Lansdell TA, Hammock BD, Yang J, Jackson WF, Dorrance AM. Soluble epoxide hydrolase inhibition improves cognitive function and parenchymal artery dilation in a hypertensive model of chronic cerebral hypoperfusion. Microcirculation 2020; 28:e12653. [PMID: 32767848 DOI: 10.1111/micc.12653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Parenchymal arterioles (PAs) regulate perfusion of the cerebral microcirculation, and impaired PA endothelium-dependent dilation occurs in dementia models mimicking chronic cerebral hypoperfusion (CCH). Epoxyeicosatrienoic acids (EETs) are vasodilators; their actions are potentiated by soluble epoxide hydrolase (sEH) inhibition. We hypothesized that chronic sEH inhibition with trifluoromethoxyphenyl-3 (1-propionylpiperidin-4-yl) urea (TPPU) would prevent cognitive dysfunction and improve PA dilation in a hypertensive CCH model. METHODS Bilateral carotid artery stenosis (BCAS) was used to induce CCH in twenty-week-old male stroke-prone spontaneously hypertensive rats (SHSRP) that were treated with vehicle or TPPU for 8 weeks. Cognitive function was assessed by novel object recognition. PA dilation and structure were assessed by pressure myography, and mRNA expression in brain tissue was assessed by qRT-PCR. RESULTS TPPU did not enhance resting cerebral perfusion, but prevented CCH-induced memory deficits. TPPU improved PA endothelium-dependent dilation but reduced the sensitivity of PAs to a nitric oxide donor. TPPU treatment had no effect on PA structure or biomechanical properties. TPPU treatment increased brain mRNA expression of brain derived neurotrophic factor, doublecortin, tumor necrosis factor-alpha, sEH, and superoxide dismutase 3, CONCLUSIONS: These data suggest that sEH inhibitors may be viable treatments for cognitive impairments associated with hypertension and CCH.
Collapse
Affiliation(s)
- Nusrat Matin
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Courtney Fisher
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Theresa A Lansdell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Bruce D Hammock
- Department of Entomology &, University of California Comprehensive Cancer Center, Davis, CA, USA
| | - Jun Yang
- Department of Entomology &, University of California Comprehensive Cancer Center, Davis, CA, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Taurine and Ginsenoside Rf Induce BDNF Expression in SH-SY5Y Cells: A Potential Role of BDNF in Corticosterone-Triggered Cellular Damage. Molecules 2020; 25:molecules25122819. [PMID: 32570881 PMCID: PMC7356094 DOI: 10.3390/molecules25122819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022] Open
Abstract
This study shows that taurine and ginsenoside Rf act synergistically to increase the expression of brain-derived neurotrophic factor (BDNF) in SH-SY5Y human neuroblastoma cells in a dose- and time-dependent manner. The increase of BDNF mRNA by taurine and ginsenoside Rf was markedly attenuated by inhibitors of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase. In addition, taurine and ginsenoside Rf protected cells from corticosterone-induced BDNF suppression and reduced cell viability and lactate dehydrogenase release. The results from this study showed that combined treatment with both taurine and ginsenoside Rf enhanced BDNF expression and protected cells against corticosterone-induced damage.
Collapse
|
12
|
Gong Q, Yan XJ, Lei F, Wang ML, He LL, Luo YY, Gao HW, Feng YL, Yang SL, Li J, Du LJ. Proteomic profiling of the neurons in mice with depressive-like behavior induced by corticosterone and the regulation of berberine: pivotal sites of oxidative phosphorylation. Mol Brain 2019; 12:118. [PMID: 31888678 PMCID: PMC6937859 DOI: 10.1186/s13041-019-0518-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic corticosterone (CORT) stress is an anxiety and depression inducing factor that involves the dysfunction of glucocorticoid receptor (GR), brain-derived neurotrophic factor (BDNF), and neuronal plasticity. However, the regulation of proteomic profiles in neurons suffering CORT stress is remaining elusive. Thus, the proteomic profiles of mouse neuronal C17.2 stem cells were comprehensively investigated by TMT (tandem mass tag)-labeling quantitative proteomics. The quantitative proteomics conjugated gene ontology analysis revealed the inhibitory effect of CORT on the expression of mitochondrial oxidative phosphorylation-related proteins, which can be antagonized by berberine (BBR) treatment. In addition, animal studies showed that changes in mitochondria by CORT can affect neuropsychiatric activities and disturb the physiological functions of neurons via disordering mitochondrial oxidative phosphorylation. Thus, the mitochondrial energy metabolism can be considered as one of the major mechanism underlying CORT-mediated depression. Since CORT is important for depression after traumatic stress disorder, our study will shed light on the prevention and treatment of depression as well as posttraumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Qin Gong
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Xiao-Jin Yan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fan Lei
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mu-Lan Wang
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Lu-Ling He
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Ying-Ying Luo
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Hong-Wei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Yu-Lin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Shi-Lin Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Jun Li
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China. .,State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.
| | - Li-Jun Du
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China.,College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| |
Collapse
|
13
|
Li WS, Hu HB, Huang ZH, Yan RJ, Tian LW, Wu J. Phomopsols A and B from the Mangrove Endophytic Fungus Phomopsis sp. xy21: Structures, Neuroprotective Effects, and Biogenetic Relationships. Org Lett 2019; 21:7919-7922. [PMID: 31525876 DOI: 10.1021/acs.orglett.9b02906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wan-Shan Li
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Han-Bo Hu
- Marine Drugs Research Center, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, P. R. China
| | - Zhong-Hui Huang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Ren-Jie Yan
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Li-Wen Tian
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Jun Wu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| |
Collapse
|
14
|
Ren Q. Soluble Epoxide Hydrolase Inhibitor: A Novel Potential Therapeutic or Prophylactic Drug for Psychiatric Disorders. Front Pharmacol 2019; 10:420. [PMID: 31105566 PMCID: PMC6492054 DOI: 10.3389/fphar.2019.00420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
Psychiatric disorders, including depression and schizophrenia, affect millions of individuals worldwide. However, the precise neurobiology of psychiatric disorders remains unclear. Accumulating evidence suggests that various inflammatory processes play a key role in depression and schizophrenia, and that anti-inflammatory drugs exert a therapeutic effect in patients with psychiatric disorders. Epoxyeicosatrienoic acids (EETs) and epoxydocosapentaenoic acids (EDPs) have potent anti-inflammatory properties. These mediators are broken down into their corresponding diols by soluble epoxide hydrolase (sEH), and inhibition of sEH enhances the anti-inflammatory effects of EETs. Therefore, sEH may play a key role in inflammation, which is involved in psychiatric disorders. Recent studies have shown that abnormal levels of sEH may be involved in the pathogenesis of certain psychiatric diseases, and that sEH inhibitors exhibit antidepressant and antipsychotic activity. The present review discusses the extensive evidence supporting sEH as a therapeutic target for psychiatric diseases, and the clinical value of sEH inhibitors as therapeutic or prophylactic drugs.
Collapse
Affiliation(s)
- Qian Ren
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China.,Center of Stem Cell and Immune Cell Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|