1
|
Cui MF, Chen LM, Jiang C, Ma BZ, Yuan FW, Zhao C, Liu SM. Risks associated with cognitive function and management strategies in the clinical use of ADT: a systematic review from clinical and preclinical studies. Support Care Cancer 2024; 32:561. [PMID: 39085696 DOI: 10.1007/s00520-024-08753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Prostate cancer is one of the most common malignancies and a leading cause of death in men. Owing to its excellent anti-tumor effects, androgen deprivation therapy (ADT) is widely used in the treatment of prostate cancer. However, its use is controversial because of its potential for inducing cognitive decline. In this review, we summarized the findings of preclinical and clinical studies investigating the effects of ADT on cognitive function in prostate cancer. We discussed the methods used to assess cognitive function in these studies, elucidated the mechanisms through which ADT affects cognitive function, and highlighted recent advancements in cognitive assessment methods. The findings of this review serve as a valuable reference for examining the relationship between ADT and cognitive function in future studies. Besides, the findings may help clinicians understand the advantages and disadvantages of ADT and optimize the treatment plan so as to minimize the adverse effects of ADT.
Collapse
Affiliation(s)
- Meng-Fan Cui
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China
| | - Li-Ming Chen
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China
| | - Cindy Jiang
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China
| | - Bing-Zhe Ma
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China
| | - Fu-Wen Yuan
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China
| | - Chen Zhao
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China.
| | - Shi-Min Liu
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China.
| |
Collapse
|
2
|
Saleem A, Shah SIA, Mangar SA, Coello C, Wall MB, Rizzo G, Jones T, Price PM. Cognitive Dysfunction in Patients Treated with Androgen Deprivation Therapy: A Multimodality Functional Imaging Study to Evaluate Neuroinflammation. Prostate Cancer 2023; 2023:6641707. [PMID: 37885823 PMCID: PMC10599921 DOI: 10.1155/2023/6641707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Background Androgen deprivation therapy (ADT) for prostate cancer is implicated as a possible cause of cognitive impairment (CI). CI in dementia and Alzheimer's disease is associated with neuroinflammation. In this study, we investigated a potential role of neuroinflammation in ADT-related CI. Methods Patients with prostate cancer on ADT for ≥3 months were categorized as having ADT-emergent CI or normal cognition (NC) based on self-report at interview. Neuroinflammation was evaluated using positron emission tomography (PET) with the translocator protein (TSPO) radioligand [11C]-PBR28. [11C]-PBR28 uptake in various brain regions was quantified as standardized uptake value (SUVR, normalized to cerebellum) and related to blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) choice-reaction time task (CRT) activation maps. Results Eleven patients underwent PET: four with reported CI (rCI), six with reported NC (rNC), and one status unrecorded. PET did not reveal any between-group differences in SUVR regionally or globally. There was no difference between groups on brain activation to the CRT. Regardless of the reported cognitive status, there was strong correlation between PET-TSPO signal and CRT activation in the hippocampus, amygdala, and medial cortex. Conclusions We found no difference in neuroinflammation measured by PET-TSPO between patients with rCI and rNC. However, we speculate that the strong correlation between TSPO uptake and BOLD-fMRI activation in brain regions involved in memory and known to have high androgen-receptor expression mediating plasticity (hippocampus and amygdala) might reflect inflammatory effects of ADT with compensatory upregulated/increased synaptic functions. Further studies of this imaging readout are warranted to investigate ADT-related CI.
Collapse
Affiliation(s)
- Azeem Saleem
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
- Hull York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Syed Imran Ali Shah
- Department of Surgery and Cancer, Imperial College, London, UK
- Department of Biochemistry, CMH Lahore Medical College & Institute of Dentistry, Lahore, Pakistan
| | | | - Christopher Coello
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Matthew B. Wall
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Gaia Rizzo
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
- Division of Brain Sciences, Imperial College London, London, UK
| | - Terry Jones
- Department of Radiology, University of California Davis Medical Center, Davis, California, USA
| | | |
Collapse
|
3
|
Saleki K, Banazadeh M, Saghazadeh A, Rezaei N. Aging, testosterone, and neuroplasticity: friend or foe? Rev Neurosci 2022; 34:247-273. [PMID: 36017670 DOI: 10.1515/revneuro-2022-0033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
Abstract
Neuroplasticity or neural plasticity implicates the adaptive potential of the brain in response to extrinsic and intrinsic stimuli. The concept has been utilized in different contexts such as injury and neurological disease. Neuroplasticity mechanisms have been classified into neuroregenerative and function-restoring processes. In the context of injury, neuroplasticity has been defined in three post-injury epochs. Testosterone plays a key yet double-edged role in the regulation of several neuroplasticity alterations. Research has shown that testosterone levels are affected by numerous factors such as age, stress, surgical procedures on gonads, and pharmacological treatments. There is an ongoing debate for testosterone replacement therapy (TRT) in aging men; however, TRT is more useful in young individuals with testosterone deficit and more specific subgroups with cognitive dysfunction. Therefore, it is important to pay early attention to testosterone profile and precisely uncover its harms and benefits. In the present review, we discuss the influence of environmental factors, aging, and gender on testosterone-associated alterations in neuroplasticity, as well as the two-sided actions of testosterone in the nervous system. Finally, we provide practical insights for further study of pharmacological treatments for hormonal disorders focusing on restoring neuroplasticity.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,USERN Office, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| | - Mohammad Banazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, 76169 13555 Kerman, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 14176 13151 Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| |
Collapse
|
4
|
Fainanta T, Jaroenporn S, Wititsuwankul P, Malaivijitnond S. Comparison of neuroprotective effects of dihydrotestosterone, 17β-estradiol, and Pueraria mirifica herb extract on cognitive impairment in androgen deficient male rats. Horm Behav 2022; 143:105198. [PMID: 35609404 DOI: 10.1016/j.yhbeh.2022.105198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 01/30/2023]
Abstract
This study investigated the neuroprotective effects of dihydrotestosterone (DHT), 17β-estradiol (E2), and Pueraria mirifica herb extract (PME; an alternative source of natural estrogens) on the (i) learning and memory in androgen-deficient male rats, and on the hippocampus expression levels of (ii) mRNA of genes associated with synaptic transmission and structure, neurofibrillary tangles, and amyloid plaques, and (iii) total and phosphorylated tau proteins. The four-month-old male rats were sham-operated or orchidectomized (ODX). The ODX rats were divided into four groups, and orally treated for 2 months with either 1 mL/d of distilled water or 100 mg/kg/d of PME; or subcutaneously injected with 1 mg/kg/d of DHT or 80 μg/kg/d of E2. The impairment of spatial learning behavior and memory capacity in the ODX rats was prevented by DHT, E2, and PME. Recovery of the orchidectomy-induced deterioration of the synaptic plasticity in the hippocampus of rats was ranked as E2 ≥ PME > DHT. Both DHT and PME mitigated the increased Tau3 and Tau4 mRNA levels, and Tau-5 and P-Tau Ser396 protein levels more than E2 (DHT ≥ PME > E2). Only DHT tended to decrease App mRNA expression level. In conclusion, DHT showed a stronger efficacy for mitigation of the impaired spatial learning behavior and memory capacity in androgen-deficient male rats compared to E2 and PME, and their mechanisms of action are slightly different.
Collapse
Affiliation(s)
- Taratorn Fainanta
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sukanya Jaroenporn
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Patteera Wititsuwankul
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suchinda Malaivijitnond
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Proteomic and Bioinformatic Analysis of Decellularized Pancreatic Extracellular Matrices. Molecules 2021; 26:molecules26216740. [PMID: 34771149 PMCID: PMC8588251 DOI: 10.3390/molecules26216740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/15/2023] Open
Abstract
Tissue microenvironments are rich in signaling molecules. However, factors in the tissue matrix that can serve as tissue-specific cues for engineering pancreatic tissues have not been thoroughly identified. In this study, we performed a comprehensive proteomic analysis of porcine decellularized pancreatic extracellular matrix (dpECM). By profiling dpECM collected from subjects of different ages and genders, we showed that the detergent-free decellularization method developed in this study permits the preservation of approximately 62.4% more proteins than a detergent-based method. In addition, we demonstrated that dpECM prepared from young pigs contained approximately 68.5% more extracellular matrix proteins than those prepared from adult pigs. Furthermore, we categorized dpECM proteins by biological process, molecular function, and cellular component through gene ontology analysis. Our study results also suggested that the protein composition of dpECM is significantly different between male and female animals while a KEGG enrichment pathway analysis revealed that dpECM protein profiling varies significantly depending on age. This study provides the proteome of pancreatic decellularized ECM in different animal ages and genders, which will help identify the bioactive molecules that are pivotal in creating tissue-specific cues for engineering tissues in vitro.
Collapse
|
6
|
Morgans AK, Renzulli J, Olivier K, Shore ND. Risk of Cognitive Effects in Comorbid Patients With Prostate Cancer Treated With Androgen Receptor Inhibitors. Clin Genitourin Cancer 2021; 19:467.e1-467.e11. [PMID: 33893042 DOI: 10.1016/j.clgc.2021.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022]
Abstract
Prostate cancer (PC) is primarily a disease of older men. As the risk of neurocognitive decline increases as people age, cognitive dysfunction is a potential complication in men with PC, imposing detrimental effects on functional independence and quality of life. Importantly, risk of cognitive decline may increase with exposure to androgen deprivation therapy and other hormonal therapies. Particular consideration should be given to patients with castration-resistant PC (CRPC), many of whom require continuous, long-term androgen deprivation therapy combined with a second-generation androgen receptor inhibitor. Non-comparative evidence from interventional trials of androgen receptor inhibitors in men with non-metastatic CRPC suggests differential effects on cognitive function and central nervous system-related adverse events within this drug class. Drug-drug interactions with concomitant medications for chronic, non-malignant comorbidities differ among ARIs and thus may contribute further to cognitive impairment. Hence, establishing baseline cognitive function is a prerequisite to identifying subsequent clinical decline associated with androgen receptor-targeted therapies. Although brief, sensitive screening tools for cancer-related cognitive dysfunction are lacking, mental status can be ascertained from the initial medical history and neurocognitive examination, progressing to more in-depth evaluation when impairment is suspected. On-treatment neurocognitive monitoring should be integrated into regular clinical follow-up to preserve cognitive function and quality of life throughout disease management. This review summarizes the multiple factors that may contribute to cognitive decline in men with CRPC, awareness of which will assist clinicians to optimize individual treatment. Practical, clinic-based strategies for managing the risks for and symptoms of cognitive dysfunction are also discussed.
Collapse
Affiliation(s)
- Alicia K Morgans
- Department of Medicine (Hematology and Oncology), Northwestern University Feinberg School of Medicine, Chicago, IL.
| | - Joseph Renzulli
- Department of Urology, Yale School of Medicine, New Haven, CT
| | - Kara Olivier
- Department of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Neal D Shore
- Department of Urology, Carolina Urologic Research Center, Atlantic Urology Clinics, Myrtle Beach, SC
| |
Collapse
|
7
|
Zhang KJ, Ramdev RA, Tuta NJ, Spritzer MD. Dose-dependent effects of testosterone on spatial learning strategies and brain-derived neurotrophic factor in male rats. Psychoneuroendocrinology 2020; 121:104850. [PMID: 32892065 PMCID: PMC7572628 DOI: 10.1016/j.psyneuen.2020.104850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
Studies suggest that males outperform females on some spatial tasks. This may be due to the effects of sex steroids on spatial strategy preferences. Past experiments with male rats have demonstrated that low doses of testosterone bias them toward a response strategy, whereas high doses of testosterone bias them toward a place strategy. We investigated the effect of different testosterone doses on the ability of male rats to effectively employ these two spatial learning strategies. Furthermore, we quantified concentrations of brain-derived neurotrophic factor (pro-, mature-, and total BDNF) in the prefrontal cortex, hippocampus, and striatum. All rats were bilaterally castrated and assigned to one of three daily injection doses of testosterone propionate (0.125, 0.250, or 0.500 mg/rat) or a control injection of the drug vehicle. Using a plus-maze protocol, we found that a lower testosterone dose (0.125 mg) significantly improved rats' performance on a response task, whereas a higher testosterone dose (0.500 mg) significantly improved rats' performance on a place task. In addition, we found that a low dose of testosterone (0.125 mg) increased total BDNF in the striatum, while a high dose (0.500 mg) increased total BDNF in the hippocampus. Taken altogether, these results suggest that high and low levels of testosterone enhance performance on place and response spatial tasks, respectively, and this effect is associated with changes in BDNF levels within relevant brain regions.
Collapse
Affiliation(s)
- Kevin J. Zhang
- Department of Biology, Middlebury College, Middlebury, VT 05753, U.S.A
| | - Rajan A. Ramdev
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, U.S.A
| | - Nicholas J. Tuta
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, U.S.A
| | - Mark D. Spritzer
- Department of Biology, Middlebury College, Middlebury, VT 05753, U.S.A.,Program in Neuroscience, Middlebury College, Middlebury, VT 05753, U.S.A.,Corresponding author: Mark Spritzer, Department of Biology, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA, phone: 802-443-5676, FAX: 802-443-2072,
| |
Collapse
|
8
|
Spritzer MD, Roy EA. Testosterone and Adult Neurogenesis. Biomolecules 2020; 10:biom10020225. [PMID: 32028656 PMCID: PMC7072323 DOI: 10.3390/biom10020225] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
It is now well established that neurogenesis occurs throughout adulthood in select brain regions, but the functional significance of adult neurogenesis remains unclear. There is considerable evidence that steroid hormones modulate various stages of adult neurogenesis, and this review provides a focused summary of the effects of testosterone on adult neurogenesis. Initial evidence came from field studies with birds and wild rodent populations. Subsequent experiments with laboratory rodents have tested the effects of testosterone and its steroid metabolites upon adult neurogenesis, as well as the functional consequences of induced changes in neurogenesis. These experiments have provided clear evidence that testosterone increases adult neurogenesis within the dentate gyrus region of the hippocampus through an androgen-dependent pathway. Most evidence indicates that androgens selectively enhance the survival of newly generated neurons, while having little effect on cell proliferation. Whether this is a result of androgens acting directly on receptors of new neurons remains unclear, and indirect routes involving brain-derived neurotrophic factor (BDNF) and glucocorticoids may be involved. In vitro experiments suggest that testosterone has broad-ranging neuroprotective effects, which will be briefly reviewed. A better understanding of the effects of testosterone upon adult neurogenesis could shed light on neurological diseases that show sex differences.
Collapse
Affiliation(s)
- Mark D. Spritzer
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
- Correspondence: ; Tel.: 802-443-5676
| | - Ethan A. Roy
- Graduate School of Education, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|