1
|
Wang Y, Sun C, Liu Z, Zhang S, Gao K, Yi F, Zhou W, Liu H. Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202410714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 01/05/2025]
Abstract
AbstractStem cells, ideal for the tissue repair and regeneration, possess extraordinary capabilities of multidirectional differentiation and self‐renewal. However, the limited spontaneous differentiation potential makes it challenging to harness them for tissue repair without external intervention. Although conventional approaches using biomolecules, small organic molecules, and ions have shown specific and effective functions, they face challenges such as in vivo diffusion and degradation, poor internalization, and side effects on adjacent cells. Nanoengineered biomaterials offer a solution by solidifying and nanosizing these soluble regulating molecules and ions, facilitating their uptake by stem cells. Once inside lysosomes, these nanoparticles release their contents in a controlled “molecule or ion storm,” efficiently altering the intracellular biological and chemical microenvironment to tune the differentiation of stem cells. This newly emerged approach for regulating stem cell fate has attracted much attention in recent years. This method has shown promising results and is poised to enhance clinical stem cell therapy. This review provides an overview of the design principles for nanoengineered biomaterials, discusses the categories and characteristics of nanoparticles, summarizes the application of nanoparticles in tissue repair and regeneration, and discusses the direction of nanoparticle‐enhanced stem cell therapy and prospects for its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoying Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Ke Gao
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Fan Yi
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Wenjuan Zhou
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
2
|
Sharma KD, Alghazali KM, Hamzah RN, Pandanaboina SC, Nima Alsudani ZA, Muhi M, Watanabe F, Zhou GL, Biris AS, Xie JY. Gold Nanorod Substrate for Rat Fetal Neural Stem Cell Differentiation into Oligodendrocytes. NANOMATERIALS 2022; 12:nano12060929. [PMID: 35335742 PMCID: PMC8953860 DOI: 10.3390/nano12060929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023]
Abstract
Gold nanorods (AuNRs) have been proposed to promote stem cell differentiation in vitro and in vivo. In this study, we examined a particular type of AuNR in supporting the differentiation of rat fetal neural stem cells (NSCs) into oligodendrocytes (ODCs). AuNRs were synthesized according to the seed-mediated method resulting in nanorods with an aspect ratio of around 3 (~12 nm diameter, 36 nm length) and plasmon resonance at 520 and 780 nm, as confirmed by transmission electron microscopy (TEM) and UV-vis spectroscopy, respectively. A layer-by-layer approach was used to fabricate the AuNR substrate on the functionalized glass coverslips. NSCs were propagated for 10 days using fibroblast growth factor, platelet-derived growth-factor-supplemented culture media, and differentiated on an AuNR or poly-D-lysine (PDL)-coated surface using differentiation media containing triiodothyronine for three weeks. Results showed that NSCs survived better and differentiated faster on the AuNRs compared to the PDL surface. By week 1, almost all cells had differentiated on the AuNR substrate, whereas only ~60% differentiated on the PDL surface, with similar percentages of ODCs and astrocytes. This study indicates that functionalized AuNR substrate does promote NSC differentiation and could be a viable tool for tissue engineering to support the differentiation of stem cells.
Collapse
Affiliation(s)
- Krishna Deo Sharma
- Molecular Biosciences Graduate Program, Arkansas State University, State University, AR 72467, USA; (K.D.S.); (G.-L.Z.)
| | - Karrer M. Alghazali
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
- NuShores BioSciences LLC, Little Rock, AR 72211, USA
| | - Rabab N. Hamzah
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
| | | | - Zeid A. Nima Alsudani
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
| | - Malek Muhi
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
| | - Fumiya Watanabe
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
| | - Guo-Lei Zhou
- Molecular Biosciences Graduate Program, Arkansas State University, State University, AR 72467, USA; (K.D.S.); (G.-L.Z.)
- Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA
| | - Alexandru S. Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
- Correspondence: (A.S.B.); (J.Y.X.); Tel.: +1-501-916-3456 (A.S.B.); +1-870-680-8877 (J.Y.X.); Fax: +1-501-916-3601 (A.S.B.); +1-870-680-8845 (J.Y.X.)
| | - Jennifer Yanhua Xie
- Molecular Biosciences Graduate Program, Arkansas State University, State University, AR 72467, USA; (K.D.S.); (G.-L.Z.)
- Department of Basic Sciences, New York Institute of Technology College of Osteopathic Medicine, Arkansas State University, Jonesboro, AR 72401, USA
- Correspondence: (A.S.B.); (J.Y.X.); Tel.: +1-501-916-3456 (A.S.B.); +1-870-680-8877 (J.Y.X.); Fax: +1-501-916-3601 (A.S.B.); +1-870-680-8845 (J.Y.X.)
| |
Collapse
|
3
|
Electromagnetized gold nanoparticles improve neurogenesis and cognition in the aged brain. Biomaterials 2021; 278:121157. [PMID: 34601195 DOI: 10.1016/j.biomaterials.2021.121157] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 12/30/2022]
Abstract
Adult neurogenesis is the lifelong process by which new neurons are generated in the dentate gyrus. However, adult neurogenesis capacity decreases with age, and this decrease is closely linked to cognitive and memory decline. Our study demonstrated that electromagnetized gold nanoparticles (AuNPs) promote adult hippocampal neurogenesis, thereby improving cognitive function and memory consolidation in aged mice. According to single-cell RNA sequencing data, the numbers of neural stem cells (NSCs) and neural progenitors were significantly increased by electromagnetized AuNPs. Additionally, electromagnetic stimulation resulted in specific activation of the histone acetyltransferase Kat2a, which led to histone H3K9 acetylation in adult NSCs. Moreover, in vivo electromagnetized AuNP stimulation efficiently increased hippocampal neurogenesis in aged and Hutchinson-Gilford progeria mouse brains, thereby alleviating the symptoms of aging. Therefore, our study provides a proof-of-concept for the in vivo stimulation of hippocampal neurogenesis using electromagnetized AuNPs as a promising therapeutic strategy for the treatment of age-related brain diseases.
Collapse
|