1
|
Briski KP, Katakam S, Sapkota S, Pasula MB, Shrestha R, Vadav R. Astrocyte glucose-6-phosphatase-Beta regulates ventromedial hypothalamic nucleus glucose counterregulatory neurotransmission and systemic hormone profiles. Neuropeptides 2025; 111:102519. [PMID: 40132240 DOI: 10.1016/j.npep.2025.102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Brain astrocytes generate free glucose at the conclusion of glycogenolysis or gluconeogenesis by glucose-6-phosphatase-beta (Glc-6-Pase-β) hydrolytic action. Astrocytes shape ventromedial hypothalamic nucleus (VMN) control of glucose counterregulation via lactate provision, yet possible effects of astrocyte endogenous glucose production are unknown. Current research investigated eu- and hypoglycemic patterns of VMN neuron counterregulatory neurotransmitter marker protein expression and counterregulatory hormone secretion following in vivo VMN astrocyte Glc-6-Pase-β gene-knockdown. Gene-silencing caused reductions in VMN astrocyte Glc-6-Pase-β protein expression and tissue glycogen and glucose content. Hypoglycemic suppression (dorsomedial VMN; VMNdm) or augmentation (ventrolateral VMN; VMNvl) of glycogen involves Glc-6-Pase-β -independent versus -dependent mechanisms, respectively. siRNA pretreatment reversed hypoglycemic down-regulation of VMNdm glucose levels and intensified up-regulated VMNvl glucose accumulation. Glc-6-Pase-β gene-knockdown correspondingly suppressed or enhanced baseline expression of glutamate decarboxylase65/67 (GAD) and neuronal nitric oxide synthase (nNOS), protein markers for the counterregulation-inhibiting or -enhancing neurochemicals γ-aminobutyric acid and nitric oxide. Glc-6-Pase-β siRNA pretreatment did not alter hypoglycemic suppression of VMN GAD protein but reversed (VMNdm) or amplified (VMNvl) nNOS up-regulation. VMN Glc-6-Pase-β gene-silencing attenuated hypoglycemic patterns of corticosterone and growth hormone secretion and enhanced glucagon release. In summary, data provide unique evidence that VMN Glc-6-Pase-β activity affects glucose counterregulation. Outcomes document astrocyte Glc-6-Pase-β control of VMN glucose and glycogen accumulation as well as VMN neuron counterregulatory neurotransmission. Further research is warranted to identify Glc-6-Pase-β - mediated adjustments in astrocyte glucose metabolism that affect VMN GABAergic and/or nitrergic signaling within the brain glucostatic circuitry.
Collapse
Affiliation(s)
- Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America.
| | - Sushma Katakam
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Rami Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Rajesh Vadav
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| |
Collapse
|
2
|
Roy SC, Pasula MB, Sapkota S, Briski KP. Ventromedial hypothalamic nucleus neuronal nitric oxide knockdown effects on GABAergic neuron metabolic sensor and transmitter marker gene expression in the male rat. BMC Neurosci 2025; 26:14. [PMID: 39994513 PMCID: PMC11853586 DOI: 10.1186/s12868-025-00940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
The diffusible gas nitric oxide (NO) and amino acid γ-gamma-aminobutyric acid (GABA) exert contrary effects on glucose counterregulation in the male rat, but how these neurochemical signals integrate within ventromedial hypothalamic nucleus (VMN) neural circuitries remains unclear. Female rat dorsomedial (VMNdm) and ventrolateral (VMNvl) GABAergic neurons express neuronal nitric oxide synthase (nNOS) mRNA; notably these subpopulations exhibit dissimilar nNOS transcriptional responses to insulin-induced hypoglycemia (IIH). Here, nNOS gene knockdown tools were used to examine whether one or both VMN GABA neuron groups may be a target for nitrergic control of basal and hypoglycemic counterregulatory hormone secretion in the male. Data show that VMN nNOS gene knockdown respectively up- or down-regulated counterregulatory hormone profiles in eu- versus hypoglycemic male rats. Single-cell multiplex qPCR analysis of laser-catapult-microdissected GABA neurons showed that IIH elevated nNOS gene expression in GABA neurons from each VMN division, yet nNOS siRNA pretreatment attenuated distinctive IIH-associated transmitter marker gene expression patterns in VMNdm versus VMNvl GABAergic neurons. nNOS gene silencing had similar effects on glucokinase and glucose transporter gene responses to IIH in each GABA neuron subpopulation but elicited division-specific effects on mRNA encoding 5-AMP-activated protein kinase (AMPK) alpha/catalytic subunits and the lactate membrane receptor GPR81/HCAR1. Current findings provide original evidence that VMN NO may impose bi-directional, glucose status-contingent control of counterregulatory hormone outflow in the male rat. Data moreover imply that during IIH, NO may control distinctive sources of metabolic sensory regulatory stimuli in VMNdm versus VMNvl GABA neurons and may shape unique counterregulation-controlling neurochemical transmission by each cell population.
Collapse
Affiliation(s)
- Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.
- UL System Foundation and Willis-Knighton Health Systems Professorship in Toxicology, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| |
Collapse
|
3
|
Sapkota S, Roy SC, Briski KP. Dorsomedial Ventromedial Hypothalamic Nucleus Growth Hormone-Releasing Hormone Neuron Steroidogenic Factor-1 Gene Targets in Female Rat. ASN Neuro 2024; 16:2403345. [PMID: 39401164 PMCID: PMC11792125 DOI: 10.1080/17590914.2024.2403345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/07/2024] [Indexed: 10/18/2024] Open
Abstract
The prospect that the ventromedial hypothalamic nucleus (VMN) transcription factor steroidogenic factor-1/NR5A1 (SF-1) may exert sex-dimorphic control of glucose counterregulation is unresolved. Recent studies in male rats show that SF-1 regulates transcription of co-expressed hypoglycemia-sensitive neurochemicals in dorsomedial VMN growth hormone-releasing hormone (Ghrh) neurons. Gene knockdown and laser-catapult-microdissection/single-cell multiplex qPCR techniques were used here in a female rat model to determine if SF-1 control of Ghrh neuron transmitter marker, energy sensor, and estrogen receptor (ER) variant mRNAs varies according to sex. Data show that in females, hypoglycemia elicits a gain of SF-1 inhibitory control of VMNdm Ghrh neuron Ghrh and Ghrh-receptor gene profiles and loss of augmentation of glutaminase transcription; SF-1 gene silencing diminished eu- and hypoglycemic patterns of neuronal nitric oxide gene transcription. SF-1 imposes divergent control of baseline and hypoglycemic glutamate decarboxylase65 (GAD)-1 (stimulatory) versus GAD2 (inhibitory) mRNAs in that sex. SF-1 stimulates baseline VMNdm Ghrh neuron PRKAA1/AMPKα1 and PRKAA2/AMPKα2 gene expression, yet causes opposite changes in these gene profiles during hypoglycemia. SF-1 exerts glucose-dependent control of ER-alpha and G-protein-coupled ER-1 transcription, but blunts ER-beta gene profiles during eu- and hypoglycemia. In females, SF-1 knockdown did not affect hypercorticosteronemia or hyperglucagonemia, but blunted hypoglycemic suppression of growth hormone secretion. Results show that SF-1 expression is critical for female rat VMNdm Ghrh neuron counterregulatory neurochemical, AMPK catalytic subunit, and ER gene transcription responses to hypoglycemia. Sex differences in direction of SF-1 control of distinctive gene profiles may result in observed disparities in SF-1 regulation of counterregulatory hormone secretion between sexes.
Collapse
Affiliation(s)
- Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Sagor C. Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Karen P. Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
4
|
Sapkota S, Roy SC, Shrestha R, Briski KP. Steroidogenic Factor-1 Regulation of Dorsomedial Ventromedial Hypothalamic Nucleus Ghrh Neuron Transmitter Marker and Estrogen Receptor Gene Expression in Male Rat. ASN Neuro 2024; 16:2368382. [PMID: 39024550 PMCID: PMC11262038 DOI: 10.1080/17590914.2024.2368382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 07/20/2024] Open
Abstract
Ventromedial hypothalamic nucleus (VMN) growth hormone-releasing hormone (Ghrh) neurotransmission shapes counterregulatory hormone secretion. Dorsomedial VMN Ghrh neurons express the metabolic-sensitive transcription factor steroidogenic factor-1/NR5A1 (SF-1). In vivo SF-1 gene knockdown tools were used here to address the premise that in male rats, SF-1 may regulate basal and/or hypoglycemic patterns of Ghrh, co-transmitter biosynthetic enzyme, and estrogen receptor (ER) gene expression in these neurons. Single-cell multiplex qPCR analyses showed that SF-1 regulates basal profiles of mRNAs that encode Ghrh and protein markers for neurochemicals that suppress (γ-aminobutyric acid) or enhance (nitric oxide; glutamate) counterregulation. SF-1 siRNA pretreatment respectively exacerbated or blunted hypoglycemia-associated inhibition of glutamate decarboxylase67 (GAD67/GAD1) and -65 (GAD65/GAD2) transcripts. Hypoglycemia augmented or reduced nitric oxide synthase and glutaminase mRNAs, responses that were attenuated by SF-1 gene silencing. Ghrh and Ghrh receptor transcripts were correspondingly refractory to or increased by hypoglycemia, yet SF-1 knockdown decreased both gene profiles. Hypoglycemic inhibition of ER-alpha and G protein-coupled-ER gene expression was amplified by SF-1 siRNA pretreatment, whereas as ER-beta mRNA was amplified. SF-1 knockdown decreased (corticosterone) or elevated [glucagon, growth hormone (GH)] basal counterregulatory hormone profiles, but amplified hypoglycemic hypercorticosteronemia and -glucagonemia or prevented elevated GH release. Outcomes document SF-1 control of VMN Ghrh neuron counterregulatory neurotransmitter and ER gene transcription. SF-1 likely regulates Ghrh nerve cell receptivity to estradiol and release of distinctive neurochemicals during glucose homeostasis and systemic imbalance. VMN Ghrh neurons emerge as a likely substrate for SF-1 control of glucose counterregulation in the male rat.
Collapse
Affiliation(s)
- Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Rami Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
5
|
Roy SC, Sapkota S, Pasula MB, Katakam S, Shrestha R, Briski KP. Glucose transporter-2 regulation of VMN GABA neuron metabolic sensor and transmitter gene expression. Sci Rep 2024; 14:14220. [PMID: 38902332 PMCID: PMC11190205 DOI: 10.1038/s41598-024-64708-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Glucose transporter-2 (GLUT2) monitors cellular glucose uptake. Astrocyte GLUT2 controls glucose counterregulatory hormone secretion. In vivo gene silencing and laser-catapult-microdissection tools were used here to investigate whether ventromedial hypothalamic nucleus (VMN) GLUT2 may regulate dorsomedial (VMNdm) and/or ventrolateral (VMNvl) γ-aminobutyric acid (GABA) neurotransmission to control this endocrine outflow in female rats. VMN GLUT2 gene knockdown suppressed or stimulated hypoglycemia-associated glutamate decarboxylase (GAD)1 and GAD2 mRNA expression in VMNdm versus VMNvl GABAergic neurons, respectively. GLUT2 siRNA pretreatment also modified co-expressed transmitter marker gene profiles in each cell population. VMNdm GABA neurons exhibited GLUT2 knockdown-sensitive up-regulated 5'-AMP-activated protein kinase-alpha1 (AMPKα1) and -alpha2 (AMPKα2) transcripts during hypoglycemia. Hypoglycemic augmentation of VMNvl GABA neuron AMPKα2 was refractory to GLUT2 siRNA. GLUT2 siRNA blunted (VMNdm) or exacerbated (VMNvl) hypoglycemic stimulation of GABAergic neuron steroidogenic factor-1 (SF-1) mRNA. Results infer that VMNdm and VMNvl GABA neurons may exhibit divergent, GLUT2-dependent GABA neurotransmission patterns in the hypoglycemic female rat. Data also document differential GLUT2 regulation of VMNdm versus VMNvl GABA nerve cell SF-1 gene expression. Evidence for intensification of hypoglycemic hypercorticosteronemia and -glucagonemia by GLUT2 siRNA infers that VMN GLUT2 function imposes an inhibitory tone on these hormone profiles in this sex.
Collapse
Affiliation(s)
- Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Sushma Katakam
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Rami Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| |
Collapse
|
6
|
Mahmood ASMH, Roy SC, Leprince J, Briski KP. Sex-dependent endozepinergic regulation of ventromedial hypothalamic nucleus glucose counter-regulatory neuron aromatase protein expression in the adult rat. J Chem Neuroanat 2023; 132:102323. [PMID: 37543285 PMCID: PMC10528386 DOI: 10.1016/j.jchemneu.2023.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The hypothalamic brain cell types that produce estradiol from testosterone remain unclear. Aromatase inhibition affects ventromedial hypothalamic nucleus (VMN) glucose-stimulatory nitric oxide (NO) and glucose-inhibitory γ-aminobutyric acid (GABA) transmission during insulin (INS)-induced hypoglycemia (IIH). Pure GABA and NO nerve cell samples acquired by laser-catapult-microdissection from consecutive rostro-caudal segments of the VMN were analyzed by Western blot to investigate whether regional subpopulations of each cell type contain machinery for neuro-estradiol synthesis. Astrocyte endozepinergic signaling governs brain steroidogenesis. Pharmacological tools were used here to determine if the glio-peptide octadecaneuropeptide (ODN) controls aromatase expression in GABA and NO neurons during eu- and/or hypoglycemia. Intracerebroventricular administration of the ODN G-protein coupled-receptor antagonist cyclo(1-8)[DLeu5]OP (LV-1075) decreased (male) or enhanced (female) VMN GABAergic neuron aromatase expression, but increased or reduced this profile in nitrergic neurons in a region-specific manner in each sex. IIH suppressed aromatase levels in GABA neurons located in the middle segment of the male VMN or distributed throughout this nucleus in the female. This inhibitory response was altered by the ODN isoactive surrogate octapeptide (OP) in female, but was refractory to OP in male. NO neuron aromatase protein in hypoglycemic male (middle and caudal VMN) and female (rostral and caudal VMN) rats, but was normalized in OP- plus INS-treated rats of both sexes. Results provide novel evidence that VMN glucose-regulatory neurons may produce neuro-estradiol, and that the astrocyte endozepine transmitter ODN may impose sex-specific control of baseline and/or hypoglycemic patterns of aromatase expression in distinct subsets of nitrergic and GABAergic neurons in this neural structure.
Collapse
Affiliation(s)
- A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Jérôme Leprince
- Univ Rouen Normandie, Inserm, NorDic UMR 1239, PRIMACEN, Rouen, France
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
7
|
Sapkota S, Haider Ali M, Alshamrani AA, Napit PR, Roy SC, Pasula MB, Briski KP. GHRH Neurons from the Ventromedial Hypothalamic Nucleus Provide Dynamic and Sex-Specific Input to the Brain Glucose-Regulatory Network. Neuroscience 2023; 529:73-87. [PMID: 37572878 PMCID: PMC10592138 DOI: 10.1016/j.neuroscience.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
The ventromedial hypothalamic nucleus (VMN) controls glucose counter-regulation, including pituitary growth hormone (GH) secretion. VMN neurons that express the transcription factor steroidogenic factor-1/NR5A1 (SF-1) participate in glucose homeostasis. Research utilized in vivo gene knockdown tools to determine if VMN growth hormone-releasing hormone (Ghrh) regulates hypoglycemic patterns of glucagon, corticosterone, and GH outflow according to sex. Intra-VMN Ghrh siRNA administration blunted hypoglycemic hypercorticosteronemia in each sex, but abolished elevated GH release in males only. Single-cell multiplex qPCR showed that dorsomedial VMN (VMNdm) Ghrh neurons express mRNAs encoding Ghrh, SF-1, and protein markers for glucose-inhibitory (γ-aminobutyric acid) or -stimulatory (nitric oxide; glutamate) neurotransmitters. Hypoglycemia decreased glutamate decarboxylase67 (GAD67) transcripts in male, not female VMNdm Ghrh/SF-1 neurons, a response that was refractory to Ghrh siRNA. Ghrh gene knockdown prevented, in each sex, hypoglycemic down-regulation of Ghrh/SF-1 nerve cell GAD65 transcription. Ghrh siRNA amplified hypoglycemia-associated up-regulation of Ghrh/SF-1 neuron nitric oxide synthase mRNA in male and female, without affecting glutaminase gene expression. Ghrh gene knockdown altered Ghrh/SF-1 neuron estrogen receptor-alpha (ERα) and ER-beta transcripts in hypoglycemic male, not female rats, but up-regulated GPR81 lactate receptor mRNA in both sexes. Outcomes infer that VMNdm Ghrh/SF-1 neurons may be an effector of SF-1 control of counter-regulation, and document Ghrh modulation of hypoglycemic patterns of glucose-regulatory neurotransmitter along with estradiol and lactate receptor gene transcription in these cells. Co-transmission of glucose-inhibitory and -stimulatory neurochemicals of diverse chemical structure, spatial, and temporal profiles may enable VMNdm Ghrh neurons to provide complex dynamic, sex-specific input to the brain glucose-regulatory network.
Collapse
Affiliation(s)
- Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Ayed A Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
8
|
Bheemanapally K, Briski KP. Differential G Protein-Coupled Estrogen Receptor-1 Regulation of Counter-Regulatory Transmitter Marker and 5'-AMP-Activated Protein Kinase Expression in Ventrolateral versus Dorsomedial Ventromedial Hypothalamic Nucleus. Neuroendocrinology 2023; 114:25-41. [PMID: 37699381 PMCID: PMC10843453 DOI: 10.1159/000533627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION The ventromedial hypothalamic nucleus (VMN) is an estrogen receptor (ER)-rich structure that regulates glucostasis. The role of nuclear but not membrane G protein-coupled ER-1 (GPER) in that function has been studied. METHODS Gene silencing and laser-catapult microdissection/immunoblot tools were used to examine whether GPER regulates transmitter and energy sensor function in dorsomedial (VMNdm) and/or ventrolateral (VMNvl) VMN counter-regulatory nitrergic and γ-Aminobutyric acid (GABA) neurons. RESULTS Intra-VMN GPER siRNA administration to euglycemic animals did not affect VMNdm or -vl nitrergic neuron nitric oxide synthase (nNOS), but upregulated (VMNdm) or lacked influence on (VMNvl) GABA nerve cell glutamate decarboxylase65/67 (GAD) protein. Insulin-induced hypoglycemia (IIH) caused GPER knockdown-reversible augmentation of nNOS, 5'-AMP-activated protein kinase (AMPK), and phospho-AMPK proteins in nitrergic neurons in both divisions. IIH had dissimilar effects on VMNvl (unchanged) versus VMNdm (increased) GABAergic neuron GAD levels, yet GPER knockdown affected these profiles. GPER siRNA prevented hypoglycemic upregulation of VMNvl and -dm GABA neuron AMPK without altering pAMPK expression. CONCLUSIONS Outcomes infer that GPER exerts differential control of VMNdm versus -vl GABA transmission during glucostasis and is required for hypoglycemic upregulated nitrergic (VMNdm and -vl) and GABA (VMNdm) signaling. Glycogen metabolism is reported to regulate VMN nNOS and GAD proteins. Data show that GPER limits VMNvl glycogen phosphorylase (GP) protein expression and glycogen buildup during euglycemia but mediates hypoglycemic augmentation of VMNvl GP protein and glycogen content; VMNdm glycogen mass is refractory to GPER control. GPER regulation of VMNvl glycogen metabolism infers that this receptor may govern local counter-regulatory transmission in part by astrocyte metabolic coupling.
Collapse
Affiliation(s)
- Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
9
|
Napit PR, Ali MH, Mahmood ASMH, Ibrahim MMH, Briski KP. Sex-dimorphic hindbrain lactate regulation of ventromedial hypothalamic nucleus glucoregulatory neuron 5'-AMP-activated protein kinase activity and transmitter marker protein expression. Neuropeptides 2023; 99:102324. [PMID: 36791640 PMCID: PMC10175150 DOI: 10.1016/j.npep.2023.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The oxidizable glycolytic end-product L-lactate is a gauge of nerve cell metabolic fuel stability that metabolic-sensory hindbrain A2 noradrenergic neurons impart to the brain glucose-regulatory network. Current research investigated the premise that hindbrain lactate deficiency exerts sex-specific control of energy sensor and transmitter marker protein responses to hypoglycemia in ventromedial hypothalamic nucleus (VMN) glucose-regulatory nitrergic and γ-aminobutyric acid (GABA) neurons. METHODS Nitric oxide synthase (nNOS)- or glutamate decarboxylase65/67 (GAD)-immunoreactive neurons were laser-catapult-microdissected from male and female rat VMN after subcutaneous insulin injection and caudal fourth ventricular L-lactate or vehicle infusion for Western blot protein analysis. RESULTS Hindbrain lactate repletion reversed hypoglycemia-associated augmentation (males) or inhibition (females) of nitrergic neuron nNOS expression, and prevented up-regulation of phosphorylated AMPK 5'-AMP-activated protein kinase (pAMPK) expression in those neurons. Hypoglycemic suppression of GABAergic neuron GAD protein was averted by exogenous lactate over the rostro-caudal length of the male VMN and in the middle region of the female VMN. Lactate normalized GABA neuron pAMPK profiles in hypoglycemic male (caudal VMN) and female (all VMN segments) rats. Hypoglycemic patterns of norepinephrine (NE) signaling were lactate-dependent throughout the male VMN, but confined to the rostral and middle female VMN. CONCLUSIONS Results document, in each sex, regional VMN glucose-regulatory transmitter responses to hypoglycemia that are controlled by hindbrain lactate status. Hindbrain metabolic-sensory regulation of hypoglycemia-correlated nitric oxide or GABA release may entail AMPK-dependent mechanisms in specific VMN rostro-caudal segments in each sex. Additional effort is required to examine the role of hindbrain lactoprivic-sensitive VMN neurotransmitters in lactate-mediated attenuation of hypoglycemic hyperglucagonemia and hypercorticosteronemia in male and female rats.
Collapse
Affiliation(s)
- Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
10
|
Effects of Ventromedial Hypothalamic Nucleus (VMN) Aromatase Gene Knockdown on VMN Glycogen Metabolism and Glucoregulatory Neurotransmission. BIOLOGY 2023; 12:biology12020242. [PMID: 36829519 PMCID: PMC9953379 DOI: 10.3390/biology12020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The enzyme aromatase is expressed at high levels in the ventromedial hypothalamic nucleus (VMN), a principal component of the brain gluco-regulatory network. Current research utilized selective gene knockdown tools to investigate the premise that VMN neuroestradiol controls glucostasis. Intra-VMN aromatase siRNA administration decreased baseline aromatase protein expression and tissue estradiol concentrations and either reversed or attenuated the hypoglycemic regulation of these profiles in a VMN segment-specific manner. Aromatase gene repression down-regulated protein biomarkers for gluco-stimulatory (nitric oxide; NO) and -inhibitory (gamma-aminobutyric acid; GABA) neurochemical transmitters. Insulin-induced hypoglycemia (IIH) up- or down-regulated neuronal nitric oxide synthase (nNOS) and glutamate decarboxylase65/67 (GAD), respectively, throughout the VMN. Interestingly, IIH caused divergent changes in tissue aromatase and estradiol levels in rostral (diminished) versus middle and caudal (elevated) VMN. Aromatase knockdown prevented hypoglycemic nNOS augmentation in VMN middle and caudal segments, but abolished the GAD inhibitory response to IIH throughout this nucleus. VMN nitrergic and GABAergic neurons monitor stimulus-specific glycogen breakdown. Here, glycogen synthase (GS) and phosphorylase brain- (GPbb; AMP-sensitive) and muscle- (GPmm; noradrenergic -responsive) type isoform responses to aromatase siRNA were evaluated. Aromatase repression reduced GPbb and GPmm content in euglycemic controls and prevented hypoglycemic regulation of GPmm but not GPbb expression while reversing glycogen accumulation. Aromatase siRNA elevated baseline glucagon and corticosterone secretion and abolished hypoglycemic hyperglucagonemia and hypercorticosteronemia. Outcomes document the involvement of VMN neuroestradiol signaling in brain control of glucose homeostasis. Aromatase regulation of VMN gluco-regulatory signaling of hypoglycemia-associated energy imbalance may entail, in part, control of GP variant-mediated glycogen disassembly.
Collapse
|
11
|
Briski KP, Napit PR, Alhamyani A, Leprince J, Mahmood AH. Sex-Dimorphic Octadecaneuropeptide (ODN) Regulation of Ventromedial Hypothalamic Nucleus Glucoregulatory Neuron Function and Counterregulatory Hormone Secretion. ASN Neuro 2023; 15:17590914231167230. [PMID: 37194319 PMCID: PMC10196551 DOI: 10.1177/17590914231167230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 05/18/2023] Open
Abstract
Central endozepinergic signaling is implicated in glucose homeostasis. Ventromedial hypothalamic nucleus (VMN) metabolic monitoring governs glucose counter-regulation. VMN glucose-stimulatory nitric oxide (NO) and glucose-inhibitory γ-aminobutyric acid (GABA) neurons express the energy gauge 5'-AMP-activated protein kinase (AMPK). Current research addresses the premise that the astrocyte glio-peptide octadecaneuropeptide (ODN) imposes sex-dimorphic control of metabolic sensor activity and neurotransmitter signaling in these neurons. The ODN G-protein coupled-receptor antagonist cyclo(1-8)[DLeu5]OP (LV-1075) was administered intracerebroventricularly (icv) to euglycemic rats of each sex; additional groups were pretreated icv with the ODN isoactive surrogate ODN11-18 (OP) before insulin-induced hypoglycemia. Western blotting of laser-catapult-microdissected VMN NO and GABA neurons showed that hypoglycemia caused OP-reversible augmentation of phospho-, e.g., activated AMPK and nitric oxide synthase (nNOS) expression in rostral (female) or middle (male) VMN segments or ODN-dependent suppression of nNOS in male caudal VMN. OP prevented hypoglycemic down-regulation of glutamate decarboxylase profiles in female rat rostral VMN, without affecting AMPK activity. LV-1075 treatment of male, not female rats elevated plasma glucagon and corticosterone concentrations. Moreover, OP attenuated hypoglycemia-associated augmentation of these hormones in males only. Results identify, for each sex, regional VMN metabolic transmitter signals that are subject to endozepinergic regulation. Directional shifts and gain-or-loss of ODN control during eu- versus hypoglycemia infer that VMN neuron receptivity to or post-receptor processing of this stimulus may be modulated by energy state. In male, counter-regulatory hormone secretion may be governed principally by ODN-sensitive neural pathways, whereas this endocrine outflow may be controlled by parallel, redundant ODN-dependent and -independent mechanisms in female.
Collapse
Affiliation(s)
- Karen P. Briski
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Prabhat R. Napit
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Abdulrahman Alhamyani
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Jérôme Leprince
- Neuronal and Neuroendocrine Differentiation
and Communication Laboratory, Normandy University, INSERM U1239, PRIMACEN, Rouen,
France
| | - A.S.M. Hasan Mahmood
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| |
Collapse
|
12
|
Roy SC, Sapkota S, Pasula MB, Bheemanapally K, Briski KP. Diazepam Binding Inhibitor Control of Eu- and Hypoglycemic Patterns of Ventromedial Hypothalamic Nucleus Glucose-Regulatory Signaling. ASN Neuro 2023; 15:17590914231214116. [PMID: 38031405 PMCID: PMC10687944 DOI: 10.1177/17590914231214116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Pharmacological stimulation/antagonism of astrocyte glio-peptide octadecaneuropeptide signaling alters ventromedial hypothalamic nucleus (VMN) counterregulatory γ-aminobutyric acid (GABA) and nitric oxide transmission. The current research used newly developed capillary zone electrophoresis-mass spectrometry methods to investigate hypoglycemia effects on VMN octadecaneuropeptide content, along with gene knockdown tools to determine if octadecaneuropeptide signaling regulates these transmitters during eu- and/or hypoglycemia. Hypoglycemia caused dissimilar adjustments in the octadecaneuropeptide precursor, i.e., diazepam-binding-inhibitor and octadecaneuropeptide levels in dorsomedial versus ventrolateral VMN. Intra-VMN diazepam-binding-inhibitor siRNA administration decreased baseline 67 and 65 kDa glutamate decarboxylase mRNA levels in GABAergic neurons laser-microdissected from each location, but only affected hypoglycemic transcript expression in ventrolateral VMN. This knockdown therapy imposed dissimilar effects on eu- and hypoglycemic glucokinase and 5'-AMP-activated protein kinase-alpha1 (AMPKα1) and -alpha2 (AMPKα2) gene profiles in dorsomedial versus ventrolateral GABAergic neurons. Diazepam-binding-inhibitor gene silencing up-regulated baseline (dorsomedial) or hypoglycemic (ventrolateral) nitrergic neuron neuronal nitric oxide synthase mRNA profiles. Baseline nitrergic cell glucokinase mRNA was up- (ventrolateral) or down- (dorsomedial) regulated by diazepam-binding-inhibitor siRNA, but knockdown enhanced hypoglycemic profiles in both sites. Nitrergic nerve cell AMPKα1 and -α2 transcripts exhibited division-specific responses to this genetic manipulation during eu- and hypoglycemia. Results document the utility of capillary zone electrophoresis-mass spectrometric tools for quantification of ODN in small-volume brain tissue samples. Data show that hypoglycemia has dissimilar effects on ODN signaling in the two major neuroanatomical divisions of the VMN and that this glio-peptide imposes differential control of glucose-regulatory neurotransmission in the VMNdm versus VMNvl during eu- and hypoglycemia.
Collapse
Affiliation(s)
- Sagor C. Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Karen P. Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
13
|
Roy SC, Napit PR, Pasula M, Bheemanapally K, Briski KP. G protein-coupled lactate receptor GPR81 control of ventrolateral ventromedial hypothalamic nucleus glucoregulatory neurotransmitter and 5'-AMP-activated protein kinase expression. Am J Physiol Regul Integr Comp Physiol 2023; 324:R20-R34. [PMID: 36409024 PMCID: PMC9762965 DOI: 10.1152/ajpregu.00100.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Astrocytes store glycogen as energy and promote neurometabolic stability through supply of oxidizable l-lactate. Whether lactate regulates ventromedial hypothalamic nucleus (VMN) glucostatic function as a metabolic volume transmitter is unknown. Current research investigated whether G protein-coupled lactate receptor GPR81 controls astrocyte glycogen metabolism and glucose-regulatory neurotransmission in the ventrolateral VMN (VMNvl), where glucose-regulatory neurons reside. Female rats were pretreated by intra-VMN GPR81 or scramble siRNA infusion before insulin or vehicle injection. VMNvl cell or tissue samples were acquired by laser-catapult- or micropunch microdissection for Western blot protein or uHPLC-electrospray ionization-mass spectrometric glycogen analyses. Data show that GPR81 regulates eu- and/or hypoglycemic patterns of VMNvl astrocyte glycogen metabolic enzyme and 5'-AMP-activated protein kinase (AMPK) protein expression according to VMNvl segment. GPR81 stimulates baseline rostral and caudal VMNvl glycogen accumulation but mediates glycogen breakdown in the former site during hypoglycemia. During euglycemia, GPR81 suppresses the transmitter marker neuronal nitric oxide synthase (nNOS) in rostral and caudal VMNvl nitrergic neurons, but stimulates (rostral VMNvl) or inhibits (caudal VMNvl) GABAergic neuron glutamate decarboxylase65/67 (GAD)protein. During hypoglycemia, GPR81 regulates AMPK activation in nitrergic and GABAergic neurons located in the rostral, but not caudal VMNvl. VMN GPR81 knockdown amplified hypoglycemic hypercorticosteronemia, but not hyperglucagonemia. Results provide novel evidence that VMNvl astrocyte and glucose-regulatory neurons express GPR81 protein. Data identify neuroanatomical subpopulations of VMNvl astrocytes and glucose-regulatory neurons that exhibit differential reactivity to GPR81 input. Heterogeneous GPR81 effects during eu- versus hypoglycemia infer that energy state may affect cellular sensitivity to or postreceptor processing of lactate transmitter signaling.
Collapse
Affiliation(s)
- Sagor Chandra Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - MadhuBabu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| |
Collapse
|
14
|
Ali MH, Alshamrani AA, Napit PR, Briski KP. Single-cell multiplex qPCR evidence for sex-dimorphic glutamate decarboxylase, estrogen receptor, and 5'-AMP-activated protein kinase alpha subunit mRNA expression by ventromedial hypothalamic nucleus GABAergic neurons. J Chem Neuroanat 2022; 124:102132. [PMID: 35772680 PMCID: PMC9474596 DOI: 10.1016/j.jchemneu.2022.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022]
Abstract
The inhibitory amino acid transmitter γ-aminobutryic acid (GABA) acts within the ventromedial hypothalamus to regulate systemic glucose homeostasis, but the issue of whether this neurochemical signal originates locally or is supplied by afferent innervation remains controversial. Here, combinatory in situ immunocytochemistry/laser-catapult microdissection/single-cell multiplex qPCR techniques were used to investigate the premise that ventromedial hypothalamic nucleus ventrolateral (VMNvl) and/or dorsomedial (VMNdm) division neurons contain mRNAs that encode glutamate decarboxylase (GAD)65 or GAD67 and metabolic-sensory biomarkers, and that expression of these genes is sex-dimorphic. In male and female rats, GAD65 mRNA was elevated in VMNvl versus VMNdm GAD65/67-immunopositive (-ir) neurons, yet the female exhibited higher GAD67 transcript content in VMNdm versus VMNvl GABAergic nerve cells. Estrogen receptor (ER)-alpha transcripts were lower in female versus male GABA neurons from either VMN division; ER-beta and G-protein-coupled ER-1 mRNA expression profiles were also comparatively reduced in cells from female versus male VMNvl. VMNvl and VMNdm GAD65/67-ir-positive neurons showed equivalent levels of glucokinase and sulfonylurea receptor-1 mRNA between sexes. 5'-AMP-activated protein kinase-alpha 1 (AMPKα1) and -alpha 2 (AMPKα2) transcripts were lower in female versus male VMNdm GABAergic neurons, yet AMPKα2 mRNA levels were higher in cells acquired from female versus male VMNvl. Current studies document GAD65 and -67 gene expression in VMNvl and VMNdm GAD65/67-ir-positive neurons in each sex. Results infer that GABAergic neurons in each division may exhibit sex differences in receptiveness to estradiol. Outcomes also support the prospect that energy sensory function by this neurotransmitter cell type may predominate in the VMNvl in female versus VMNdm in the male.
Collapse
Affiliation(s)
- Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Ayed A Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
15
|
Uddin MM, Ibrahim MMH, Briski KP. Glycogen Phosphorylase Isoform Regulation of Ventromedial Hypothalamic Nucleus Gluco-Regulatory Neuron 5'-AMP-Activated Protein Kinase and Transmitter Marker Protein Expression. ASN Neuro 2021; 13:17590914211035020. [PMID: 34596459 PMCID: PMC8495507 DOI: 10.1177/17590914211035020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Brain glycogen is remodeled during metabolic homeostasis and provides oxidizable
L-lactate equivalents. Brain glycogen phosphorylase (GP)-brain (GPbb;
AMP-sensitive) and -muscle (GPmm; norepinephrine-sensitive) type isoforms
facilitate stimulus-specific control of glycogen disassembly. Here, a whole
animal model involving stereotactic-targeted delivery of GPmm or GPbb siRNA to
the ventromedial hypothalamic nucleus (VMN) was used to investigate the premise
that these variants impose differential control of gluco-regulatory
transmission. Intra-VMN GPmm or GPbb siRNA administration inhibited glutamate
decarboxylate65/67 (GAD), a protein marker for the
gluco-inhibitory transmitter γ--aminobutyric acid (GABA), in the caudal VMN.
GPbb knockdown, respectively overturned or exacerbated hypoglycemia-associated
GAD suppression in rostral and caudal VMN. GPmm siRNA caused a segment-specific
reversal of hypoglycemic augmentation of the gluco-stimulatory transmitter
indicator, neuronal nitric oxide synthase (nNOS). In both cell types, GP siRNA
down-regulated 5′-AMP-activated protein kinase (AMPK) during euglycemia, but
hypoglycemic suppression of AMPK was reversed by GPmm targeting. GP knockdown
elevated baseline GABA neuron phosphoAMPK (pAMKP) content, and amplified
hypoglycemic augmentation of pAMPK expression in each neuron type. GPbb
knockdown increased corticosterone secretion in eu- and hypoglycemic rats.
Outcomes validate efficacy of GP siRNA delivery for manipulation of glycogen
breakdown in discrete brain structures in vivo, and document VMN GPbb control of
local GPmm expression. Results document GPmm and/or -bb regulation of GABAergic
and nitrergic transmission in discrete rostro-caudal VMN segments. Contrary
effects of glycogenolysis on metabolic-sensory AMPK protein during eu- versus
hypoglycemia may reflect energy state-specific astrocyte signaling. Amplifying
effects of GPbb knockdown on hypoglycemic stimulation of pAMPK infer that
glycogen mobilization by GPbb limits neuronal energy instability during
hypoglycemia.
Collapse
Affiliation(s)
- Md Main Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, 15512University of Louisiana Monroe, Monroe, LA, USA
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, 15512University of Louisiana Monroe, Monroe, LA, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, 15512University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
16
|
Alhamyani A, Napit PR, Ali H, Ibrahim MMH, Briski KP. Ventrolateral ventromedial hypothalamic nucleus GABA neuron adaptation to recurring Hypoglycemia correlates with up-regulated 5'-AMP-activated protein kinase activity. AIMS Neurosci 2021; 8:510-525. [PMID: 34877402 PMCID: PMC8611193 DOI: 10.3934/neuroscience.2021027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) acts on ventromedial hypothalamic targets to suppress counter-regulatory hormone release, thereby lowering blood glucose. Maladaptive up-regulation of GABA signaling is implicated in impaired counter-regulatory outflow during recurring insulin-induced hypoglycemia (RIIH). Ventromedial hypothalamic nucleus (VMN) GABAergic neurons express the sensitive energy gauge 5'-AMP-activated protein kinase (AMPK). Current research used high-neuroanatomical resolution single-cell microdissection tools to address the premise that GABAergic cells in the VMNvl, the primary location of 'glucose-excited' metabolic-sensory neurons in the VMN, exhibit attenuated sensor activation during RIIH. Data show that during acute hypoglycemia, VMNvl glutamate decarboxylase65/67 (GAD)-immunoreactive neurons maintain energy stability, yet a regional subset of this population exhibited decreased GAD content. GABA neurons located along the rostrocaudal length of the VMNvl acclimated to RIIH through a shift to negative energy imbalance, e.g. increased phosphoAMPK expression, alongside amplification/gain of inhibition of GAD profiles. Acquisition of negative GAD sensitivity may involve altered cellular receptivity to noradrenergic input via α2-AR and/or β1-AR. Suppression of VMNvl GABA nerve cell signaling during RIIH may differentiate this neuroanatomical population from other, possibly non-metabolic-sensory GABA neurons in the MBH. Data here also provide novel evidence that VMNvl GABA neurons are direct targets of glucocorticoid control, and show that glucocorticoid receptors may inhibit RIIH-associated GAD expression in rostral VMNvl GABAergic cells through AMPK-independent mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
17
|
Bheemanapally K, Napit PR, Ibrahim MMH, Briski KP. UHPLC-electrospray ionization-mass spectrometric analysis of brain cell-specific glucogenic and neurotransmitter amino acid content. Sci Rep 2021; 11:16079. [PMID: 34373537 PMCID: PMC8352916 DOI: 10.1038/s41598-021-95646-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
Astrocyte glycogen, the primary energy reserve in brain, undergoes continuous remodeling by glucose passage through the glycogen shunt prior to conversion to the oxidizable energy fuel L-lactate. Glucogenic amino acids (GAAs) are a potential non-glucose energy source during neuro-metabolic instability. Current research investigated whether diminished glycogen metabolism affects GAA homeostasis in astrocyte and/or nerve cell compartments. The glycogen phosphorylase (GP) inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) was injected into the ventromedial hypothalamic nucleus (VMN), a key metabolic-sensing structure, before vehicle or L-lactate infusion. Pure VMN astrocyte and metabolic-sensory neuron samples were obtained by combinatory immunocytochemistry/laser-catapult-microdissection for UHPLC-electrospray ionization-mass spectrometry (LC-ESI-MS) GAA analysis. DAB inhibition of VMN astrocyte aspartate and glutamine (Gln) levels was prevented or exacerbated, respectively, by lactate. VMN gluco-stimulatory nitric oxide (NO; neuronal nitric oxide synthase-immunoreactive (ir)-positive) and gluco-inhibitory γ-aminobutyric acid (GABA; glutamate decarboxylase65/67-ir-positive) neurons exhibited lactate-reversible asparate and glutamate augmentation by DAB, but dissimilar Gln responses to DAB. GP inhibition elevated NO and GABA nerve cell GABA content, but diminished astrocyte GABA; these responses were averted by lactate in neuron, but not astrocyte samples. Outcomes provide proof-of-principle of requisite LC-ESI-MS sensitivity for GAA measurement in specific brain cell populations. Results document divergent effects of decreased VMN glycogen breakdown on astrocyte versus neuron GAAs excepting Gln. Lactate-reversible DAB up-regulation of metabolic-sensory neuron GABA signaling may reflect compensatory nerve cell energy stabilization upon decline in astrocyte-derived metabolic fuel.
Collapse
Affiliation(s)
- Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| |
Collapse
|
18
|
Bheemanapally K, Ibrahim MMH, Alshamrani A, Briski KP. Ventromedial hypothalamic nucleus glycogen regulation of metabolic-sensory neuron AMPK and neurotransmitter expression: role of lactate. Am J Physiol Regul Integr Comp Physiol 2021; 320:R791-R799. [PMID: 33825506 PMCID: PMC8285616 DOI: 10.1152/ajpregu.00292.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022]
Abstract
Astrocyte glycogen is dynamically remodeled during metabolic stability and provides oxidizable l-lactate equivalents during neuroglucopenia. Current research investigated the hypothesis that ventromedial hypothalamic nucleus (VMN) glycogen metabolism controls glucostimulatory nitric oxide (NO) and/or glucoinhibitory gamma-aminobutyric acid (GABA) neuron 5'-AMP-activated protein kinase (AMPK) and transmitter marker, e.g., neuronal nitric oxide synthase (nNOS), and glutamate decarboxylase65/67 (GAD) protein expression. Adult ovariectomized estradiol-implanted female rats were injected into the VMN with the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) before vehicle or l-lactate infusion. Western blot analysis of laser-catapult-microdissected nitrergic and GABAergic neurons showed that DAB caused lactate-reversible upregulation of nNOS and GAD proteins. DAB suppressed or increased total AMPK content of NO and GABA neurons, respectively, by lactate-independent mechanisms, but lactate prevented drug enhancement of pAMPK expression in nitrergic neurons. Inhibition of VMN glycogen disassembly caused divergent changes in counter-regulatory hormone, e.g. corticosterone (increased) and glucagon (decreased) secretion. Outcomes show that VMN glycogen metabolism controls local glucoregulatory transmission by means of lactate signal volume. Results implicate glycogen-derived lactate deficiency as a physiological stimulus of corticosterone release. Concurrent normalization of nitrergic neuron nNOS and pAMPK protein and corticosterone secretory response to DAB by lactate infers that the hypothalamic-pituitary-adrenal axis may be activated by VMN NO-mediated signals of cellular energy imbalance.
Collapse
Affiliation(s)
- Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Ayed Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| |
Collapse
|
19
|
Briski KP, Ali MH, Napit PR, Mahmood ASMH, Alhamyani AR, Alshamrani AA, Ibrahim MMH. Sex differences in ventromedial hypothalamic nucleus glucoregulatory transmitter biomarker protein during recurring insulin-induced hypoglycemia. Brain Struct Funct 2021; 226:1053-1065. [PMID: 33580322 DOI: 10.1007/s00429-021-02225-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/20/2021] [Indexed: 11/24/2022]
Abstract
Recurring insulin-induced hypoglycemia (RIIH) in males correlates with maladaptive glucose counter-regulatory collapse and acclimated expression of ventromedial hypothalamic nucleus (VMN) nitric oxide (NO) and γ-aminobutyric acid (GABA) metabolic transmitter biomarkers, e.g., neuronal nitric oxide synthase (nNOS) and glutamate decarboxylase65/67 (GAD). Hindbrain noradrenergic neurons innervate the VMN, where norepinephrine regulates nNOS and GAD expression. Current research investigated the hypothesis that antecedent hypoglycemia (AH) exposure causes sex-dimorphic habituation of VMN glucoregulatory biomarker proteins between and/or during serial hypoglycemic bouts, and that hindbrain catecholaminergic (CA) signaling may control sex-specific adaptation of one or more of these proteins. Data show that upon recovery from AH, females exhibit CA-mediated reductions in baseline VMN nNOS, GAD, steroidogenic factor-1 (SF-1), and brain-derived neurotrophic factor (BNDF) expression compared to euglycemic profiles. In males, however, AH caused 6-OHDA-insensitive suppression of only basal SF-1 levels in the VMN. VMN transmitter protein acclimation to RIIH was sex-contingent, as differential nNOS, GAD, SF-1, and BDNF responses to a single vs final bout of hypoglycemia occur in males, whereas females show acclimated reactivity of GAD and SF-1 only to renewed hypoglycemia. CA-mediated and -independent habituation of distinctive VMN protein profiles occurred in each sex. Further research is necessary to evaluate, in each sex, effects of altered baseline VMN metabolic neurotransmitter signals on glucose homeostasis as well as non-metabolic functions under the control of those neurochemicals. It would also be insightful to learn if and how sex-contingent habituation of VMN transmitter responses to hypoglycemia contribute to sex-dimorphic patterns of glucose counter-regulation during RIIH.
Collapse
Affiliation(s)
- K P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - A S M H Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - A R Alhamyani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - A A Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| |
Collapse
|
20
|
Uddin MM, Briski KP. Neuroestradiol regulation of ventromedial hypothalamic nucleus 5'-AMP-activated protein kinase activity and counterregulatory hormone secretion in hypoglycemic male versus female rats. AIMS Neurosci 2021; 8:133-147. [PMID: 33490375 PMCID: PMC7815480 DOI: 10.3934/neuroscience.2021006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/10/2020] [Indexed: 02/02/2023] Open
Abstract
Hypoglycemia activates the ultra-sensitive energy gauge 5′-AMP-activated protein kinase (AMPK) in ventromedial hypothalamic nucleus (VMN) gluco-regulatory neurons. The VMN is exemplified by high levels of expression of the enzyme aromatase, which converts testosterone to estradiol. This study examined the hypothesis that neuroestradiol imposes sex-dimorphic control of VMN AMPK activity during eu- and/or hypoglycemia. VMN tissue corresponding to distinct rostro-caudal segments was obtained by micropunch dissection from testes-intact male and estradiol-replaced ovariectomized female rats that were infused intracerebroventricularly with the aromatase inhibitor letrozole (Lz) before subcutaneous insulin (INS) injection. In euglycemic rats, Lz treatment elevated (male) or decreased (female) middle VMN phosphoAMPK content, with concurrent effects on total AMPK expression. Lz prevented hypoglycemic up-regulation of the mean pAMPK/AMPK ratio in rostral and middle segments of the male VMN, and significantly inhibited this proportion throughout the VMN of hypoglycemic female rats. Lz prevented glucagon secretion in hypoglycemic rats of each sex, and abolished hypoglycemic hypercorticosteronemia in males. Results show that neuroestradiol regulation of VMN AMPK activity during euglycemia is region-specific and gender-divergent, e.g. inhibitory in males versus stimulatory in females. Intra-VMN distribution of hypoglycemia-activated AMPK varies between sexes, but in each sex, locally-generated estradiol is critical for sensor reactivity to this stimulus. Coincident Lz attenuation of VMN AMPK and counter-regulatory hormone responses to hypoglycemia infers a possible cause-and-effect association. Further effort is needed to elucidate the cellular and molecular mechanisms that underlie sex-dimorphic neuroestradiol control of VMN total AMPK and phosphoAMPK expression during distinct metabolic states.
Collapse
Affiliation(s)
- Md Main Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
21
|
Uddin MM, Ibrahim MMH, Briski KP. Sex-dimorphic neuroestradiol regulation of ventromedial hypothalamic nucleus glucoregulatory transmitter and glycogen metabolism enzyme protein expression in the rat. BMC Neurosci 2020; 21:51. [PMID: 33238883 PMCID: PMC7687823 DOI: 10.1186/s12868-020-00598-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background Ventromedial hypothalamic nucleus (VMN) gluco-regulatory transmission is subject to sex-specific control by estradiol. The VMN is characterized by high levels of aromatase expression. Methods The aromatase inhibitor letrozole (LZ) was used with high-resolution microdissection/Western blot techniques to address the hypothesis that neuroestradiol exerts sex-dimorphic control of VMN neuronal nitric oxide synthase (nNOS) and glutamate decarboxylase65/67 (GAD) protein expression. Glycogen metabolism impacts VMN nNOS and GAD profiles; here, LZ treatment effects on VMN glycogen synthase (GS) and phosphorylase brain- (GPbb; glucoprivic-sensitive) and muscle (GPmm; norepinephrine-sensitive) variant proteins were examined. Results VMN aromatase protein content was similar between sexes. Intracerebroventricular LZ infusion of testes-intact male and ovariectomized, estradiol-replaced female rats blocked insulin-induced hypoglycemic (IIH) up-regulation of this profile. LZ exerted sex-contingent effects on basal VMN nNOS and GAD expression, but blocked IIH-induced NO stimulation and GAD suppression in each sex. Sex-contingent LZ effects on basal and hypoglycemic patterns of GPbb and GPmm expression occurred at distinctive levels of the VMN. LZ correspondingly down- or up-regulated baseline pyruvate recycling pathway marker protein expression in males (glutaminase) and females (malic enzyme-1), and altered INS effects on those proteins. Conclusions Results infer that neuroestradiol is required in each sex for optimal VMN metabolic transmitter signaling of hypoglycemic energy deficiency. Sex differences in VMN GP variant protein levels and sensitivity to aromatase may correlate with sex-dimorphic glycogen mobilization during this metabolic stress. Neuroestradiol may also exert sex-specific effects on glucogenic amino acid energy yield by actions on distinctive enzyme targets in each sex.
Collapse
Affiliation(s)
- Md Main Uddin
- Willis-Knighton Endowed Professor of Pharmacy and Director, School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Mostafa M H Ibrahim
- Willis-Knighton Endowed Professor of Pharmacy and Director, School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Karen P Briski
- Willis-Knighton Endowed Professor of Pharmacy and Director, School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| |
Collapse
|
22
|
Sex-dimorphic Rostro-caudal Patterns of 5'-AMP-activated Protein Kinase Activation and Glucoregulatory Transmitter Marker Protein Expression in the Ventrolateral Ventromedial Hypothalamic Nucleus (VMNvl) in Hypoglycemic Male and Female Rats: Impact of Estradiol. J Mol Neurosci 2020; 71:1082-1094. [PMID: 33231812 DOI: 10.1007/s12031-020-01730-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
The ventromedial hypothalamic nucleus-ventrolateral part (VMNvl) is an estradiol-sensitive structure that controls sex-specific behavior. Electrical reactivity of VMNvl neurons to hypoglycemia infers that cellular energy stability is monitored there. Current research investigated the hypothesis that estradiol elicits sex-dimorphic patterns of VMNvl metabolic sensor activation and gluco-regulatory neurotransmission during hypoglycemia. Rostral-, middle-, and caudal-VMNvl tissue was separately micropunch-dissected from letrozole (Lz)- or vehicle-injected male and estradiol- or vehicle-implanted ovariectomized (OVX) female rats for Western blot analysis of total and phosphorylated 5'-AMP-activated protein kinase (AMPK) protein expression and gluco-stimulatory [neuronal nitric oxide synthase (nNOS); steroidogenic factor-1 (SF1) or -inhibitory (glutamate decarboxylase65/67 (GAD)] transmitter marker proteins after sc insulin (INS) or vehicle injection. In both sexes, hypoglycemic up-regulation of phosphoAMPK was estradiol-dependent in rostral and middle, but not caudal VMNvl. AMPK activity remained elevated after recovery from hypoglycemia over the rostro-caudal VMNvl in female, but only in the rostral segment in male. In each sex, hypoglycemia correspondingly augmented or suppressed nNOS profiles in rostral and middle versus caudal VMNvl; these segmental responses persisted longer in female. Rostral and middle segment SF1 protein was inhibited by estradiol-independent mechanisms in hypoglycemic males, but increased by estradiol-reliant mechanisms in female. After INS injection, GAD expression was inhibited in the male rostral VMNvl without estradiol involvement, but this hormone was required for broader suppression of this profile in the female. Neuroanatomical variability of VMNvl metabolic transmitter reactivity to hypoglycemia underscores the existence of functionally different subgroups in that structure. The regional distribution and estradiol sensitivity of hypoglycemia-sensitive VMNvl neurons of each neurochemical phenotype evidently vary between sexes.
Collapse
|
23
|
Ibrahim MMH, Uddin MM, Bheemanapally K, Briski KP. Sex-dimorphic aromatase regulation of ventromedial hypothalamic nucleus glycogen content in euglycemic and insulin-induced hypoglycemic rats. Neurosci Lett 2020; 737:135284. [PMID: 32853718 DOI: 10.1016/j.neulet.2020.135284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/24/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
Estrogen receptors control hypothalamic astrocyte glycogen accumulation in vitro. Glycogen metabolism impacts metabolic transmitter signaling in the ventromedial hypothalamic nucleus (VMN), a key glucoregulatory structure. Aromatase, the enzyme that converts testosterone to estradiol, is expressed at high levels in the VMN. Here, the aromatase inhibitor letrozole (Lz) was used alongside high-resolution microdissection/UPHLC-electrospray ionization-mass spectrometric methods to determine if neuroestradiol imposes sex-specific control of VMN glycogen content during glucostasis and/or glucoprivation. Testes-intact male and estradiol-replaced ovariectomized female rats were pretreated by lateral ventricular letrozole (Lz) infusion prior to subcutaneous insulin (INS) injection. Vehicle-treated female controls exhibited higher VMN glycogen content compared to males. Lz increased VMN glycogen levels in males, not females. INS-induced hypoglycemia (IIH) elevated (males) or diminished (females) rostral VMN glycogen accumulation. Induction of IIH in Lz-pretreated animals reduced male VMN glycogen mass, but augmented content in females. Data provide novel evidence for regional variation, in both sexes, in glycogen reactivity to IIH. Results highlight sex-dimorphic neuroestradiol regulation of VMN glycogen amassment during glucostasis, e.g. inhibitory in males versus insignificant in females. Locally-generated estradiol is evidently involved in hypoglycemic enhancement of male VMN glycogen, but conversely limits glycogen content in hypoglycemic females. Further research is needed to characterize mechanisms that underlie the directional shift in aromatase regulation of VMN glycogen in eu- versus hypoglycemic male rats and gain in negative impact in hypoglycemic females.
Collapse
Affiliation(s)
- Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, United States
| | - Md Main Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, United States
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, United States.
| |
Collapse
|