1
|
Bueno D, Schäfer MK, Wang S, Schmeisser MJ, Methner A. NECAB family of neuronal calcium-binding proteins in health and disease. Neural Regen Res 2025; 20:1236-1243. [PMID: 38934399 PMCID: PMC11624857 DOI: 10.4103/nrr.nrr-d-24-00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/18/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The N-terminal EF-hand calcium-binding proteins 1-3 (NECAB1-3) constitute a family of predominantly neuronal proteins characterized by the presence of at least one EF-hand calcium-binding domain and a functionally less well characterized C-terminal antibiotic biosynthesis monooxygenase domain. All three family members were initially discovered due to their interactions with other proteins. NECAB1 associates with synaptotagmin-1, a critical neuronal protein involved in membrane trafficking and synaptic vesicle exocytosis. NECAB2 interacts with predominantly striatal G-protein-coupled receptors, while NECAB3 partners with amyloid-β A4 precursor protein-binding family A members 2 and 3, key regulators of amyloid-β production. This demonstrates the capacity of the family for interactions with various classes of proteins. NECAB proteins exhibit distinct subcellular localizations: NECAB1 is found in the nucleus and cytosol, NECAB2 resides in endosomes and the plasma membrane, and NECAB3 is present in the endoplasmic reticulum and Golgi apparatus. The antibiotic biosynthesis monooxygenase domain, an evolutionarily ancient component, is akin to atypical heme oxygenases in prokaryotes but is not well-characterized in vertebrates. Prokaryotic antibiotic biosynthesis monooxygenase domains typically form dimers, suggesting that calcium-mediated conformational changes in NECAB proteins may induce antibiotic biosynthesis monooxygenase domain dimerization, potentially activating some enzymatic properties. However, the substrate for this enzymatic activity remains uncertain. Alternatively, calcium-mediated conformational changes might influence protein interactions or the subcellular localization of NECAB proteins by controlling the availability of protein-protein interaction domains situated between the EF hands and the antibiotic biosynthesis monooxygenase domain. This review summarizes what is known about genomic organization, tissue expression, intracellular localization, interaction partners, and the physiological and pathophysiological role of the NECAB family.
Collapse
Affiliation(s)
- Diones Bueno
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael K.E. Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Sudena Wang
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Axel Methner
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
He X, Yang H, Zheng Y, Zhao X, Wang T. The role of non-coding RNAs in neuropathic pain. Pflugers Arch 2024; 476:1625-1643. [PMID: 39017932 DOI: 10.1007/s00424-024-02989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/19/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Neuropathic pain (NPP) is a refractory pain syndrome, caused by damage or disease of the somatosensory nervous system and characterized by spontaneous pain, hyperalgesia, abnormal pain and sensory abnormality. Non-coding RNAs (ncRNAs), including microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA) and Piwi interacting RNA (piRNA), play a notable role in initiation and maintenance of NPP. In this review, we summarize the role of ncRNAs in NPP and their underlaying mechanism. Generally, ncRNAs are interacted with mRNA, protein or DNA to regulate the molecules and signals assciated with neuroinflammation, ion channels, neurotrophic factors and others, and then involved in the occurrence and development of NPP. Therefore, this review not only contributes to deepen our understanding of the pathophysiological mechanism of NPP, but also provides theoretical basis for the development of new therapy strategies for this disorder.
Collapse
Affiliation(s)
- Xiuying He
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Huisi Yang
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Yuexiang Zheng
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Xiaoming Zhao
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650504, P.R. China.
| | - Tinghua Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China.
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Li X, Li X, Liang Y. Silencing CircHIPK3 improves sevoflurane-explore learning and memory dysfunction and nerve damage via enhancing miR-338-3p. Toxicol Res (Camb) 2024; 13:tfae132. [PMID: 39165832 PMCID: PMC11331635 DOI: 10.1093/toxres/tfae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Background Sevoflurane (Sev), a widely used volatile anesthetic, can cause neurotoxicity, and impair learning and memory. Objective This study investigates the role and mechanisms of circHIPK3 in Sev-exposed neurotoxicity and learning and memory impairment. Methods SD rats and hippocampal neuronal cells were exposed to Sev. RT-qPCR analysis of circHIPK3 and miR-338-3p levels. MWM test was performed to examine the behavioral changes in rats. The levels of circHIPK3 and miR-338-3p levels were investigated using RT-qPCR. ELISA assay to analyze the expression of pro-inflammatory factors. CCK-8, flow cytometry, and commercial ROS assay kits were analyzed to detect cell viability, apoptosis, and ROS production. DLR and RIP assays validate circHIPK3 binding to miR-338-3p. Results Sev increased circHIPK3 expression in rat hippocampal tissue as well as in neuronal cells but decreased miR-338-3p levels compared to controls. circHIPK3 binding to miR-338-3p. Furthermore, silencing of circHIPK3 rats attenuated Sev-induced decline in learning and memory functions . silencing circHIPK3 also reduced Sev-induced secretion of inflammatory factors in rat and neuronal cells. Reducing circHIPK3 partially reversed the Sev-induced decrease in cell viability, increased apoptosis, and overproduction of ROS. However, the inhibitory effect of circHIPK3 on Sev neurotoxicity was restored upon downregulation of miR-338-3p. Conclusion Collectively, silencing circHIPK3 alleviates Sev exposure-induced learning and memory deficits and neurotoxicity by enhancing miR-338-3p expression.
Collapse
Affiliation(s)
- Xiuli Li
- Department of Anesthesiology, Pengzhou People’s Hospital , No. 255 South Third Ring Road, Pengzhou 611930, China
| | - Xuefei Li
- Department of Anesthesiology, The Second People's Hospital of Pidu District of Chengdu, No. 86 Southeast Section of the Second Ring Road, Pidu District, Chengdu 611733, China
| | - Yinan Liang
- Department of Anesthesiology, School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, No. 278 Middle Baoguang Avenue, Xindu District, Chengdu 610500, China
| |
Collapse
|
4
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
5
|
Li J, Zhang D, Zhang Z, Meng S, Wang B, Li Z, Liu X, Zhang S. miR-2765 Modulates the Seasonal Polyphenism in Cacopsylla chinensis by Targeting a Novel Cold Rreceptor CcTRPC3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:140-152. [PMID: 38118125 DOI: 10.1021/acs.jafc.3c05429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Polyphenism is a beneficial way in organisms to better cope with changing circumstances and is a hot topic in entomology, evolutionary biology, and ecology. Until now, this phenomenon has been proven to be season-, density-, and diet-dependent; however, there are very few reports on temperature regulation. Cacopsylla chinensis showed seasonal polyphenism, namely as summer- and winter-form, with obvious diversity in phenotypic characteristics in response to seasonal variation. Previous studies have found that low temperature in autumn is an extremely important element in inducing summer-form change to winter-form, but the underlying regulatory mechanism is still a mystery. Herein, we provided the initial evidence that the third instar of the summer-form is the critical period for developing to the winter-form, and 10 °C induces this transition by affecting the total pigment, chitin level, and thickness of the cuticle. Second, CcTPRC3 was proven to function as a novel cold receptor to control this seasonal polyphenism. Moreover, miR-2765 was found to mediate seasonal polyphenism by inhibiting CcTRPC3 expression. Last, we found that cuticle binding proteins CcCPR4 and CcCPR9 function as the downstream signals of CcTRPC3 to regulate the seasonal polyphenism in C. chinensis. In conclusion, our results displayed a novel signal pathway of miR-2765 and CcTRPC3 for the regulation of seasonal polyphenism in C. chinensis. These findings provide insights into the comprehensive analysis of insect polyphenism and are useful in developing potential strategies to block the phase transition for the pest control of C. chinensis.
Collapse
Affiliation(s)
- Jianying Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Dongyue Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Zhixian Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Shili Meng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Bo Wang
- Sanya Institute of China Agricultural University, 572025 Sanya City, Hainan Province, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
- Sanya Institute of China Agricultural University, 572025 Sanya City, Hainan Province, China
| |
Collapse
|
6
|
Salniccia F, de Vidania S, Martinez-Caro L. Peripheral and central changes induced by neural mobilization in animal models of neuropathic pain: a systematic review. Front Neurol 2024; 14:1289361. [PMID: 38249743 PMCID: PMC10797109 DOI: 10.3389/fneur.2023.1289361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Neural mobilization (NM) is a physiotherapy technique involving the passive mobilization of limb nerve structures with the aim to attempt to restore normal movement and structural properties. In recent years, human studies have shown pain relief in various neuropathic diseases and other pathologies as a result of this technique. Improvement in the range of motion (ROM), muscle strength and endurance, limb function, and postural control were considered beneficial effects of NM. To determine which systems generate these effects, it is necessary to conduct studies using animal models. The objective of this study was to gather information on the physiological effects of NM on the peripheral and central nervous systems (PNS and CNS) in animal models. Methods The search was performed in Medline, Pubmed and Web of Science and included 8 studies according to the inclusion criteria. Results The physiological effects found in the nervous system included the analgesic, particularly the endogenous opioid pathway, the inflammatory, by modulation of cytokines, and the immune system. Conclusion On the basis of these results, we can conclude that NM physiologically modifies the peripheral and central nervous systems in animal models.
Collapse
Affiliation(s)
- Federico Salniccia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Silvia de Vidania
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Leticia Martinez-Caro
- Facultad de Ciencias de la Salud, Universidad Internacional de La Rioja, Logroño, Spain
- Facultad de Ciencias Sociales Aplicadas y de la Comunicación, UNIE Universidad y Empresa, Madrid, Spain
| |
Collapse
|
7
|
Pando M, Yang R, Dimitrov G, Chavez R, Garza T, Trevino AV, Gautam A, Stark TR, Hammamieh R, Clifford J, Sosanya NM. Identifying Stress-Exacerbated Thermal-Injury Induced MicroRNAs. THE JOURNAL OF PAIN 2023; 24:2294-2308. [PMID: 37468024 DOI: 10.1016/j.jpain.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Using a model of combat and operational stress reaction (COSR), our lab recently showed that exposure to an unpredictable combat stress (UPCS) procedure prior to a thermal injury increases pain sensitivity in male rats. Additionally, our lab has recently shown that circulating extracellular vesicle-microRNAs (EV-miRNAs), which normally function to suppress inflammation, were downregulated in a male rat model of neuropathic pain. In this current study, male and female rats exposed to UPCS, followed by thermal injury, were evaluated for changes in circulating EV-miRNAs. Adult female and male Sprague Dawley rats were exposed to a UPCS procedure for either 2 or 4 weeks. Groups consisted of the following: nonstress (NS), stress (S), NS + thermal injury (TI), and S + TI. Mechanical sensitivity was measured, and plasma was collected at baseline, throughout the UPCS exposure, and post-thermal injury. EV-miRNA isolation was performed, followed by small RNA sequencing and subsequent data analysis. UPCS exposure alone resulted in mechanical allodynia in both male and female rats at specific time points. Thermal-injury induction occurring at peak UPCS resulted in increased mechanical allodynia in the injured hind paw compared to thermal injury alone. Differential expression of the EV-miRNAs was observed between the NS and S groups as well as between NS + TI and S + TI groups. Consistent differences in EV-miRNAs are detectable in both COSR as well as during the development of mechanical sensitivity and potentially serve as key regulators, biomarkers, and targets in the treatment of COSR and thermal-injury induced mechanical sensitivity. PERSPECTIVE: This article presents the effects of unpredictable combat stress and thermal injury on EV-contained microRNAs in an animal model. These same mechanisms may exist in clinical patients and could be future prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Miryam Pando
- US Army Institute of Surgical Research (USAISR), JBSA Ft Sam Houston, San Antonio, Texas
| | - Ruoting Yang
- Medical Readiness Systems Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - George Dimitrov
- Medical Readiness Systems Biology Branch, The Geneva Foundation, Tacoma, Washington
| | - Roger Chavez
- US Army Institute of Surgical Research (USAISR), JBSA Ft Sam Houston, San Antonio, Texas
| | - Thomas Garza
- US Army Institute of Surgical Research (USAISR), JBSA Ft Sam Houston, San Antonio, Texas
| | - Alex V Trevino
- US Army Institute of Surgical Research (USAISR), JBSA Ft Sam Houston, San Antonio, Texas
| | - Aarti Gautam
- Medical Readiness Systems Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Thomas R Stark
- US Army Institute of Surgical Research (USAISR), JBSA Ft Sam Houston, San Antonio, Texas
| | - Rasha Hammamieh
- Medical Readiness Systems Biology Branch, The Geneva Foundation, Tacoma, Washington
| | - John Clifford
- US Army Institute of Surgical Research (USAISR), JBSA Ft Sam Houston, San Antonio, Texas
| | - Natasha M Sosanya
- US Army Institute of Surgical Research (USAISR), JBSA Ft Sam Houston, San Antonio, Texas
| |
Collapse
|
8
|
Xu P, Shao RR, He Y. Bibliometric analysis of recent research on the association between TRPV1 and inflammation. Channels (Austin) 2023; 17:2189038. [PMID: 36919561 PMCID: PMC10026872 DOI: 10.1080/19336950.2023.2189038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
TRPV1 channel is a sensitive ion channel activated by some noxious stimuli and has been reported to change many physiological functions after its activation. In this paper, we present a scientometric approach to explore the trends of the association between TRPV1 channel and inflammation and our goal is to provide creative directions for future research. The related literature was retrieved from Web of Science Core Collection and then analyzed by CiteSpace and VOSviewer. A total of 1533 documents were screened. The most productive country, institution, journal, author, cited journal, cited author, and references were the United States, University of California, San Francisco, Pain, Lu-yuan Lee, Nature, Michael J. Caterina, and Caterina MJ (Science, 2000), respectively. The most influential country and institution were Switzerland and University of California, San Francisco, respectively. The cooperation among countries or institutions was extensive. Amounts of documents were distributed in molecular, biology, genetics. TRPV1-associated neurons, neuropeptides, neuropathic pain, neuroinflammation, and neurogenic inflammation were mainly hotspots in this field. The research has presented valuable data about previous studies in the link of TRPV1 channel and inflammation.
Collapse
Affiliation(s)
- Pan Xu
- Department of Oral Medicine, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Ru-Ru Shao
- Department of Oral Medicine, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuan He
- Department of Oral Medicine, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
9
|
Jain V, Sinha SK, Rustage K, Pareek A, Srivastava M, Meena MK, Shakya A, Gupta MM, Rai N, Pareek A, Ratan Y, Chen MH, Prasad SK, Ashraf GM. Solasodine Containing Solanum torvum L. Fruit Extract Prevents Chronic Constriction Injury-Induced Neuropathic Pain in Rats: In Silico and In Vivo Evidence of TRPV1 Receptor and Cytokine Inhibition. Mol Neurobiol 2023; 60:5378-5394. [PMID: 37314657 DOI: 10.1007/s12035-023-03412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
This study aimed to assess the efficacy of ethanolic extract of Solanum torvum L. fruit (EESTF) containing solasodine in treating chronic constriction injury (CCI)-induced neuropathic pain in rats. Three-dimensional (3D) simulation studies of solasodine binding were conducted on the TRPV1 receptor, IL-6, and TNF-α structures. For in vivo justification, an assessment of behavioral, biochemical, and histological changes was designed after a CCI-induced neuropathic pain model in rats. On days 7, 14, and 21, CCI significantly increased mechanical, thermal, and cold allodynia while producing a functional deficit. IL-6, TNF-α, TBARS, and MPO levels also increased. SOD levels of catalase and reduced glutathione levels also decreased. Administration of pregabalin (30 mg/kg, oral), solasodine (25 mg/kg, oral), and EESTF (100 and 300 mg/kg, oral) significantly reduced CCI-induced behavioral and biochemical changes (P < 0.05). The protective nature of EESTF was also confirmed by histological analysis. Capsaicin, a TRPV1 receptor agonist, abolished the antinociceptive effects of EESTF when used previously. From the observations of the docking studies, solasodine acted as an antagonist at TRPV1, whereas the docking scores of solasodine against TNF-α and IL-6 were reported to be -11.2 and -6.04 kcal/mol, respectively. The attenuating effect of EESTF might be related to its antagonistic effects on TRPV1, suppression of cytokines, and anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Vivek Jain
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| | - Saurabh K Sinha
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Kajol Rustage
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| | - Manish Srivastava
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Mukesh K Meena
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Anshul Shakya
- Department of Pharmaceutical Science, Dibrugarh University, Dibrugarh, Assam, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Nitish Rai
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Min Hua Chen
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
| | | | - Ghulam Md Ashraf
- Department of Medical Laboratory Science, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
10
|
Rahman MM, Jo HJ, Park CK, Kim YH. Diosgenin Exerts Analgesic Effects by Antagonizing the Selective Inhibition of Transient Receptor Potential Vanilloid 1 in a Mouse Model of Neuropathic Pain. Int J Mol Sci 2022; 23:ijms232415854. [PMID: 36555495 PMCID: PMC9784430 DOI: 10.3390/ijms232415854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Diosgenin is a botanical steroidal saponin with immunomodulatory, anti-inflammatory, anti-oxidative, anti-thrombotic, anti-apoptotic, anti-depressant, and anti-nociceptive effects. However, the effects of diosgenin on anti-nociception are unclear. Transient receptor potential vanilloid 1 (TRPV1) plays an important role in nociception. Therefore, we investigated whether TRPV1 antagonism mediates the anti-nociceptive effects of diosgenin. In vivo mouse experiments were performed to examine nociception-related behavior, while in vitro experiments were performed to examine calcium currents in dorsal root ganglion (DRG) and Chinese hamster ovary (CHO) cells. The duration of capsaicin-induced licking (pain behavior) was significantly reduced following oral and intraplantar administration of diosgenin, approaching levels observed in mice treated with the TRPV1 antagonist N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl) tetrahydropyrazine-1(2H)-carbox-amide. Additionally, oral administration of diosgenin blocked capsaicin-induced thermal hyperalgesia. Further, diosgenin reduced capsaicin-induced Ca2+ currents in a dose-dependent manner in both DRG and CHO cells. Oral administration of diosgenin also improved thermal and mechanical hyperalgesia in the sciatic nerve constriction injury-induced chronic pain model by reducing the expression of TRPV1 and inflammatory cytokines in DRG cells. Collectively, our results suggest that diosgenin exerts analgesic effects via antagonism of TRPV1 and suppression of inflammation in the DRG in a mouse model of neuropathic pain.
Collapse
Affiliation(s)
| | | | - Chul-Kyu Park
- Correspondence: (C.-K.P.); (Y.H.K.); Tel.: +82-32-899-6692 (C.-K.P.); +82-32-899-6691 (Y.H.K.)
| | - Yong Ho Kim
- Correspondence: (C.-K.P.); (Y.H.K.); Tel.: +82-32-899-6692 (C.-K.P.); +82-32-899-6691 (Y.H.K.)
| |
Collapse
|
11
|
Zhang C, Gao R, Zhou R, Chen H, Liu C, Zhu T, Chen C. The emerging power and promise of non-coding RNAs in chronic pain. Front Mol Neurosci 2022; 15:1037929. [PMID: 36407760 PMCID: PMC9668864 DOI: 10.3389/fnmol.2022.1037929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 08/26/2023] Open
Abstract
Chronic pain (CP) is an unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage lasting longer than 3 months. CP is the main reason why people seek medical care and exerts an enormous economic burden. Genome-wide expression analysis has revealed that diverse essential genetic elements are altered in CP patients. Although many possible mechanisms of CP have been revealed, we are still unable to meet all the analgesic needs of patients. In recent years, non-coding RNAs (ncRNAs) have been shown to play essential roles in peripheral neuropathy and axon regeneration, which is associated with CP occurrence and development. Multiple key ncRNAs have been identified in animal models of CP, such as microRNA-30c-5p, ciRS-7, and lncRNA MRAK009713. This review highlights different kinds of ncRNAs in the regulation of CP, which provides a more comprehensive understanding of the pathogenesis of the disease. It mainly focuses on the contributions of miRNAs, circRNAs, and lncRNAs to CP, specifically peripheral neuropathic pain (NP), diabetic NP, central NP associated with spinal cord injury, complex regional pain syndrome, inflammatory pain, and cancer-induced pain. In addition, we summarize some potential ncRNAs as novel biomarkers for CP and its complications. With an in-depth understanding of the mechanism of CP, ncRNAs may provide novel insight into CP and could become new therapeutic targets in the future.
Collapse
Affiliation(s)
- Changteng Zhang
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruihao Zhou
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changliang Liu
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chan Chen
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Chen Z, Long H, Guo J, Wang Y, He K, Tao C, Li X, Jiang K, Guo S, Pi Y. Autism-Risk Gene necab2 Regulates Psychomotor and Social Behavior as a Neuronal Modulator of mGluR1 Signaling. Front Mol Neurosci 2022; 15:901682. [PMID: 35909444 PMCID: PMC9326220 DOI: 10.3389/fnmol.2022.901682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDe novo deletion of the neuronal calcium-binding protein 2 (NECAB2) locus is associated with idiopathic autism spectrum disorders (ASDs). The in vivo function of NECAB2 in the brain remains largely elusive.MethodsWe investigated the morphological and behavioral profiles of both necab2 knock-out and overexpression zebrafish models. The expression pattern and molecular role of necab2 were probed through a combination of in vitro and in vivo assays.ResultsWe show that Necab2 is a neuronal specific, cytoplasmic, and membrane-associated protein, abundantly expressed in the telencephalon, habenula, and cerebellum. Necab2 is distributed peri-synaptically in subsets of glutamatergic and GABAergic neurons. CRISPR/Cas9-generated necab2 knock-out zebrafish display normal morphology but exhibit a decrease in locomotor activity and thigmotaxis with impaired social interaction only in males. Conversely, necab2 overexpression yields behavioral phenotypes opposite to the loss-of-function. Proteomic profiling uncovers a role of Necab2 in modulating signal transduction of G-protein coupled receptors. Specifically, co-immunoprecipitation, immunofluorescence, and confocal live-cell imaging suggest a complex containing NECAB2 and the metabotropic glutamate receptor 1 (mGluR1). In vivo measurement of phosphatidylinositol 4,5-bisphosphate further substantiates that Necab2 promotes mGluR1 signaling.ConclusionsNecab2 regulates psychomotor and social behavior via modulating a signaling cascade downstream of mGluR1.
Collapse
Affiliation(s)
- Zexu Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Han Long
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianhua Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiran Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Kezhe He
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Chenchen Tao
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiong Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Keji Jiang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Su Guo,
| | - Yan Pi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- Yan Pi,
| |
Collapse
|
13
|
Kowalski JL, Nguyen N, Battaglino RA, Falci SP, Charlifue S, Morse LR. miR-338-5p Levels and Cigarette Smoking are Associated With Neuropathic Pain Severity in Individuals With Spinal Cord Injury: Preliminary Findings From a Genome-Wide microRNA Expression Profiling Screen. Arch Phys Med Rehabil 2022; 103:738-746. [PMID: 34717922 DOI: 10.1016/j.apmr.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To identify microRNA biomarkers and clinical factors associated with neuropathic pain after spinal cord injury. DESIGN Cross-sectional, secondary analysis of baseline data collected from ongoing clinical studies. Using a genome-wide microRNA screening approach, we studied differential microRNA expression in serum from 43 adults with spinal cord injury enrolled in ongoing clinical studies. Least squares regression was used to identify associations between microRNA expression, clinical factors, and neuropathic pain severity. SETTING Community-dwelling individuals with spinal cord injury. PARTICIPANTS Participants (N=43) were at least 18 years old with spinal cord injury, with 28 reporting neuropathic pain and 15 reporting no neuropathic pain. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Pain presence, type, and intensity were assessed with the International Spinal Cord Injury Pain Basic Data Set. Serum microRNA normalized deep sequencing counts were quantified from blood samples. Participant demographic factors, injury characteristics, medication use, and health habits were collected via questionnaire. RESULTS miR-338-5p expression and history of cigarette smoking were associated with and explained 37% of the variance in neuropathic pain severity (R2=0.37, F2,18=5.31, P=.02) independent of other clinical factors. No association was identified between miR-338-5p levels and nociceptive pain severity. CONCLUSIONS Our findings suggest that miR-338-5p and cigarette smoking may both play a role in the development or maintenance of neuropathic pain after spinal cord injury. While additional work is needed to confirm these findings, validated target analysis suggests a neuroprotective role of miR-338-5p in modulating neuroinflammation and neuronal apoptosis and that its downregulation may result in maladaptive neuroplastic mechanisms contributing to neuropathic pain after spinal cord injury.
Collapse
Affiliation(s)
- Jesse L Kowalski
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Nguyen Nguyen
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Ricardo A Battaglino
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Scott P Falci
- Department of Neurosurgery, Swedish Medical Center, Englewood, Colorado; Research Department, Craig Hospital, Englewood, Colorado
| | | | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
14
|
Ramal-Sanchez M, Bernabò N, Valbonetti L, Cimini C, Taraschi A, Capacchietti G, Machado-Simoes J, Barboni B. Role and Modulation of TRPV1 in Mammalian Spermatozoa: An Updated Review. Int J Mol Sci 2021; 22:4306. [PMID: 33919147 PMCID: PMC8122410 DOI: 10.3390/ijms22094306] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
Based on the abundance of scientific publications, the polymodal sensor TRPV1 is known as one of the most studied proteins within the TRP channel family. This receptor has been found in numerous cell types from different species as well as in spermatozoa. The present review is focused on analyzing the role played by this important channel in the post-ejaculatory life of spermatozoa, where it has been described to be involved in events such as capacitation, acrosome reaction, calcium trafficking, sperm migration, and fertilization. By performing an exhaustive bibliographic search, this review gathers, for the first time, all the modulators of the TRPV1 function that, to our knowledge, were described to date in different species and cell types. Moreover, all those modulators with a relationship with the reproductive process, either found in the female tract, seminal plasma, or spermatozoa, are presented here. Since the sperm migration through the female reproductive tract is one of the most intriguing and less understood events of the fertilization process, in the present work, chemotaxis, thermotaxis, and rheotaxis guiding mechanisms and their relationship with TRPV1 receptor are deeply analyzed, hypothesizing its (in)direct participation during the sperm migration. Last, TRPV1 is presented as a pharmacological target, with a special focus on humans and some pathologies in mammals strictly related to the male reproductive system.
Collapse
Affiliation(s)
- Marina Ramal-Sanchez
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Nicola Bernabò
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo, 00015 Rome, Italy
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo, 00015 Rome, Italy
| | - Costanza Cimini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Angela Taraschi
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario 1, 64100 Teramo, Italy
| | - Giulia Capacchietti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Juliana Machado-Simoes
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| |
Collapse
|