1
|
Hurst J, Schnichels S. Editorial: Brain vs. retina - Differences and commonalities: The role of oxidative stress in neurodegenerative diseases. Front Neurosci 2023; 17:1171235. [PMID: 36992855 PMCID: PMC10040834 DOI: 10.3389/fnins.2023.1171235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
|
2
|
Li X, Zhang Y, Guo T, Liu K, Xu X, Fu Y, Ren X, Yang H. Influence of obstructive sleep apnea syndrome on the contralateral optic nerve in patients with unilateral nonarteritic anterior ischemic optic neuropathy. J Clin Sleep Med 2023; 19:347-353. [PMID: 36305585 PMCID: PMC9892743 DOI: 10.5664/jcsm.10342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 02/04/2023]
Abstract
STUDY OBJECTIVES The aim was to quantitatively evaluate the influence of obstructive sleep apnea syndrome (OSAS) on the morphology and function of the contralateral optic nerve in patients with unilateral nonarteritic anterior ischemic optic neuropathy (NAION). METHODS Fifty patients with unilateral NAION were divided into non-OSAS (n = 16), mild OSAS (n = 15), and moderate-severe OSAS (n = 19) groups based on their apnea-hypopnea index (AHI) scores. Systemic and ocular characteristics were compared between these groups. Spearman correlation and multiple linear regression analyses were used to determine the independent factors that most influenced the thickness of the peripapillary retinal nerve fiber layer (pRNFL). RESULTS Body mass index and hypertension occurrence were higher in the moderate-severe OSAS group than in the non-OSAS group. Temporal pRNFL was thinner in the moderate-severe group than in the mild and non-OSAS groups, whereas no difference was found between the mild and non-OSAS groups. Spearman correlation showed that the AHI (r = -.469, P = .001) and the percentage of total sleep time with oxygen saturation < 90% (T90%; r = -.477, P = .001) correlated with temporal pRNFL thickness. Multiple linear regression showed that the AHI was negatively associated with temporal pRNFL thickness (β = -0.573, P = .003). CONCLUSIONS OSAS may cause subclinical temporal pRNFL thinning in the contralateral optic nerve among patients with unilateral NAION without any significant change in visual function. Advanced optic nerve observation and intervention may be warranted in patients with moderate-severe OSAS. CITATION Li X, Zhang Y, Guo T, et al. Influence of obstructive sleep apnea syndrome on the contralateral optic nerve in patients with unilateral nonarteritic anterior ischemic optic neuropathy. J Clin Sleep Med. 2023;19(2):347-353.
Collapse
Affiliation(s)
- Xinnan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong, China
| | - Yurong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong, China
| | - Taimin Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong, China
| | - Kaiqun Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong, China
| | - Xiaoyu Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong, China
| | - Yue Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong, China
| | - Xin Ren
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong, China
| | - Hui Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong, China
| |
Collapse
|
3
|
Orssaud C, Barraud Lange V, Wolf JP, LeFoll N, Soufir JC. Case Report: Abnormalities of sperm motility and morphology in a patient with Leber hereditary optic neuropathy: Improvement after idebenone therapy. Front Neurol 2023; 13:946559. [PMID: 36686502 PMCID: PMC9845611 DOI: 10.3389/fneur.2022.946559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Case We report the sperm characteristics of a male patient who developed, when he was 18 years old, a Leber hereditary optic neuropathy, a hereditary optic neuropathy due to mtDNA mutation as well as variants in the nuclear DNA. At the age of 30 years-old, he complained of infertility lasting for 2 years. Semen analyses showed low motility spermatozoa and a high percentage of morphological or ultrastructural abnormalities. Levels of epididymal markers were strongly atypical. Idebenone was prescribed as treatment of his Leber hereditary optic neuropathy in order to improve his visual acuity. After 5 months of this treatment, motility of spermatozoa increased, and their vitality improved. A natural conception occurred. Outcome This case is the first description of an anomaly of spermatozoas and of the epididymis epithelium in a patient with Leber hereditary optic neuropathy. It draws attention to sperm pathologies in patients with mitochondrial disorders. The role of the mtDNA mutations must be suspected since it plays an important role in the development and motility of spermatozoa. In addition, idebenone can by-pass the complex I and transfer electrons to complex III. It has been suspected to have a favorable effect on spermatogenesis. Conclusion This case confirms the possibility of sperm dysfunction in Leber hereditary optic neuropathy and the interest of idebenone as a treatment for infertility due to mtDNA mutations in human.
Collapse
Affiliation(s)
- Christophe Orssaud
- Functional Unit of Ophthalmology, Ophtara Rare disease Center, Sensgène Filière, ERN EYE, European Hospital Georges Pompidou, University Hospital Paris Centre, Assistance Publique de Hôpitaux de Paris, Paris, France,*Correspondence: Christophe Orssaud ✉
| | - Virginie Barraud Lange
- Team Genomic Epigenetic and Physiopathology of Reproduction, Department of Genetic, Development and Cancer, Cochin Institute, Inserm U1016, Paris, France,Laboratory of Histology Embryology Biology of Reproduction, Sorbonne Paris Cité, Faculty of Medicine, University Hospital Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean Philippe Wolf
- Team Genomic Epigenetic and Physiopathology of Reproduction, Department of Genetic, Development and Cancer, Cochin Institute, Inserm U1016, Paris, France,Laboratory of Histology Embryology Biology of Reproduction, Sorbonne Paris Cité, Faculty of Medicine, University Hospital Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nathalie LeFoll
- Laboratory of Histology Embryology Biology of Reproduction, Sorbonne Paris Cité, Faculty of Medicine, University Hospital Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean Claude Soufir
- Biologie de la Reproduction, University Hospital Paris Centre, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
4
|
Lin DS, Huang YW, Ho CS, Huang TS, Lee TH, Wu TY, Huang ZD, Wang TJ. Impact of Mitochondrial A3243G Heteroplasmy on Mitochondrial Bioenergetics and Dynamics of Directly Reprogrammed MELAS Neurons. Cells 2022; 12:cells12010015. [PMID: 36611807 PMCID: PMC9818214 DOI: 10.3390/cells12010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The MELAS syndrome primarily affecting the CNS is mainly caused by the m.A3243G mutation. The heteroplasmy in different tissues affects the phenotypic spectrum, yet the impact of various levels of m.A3243G heteroplasmy on CNS remains elusive due to the lack of a proper neuronal model harboring m.A3243G mutation. We generated induced neurons (iNs) through the direct reprogramming of MELAS patients, with derived fibroblasts harboring high (>95%), intermediate (68%), and low (20%) m.A3243G mutation. iNs demonstrated neuronal morphology with neurite outgrowth, branching, and dendritic spines. The heteroplasmy and deficiency of respiratory chain complexes were retained in MELAS iNs. High heteroplasmy elicited the elevation in ROS levels and the disruption of mitochondrial membrane potential. Furthermore, high and intermediate heteroplasmy led to the impairment of mitochondrial bioenergetics and a change in mitochondrial dynamics toward the fission and fragmentation of mitochondria, with a reduction in mitochondrial networks. Moreover, iNs derived from aged individuals manifested with mitochondrial fission. These results help us in understanding the impact of various heteroplasmic levels on mitochondrial bioenergetics and mitochondrial dynamics in neurons as the underlying pathomechanism of neurological manifestations of MELAS syndrome. Furthermore, these findings provide targets for further pharmacological approaches of mitochondrial diseases and validate iNs as a reliable platform for studies in neuronal aspects of aging, neurodegenerative disorders, and mitochondrial diseases.
Collapse
Affiliation(s)
- Dar-Shong Lin
- Department of Pediatrics, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan
- Correspondence: ; Tel.: +886-2-2809-4661; Fax: +886-2-2809-4679
| | - Yu-Wen Huang
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Che-Sheng Ho
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan
- Department of Neurology, Mackay Children’s Hospital, Taipei 10449, Taiwan
| | - Tung-Sun Huang
- Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Tsung-Han Lee
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Tsu-Yen Wu
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Zon-Darr Huang
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Tuan-Jen Wang
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei 10449, Taiwan
| |
Collapse
|
5
|
Liutkeviciene R, Mikalauskaite R, Gedvilaite G, Glebauskiene B, Kriauciuniene L, Žemaitienė R. Relative Leukocyte Telomere Length and Telomerase Complex Regulatory Markers Association with Leber's Hereditary Optic Neuropathy. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091240. [PMID: 36143917 PMCID: PMC9504758 DOI: 10.3390/medicina58091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Background and Objectives: To evaluate the association of relative leukocyte telomere length (RLTL) and telomerase complex regulatory markers with Leber’s hereditary optic neuropathy (LHON). Material and Methods: A case-control study was performed in patients with LHON (≥18 years) and healthy subjects. The diagnosis of LHON was based on a genetic blood test (next-generation sequencing with Illumina MiSeq, computer analysis: BWA2.1 Illumina BaseSpace, Alamut, and mtDNA Variant analyzer 1000 were performed) and diagnostic criteria approved by the LHON disease protocol. Statistical analysis was performed using the standard statistical software package, IBM SPSS Statistics 27. Statistically significant results were considered when p < 0.05. Results: Significantly longer RLTL was observed in LHON patients than in healthy controls (p < 0.001). RLTL was significantly longer in women and men with LOHN than in healthy women and men in the control group (p < 0.001 and p = 0.003, respectively). In the elderly group (>32 years), RLTL was statistically significantly longer in LHON patients compared with healthy subjects (p < 0.001). The GG genotype of the TERC rs12696304 polymorphism was found to be statistically significantly higher in the LHON group (p = 0.041), and the C allele in the TERC rs12696304 polymorphism was found to be statistically significantly less common in the LHON group (p < 0.001). The RLTL of LHON patients was found to be statistically significantly longer in the TERC rs12696304 polymorphism in all tested genotypes (CC, p = 0.005; CG, p = 0.008; GG, p = 0.025), TEP1 rs1760904 polymorphism in the GA genotype (p < 0.001), and TEP1 gene rs1713418 in the AA and AG genotypes (p = 0.011 and p < 0.001, respectively). Conclusions: The RLTL in LHON patients was found to be longer than in healthy subjects regardless of treatment with idebenone. The TERC rs12696304 polymorphism, of all studied polymorphisms, was the most significantly associated with changes in LHON and telomere length.
Collapse
Affiliation(s)
- Rasa Liutkeviciene
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rasa Mikalauskaite
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Correspondence:
| | - Brigita Glebauskiene
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Reda Žemaitienė
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
6
|
Zhou Q, Yao S, Yang M, Guo Q, Li Y, Li L, Lei B. Superoxide dismutase 2 ameliorates mitochondrial dysfunction in skin fibroblasts of Leber’s hereditary optic neuropathy patients. Front Neurosci 2022; 16:917348. [PMID: 36017189 PMCID: PMC9398213 DOI: 10.3389/fnins.2022.917348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
Background In Leber’s hereditary optic neuropathy (LHON), mtDNA mutations mediate mitochondrial dysfunction and apoptosis of retinal ganglion cells. Mitochondrial superoxide dismutase 2 (SOD2) is a crucial antioxidase against reactive oxygen species (ROS). This study aims to investigate whether SOD2 could ameliorate mtDNA mutation mediated mitochondrial dysfunction in skin fibroblasts of LHON patients and explore the underlying mechanisms. Methods The skin of normal healthy subjects and severe LHON patients harboring m.11778G > A mutation was taken to prepare immortalized skin fibroblast cell lines (control-iFB and LHON-iFB). LHON-iFB cells were transfected with SOD2 plasmid or negative control plasmid, respectively. In addition, human neuroblastoma SH-SY5Y cells and human primary retinal pigmental epithelium (hRPE) cells were stimulated by H2O2 after gene transfection. The oxygen consumption rate (OCR) was measured with a Seahorse extracellular flux analyzer. The level of ATP production, mitochondrial membrane potential, ROS and malondialdehyde (MDA) were measured separately with the corresponding assay kits. The expression level of SOD2, inflammatory cytokines and p-IκBα/IκBα was evaluated by western-blot. Assessment of apoptosis was performed by TUNEL assay. Results LHON-iFB exhibited lower OCR, ATP production, mitochondrial membrane potential but higher level of ROS and MDA than control-iFB. Western-blot revealed a significantly increased expression of IL-6 and p-IκBα/IκBα in LHON-iFB. Compared with the negative control, SOD2 overexpression increased OCR, ATP production and elevated mitochondrial membrane potential, but impaired ROS and MDA production. Besides, western-blot demonstrated exogenous SOD2 reduced the protein level of IL-6 and p-IκBα/IκBα. TUNEL assays suggested SOD2 inhibited cells apoptosis. Analogously, in SH-SY5Y and hRPE cells, SOD2 overexpression increased ATP production and mitochondrial membrane potential, but decreased ROS, MDA levels and suppressed apoptosis. Conclusion SOD2 upregulation inhibited cells apoptosis through ameliorating mitochondrial dysfunction and reducing NF-κB associated inflammatory response. This study further support exogenous SOD2 may be a promising therapy for the treatment of LHON.
Collapse
Affiliation(s)
- Qingru Zhou
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Shun Yao
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Henan Eye Institute, Zhengzhou, China
| | - Mingzhu Yang
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Henan Eye Institute, Zhengzhou, China
| | - Qingge Guo
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Henan Eye Institute, Zhengzhou, China
| | - Ya Li
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Henan Eye Institute, Zhengzhou, China
| | - Lei Li
- Xinxiang Medical University, Xinxiang, China
| | - Bo Lei
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Henan Eye Institute, Zhengzhou, China
- *Correspondence: Bo Lei,
| |
Collapse
|
7
|
Kang EYC, Liu PK, Wen YT, Quinn PMJ, Levi SR, Wang NK, Tsai RK. Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration. Antioxidants (Basel) 2021; 10:1948. [PMID: 34943051 PMCID: PMC8750806 DOI: 10.3390/antiox10121948] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Ocular diseases associated with retinal ganglion cell (RGC) degeneration is the most common neurodegenerative disorder that causes irreversible blindness worldwide. It is characterized by visual field defects and progressive optic nerve atrophy. The underlying pathophysiology and mechanisms of RGC degeneration in several ocular diseases remain largely unknown. RGCs are a population of central nervous system neurons, with their soma located in the retina and long axons that extend through the optic nerve to form distal terminals and connections in the brain. Because of this unique cytoarchitecture and highly compartmentalized energy demand, RGCs are highly mitochondrial-dependent for adenosine triphosphate (ATP) production. Recently, oxidative stress and mitochondrial dysfunction have been found to be the principal mechanisms in RGC degeneration as well as in other neurodegenerative disorders. Here, we review the role of oxidative stress in several ocular diseases associated with RGC degenerations, including glaucoma, hereditary optic atrophy, inflammatory optic neuritis, ischemic optic neuropathy, traumatic optic neuropathy, and drug toxicity. We also review experimental approaches using cell and animal models for research on the underlying mechanisms of RGC degeneration. Lastly, we discuss the application of antioxidants as a potential future therapy for the ocular diseases associated with RGC degenerations.
Collapse
Affiliation(s)
- Eugene Yu-Chuan Kang
- Department of Ophthalmology, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pei-Kang Liu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 80424, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80424, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97403, Taiwan;
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (P.M.J.Q.); (S.R.L.)
| | - Sarah R. Levi
- Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (P.M.J.Q.); (S.R.L.)
| | - Nan-Kai Wang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97403, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97403, Taiwan
| |
Collapse
|
8
|
Sanz-Morello B, Ahmadi H, Vohra R, Saruhanian S, Freude KK, Hamann S, Kolko M. Oxidative Stress in Optic Neuropathies. Antioxidants (Basel) 2021; 10:1538. [PMID: 34679672 PMCID: PMC8532958 DOI: 10.3390/antiox10101538] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 01/23/2023] Open
Abstract
Increasing evidence indicates that changes in the redox system may contribute to the pathogenesis of multiple optic neuropathies. Optic neuropathies are characterized by the neurodegeneration of the inner-most retinal neurons, the retinal ganglion cells (RGCs), and their axons, which form the optic nerve. Often, optic neuropathies are asymptomatic until advanced stages, when visual impairment or blindness is unavoidable despite existing treatments. In this review, we describe systemic and, whenever possible, ocular redox dysregulations observed in patients with glaucoma, ischemic optic neuropathy, optic neuritis, hereditary optic neuropathies (i.e., Leber's hereditary optic neuropathy and autosomal dominant optic atrophy), nutritional and toxic optic neuropathies, and optic disc drusen. We discuss aspects related to anti/oxidative stress biomarkers that need further investigation and features related to study design that should be optimized to generate more valuable and comparable results. Understanding the role of oxidative stress in optic neuropathies can serve to develop therapeutic strategies directed at the redox system to arrest the neurodegenerative processes in the retina and RGCs and ultimately prevent vision loss.
Collapse
Affiliation(s)
- Berta Sanz-Morello
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (H.A.); (R.V.)
| | - Hamid Ahmadi
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (H.A.); (R.V.)
- Department of Ophthalmology, Rigshospitalet, 2600 Glostrup, Denmark;
| | - Rupali Vohra
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (H.A.); (R.V.)
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (S.S.); (K.K.F.)
| | - Sarkis Saruhanian
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (S.S.); (K.K.F.)
| | - Kristine Karla Freude
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (S.S.); (K.K.F.)
| | - Steffen Hamann
- Department of Ophthalmology, Rigshospitalet, 2600 Glostrup, Denmark;
| | - Miriam Kolko
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (H.A.); (R.V.)
- Department of Ophthalmology, Rigshospitalet, 2600 Glostrup, Denmark;
| |
Collapse
|