1
|
Zhao D, Hu M, Liu S. Glial cells in the mammalian olfactory bulb. Front Cell Neurosci 2024; 18:1426094. [PMID: 39081666 PMCID: PMC11286597 DOI: 10.3389/fncel.2024.1426094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The mammalian olfactory bulb (OB), an essential part of the olfactory system, plays a critical role in odor detection and neural processing. Historically, research has predominantly focused on the neuronal components of the OB, often overlooking the vital contributions of glial cells. Recent advancements, however, underscore the significant roles that glial cells play within this intricate neural structure. This review discus the diverse functions and dynamics of glial cells in the mammalian OB, mainly focused on astrocytes, microglia, oligodendrocytes, olfactory ensheathing cells, and radial glia cells. Each type of glial contributes uniquely to the OB's functionality, influencing everything from synaptic modulation and neuronal survival to immune defense and axonal guidance. The review features their roles in maintaining neural health, their involvement in neurodegenerative diseases, and their potential in therapeutic applications for neuroregeneration. By providing a comprehensive overview of glial cell types, their mechanisms, and interactions within the OB, this article aims to enhance our understanding of the olfactory system's complexity and the pivotal roles glial cells play in both health and disease.
Collapse
Affiliation(s)
| | | | - Shaolin Liu
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, Department of Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
2
|
Liu MC, Guo QF, Zhang WW, Luo HL, Zhang WJ, Hu HJ. Olfactory ensheathing cells as candidate cells for chronic pain treatment. J Chem Neuroanat 2024; 137:102413. [PMID: 38492895 DOI: 10.1016/j.jchemneu.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Chronic pain is often accompanied by tissue damage and pain hypersensitivity. It easily relapses and is challenging to cure, which seriously affects the patients' quality of life and is an urgent problem to be solved. Current treatment methods primarily rely on morphine drugs, which do not address the underlying nerve injury and may cause adverse reactions. Therefore, in recent years, scientists have shifted their focus from chronic pain treatment to cell transplantation. This review describes the classification and mechanism of chronic pain through the introduction of the characteristics of olfactory ensheathing cells (OECs), an in-depth discussion of special glial cells through the phagocytosis of nerve debris, receptor-ligand interactions, providing nutrition, and other inhibition of neuroinflammation, and ultimately supporting axon regeneration and mitigation of chronic pain. This review summarizes the potential and limitations of OECs for treating chronic pain by objectively analyzing relevant clinical trials and methods to enhance efficacy and future development prospects.
Collapse
Affiliation(s)
- Mei-Chen Liu
- The Second Clinical Medical College, Nanchang University, China
| | - Qing-Fa Guo
- The Second Clinical Medical College, Nanchang University, China
| | - Wei-Wei Zhang
- The Second Clinical Medical College, Nanchang University, China
| | - Hong-Liang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Hai-Jun Hu
- Anesthesiology Department, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Denaro S, D’Aprile S, Alberghina C, Pavone AM, Torrisi F, Giallongo S, Longhitano L, Mannino G, Lo Furno D, Zappalà A, Giuffrida R, Tibullo D, Li Volti G, Vicario N, Parenti R. Neurotrophic and immunomodulatory effects of olfactory ensheathing cells as a strategy for neuroprotection and regeneration. Front Immunol 2022; 13:1098212. [PMID: 36601122 PMCID: PMC9806219 DOI: 10.3389/fimmu.2022.1098212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence sustains glial cells as critical players during central nervous system (CNS) development, homeostasis and disease. Olfactory ensheathing cells (OECs), a type of specialized glia cells sharing properties with both Schwann cells and astrocytes, are of critical importance in physiological condition during olfactory system development, supporting its regenerative potential throughout the adult life. These characteristics prompted research in the field of cell-based therapy to test OEC grafts in damaged CNS. Neuroprotective mechanisms exerted by OEC grafts are not limited to axonal regeneration and cell differentiation. Indeed, OEC immunomodulatory properties and their phagocytic potential encourage OEC-based approaches for tissue regeneration in case of CNS injury. Herein we reviewed recent advances on the immune role of OECs, their ability to modulate CNS microenvironment via bystander effects and the potential of OECs as a cell-based strategy for tissue regeneration.
Collapse
Affiliation(s)
- Simona Denaro
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Simona D’Aprile
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristiana Alberghina
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Anna Maria Pavone
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Torrisi
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Debora Lo Furno
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agata Zappalà
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy,*Correspondence: Nunzio Vicario, ; Rosalba Parenti,
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy,*Correspondence: Nunzio Vicario, ; Rosalba Parenti,
| |
Collapse
|
5
|
Russo C, Mannino G, Patanè M, Parrinello NL, Pellitteri R, Stanzani S, Giuffrida R, Lo Furno D, Russo A. Ghrelin peptide improves glial conditioned medium effects on neuronal differentiation of human adipose mesenchymal stem cells. Histochem Cell Biol 2021; 156:35-46. [PMID: 33728539 PMCID: PMC8277640 DOI: 10.1007/s00418-021-01980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
The influences of ghrelin on neural differentiation of adipose-derived mesenchymal stem cells (ASCs) were investigated in this study. The expression of typical neuronal markers, such as protein gene product 9.5 (PGP9.5) and Microtubule Associated Protein 2 (MAP2), as well as glial Fibrillary Acid Protein (GFAP) as a glial marker was evaluated in ASCs in different conditions. In particular, 2 µM ghrelin was added to control ASCs and to ASCs undergoing neural differentiation. For this purpose, ASCs were cultured in Conditioned Media obtained from Olfactory Ensheathing cells (OEC-CM) or from Schwann cells (SC-CM). Data on marker expression were gathered after 1 and 7 days of culture by fluorescence immunocytochemistry and flow cytometry. Results show that only weak effects were induced by the addition of only ghrelin. Instead, dynamic ghrelin-induced modifications were detected on the increased marker expression elicited by glial conditioned media. In fact, the combination of ghrelin and conditioned media consistently induced a further increase of PGP9.5 and MAP2 expression, especially after 7 days of treatment. The combination of ghrelin with SC-CM produced the most evident effects. Weak or no modifications were found on conditioned medium-induced GFAP increases. Observations on the ghrelin receptor indicate that its expression in control ASCs, virtually unchanged by the addition of only ghrelin, was considerably increased by CM treatment. These increases were enhanced by combining ghrelin and CM treatment, especially at 7 days. Overall, it can be assumed that ghrelin favors a neuronal rather than a glial ASC differentiation.
Collapse
Affiliation(s)
- Cristina Russo
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Giuliana Mannino
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Martina Patanè
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | | | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, Italian National Research Council, Via P. Gaifami, 18, 95126 Catania, Italy
| | - Stefania Stanzani
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Rosario Giuffrida
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Debora Lo Furno
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Antonella Russo
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| |
Collapse
|