1
|
Zhang X, Zhang X, Yin H, Li Q, Fan B, Jiang B, Xie A, Guo D, Hao H, Zhang B. Roles of SPOCK1 in the Formation Mechanisms and Treatment of Non-Small-Cell Lung Cancer and Brain Metastases from Lung Cancer. Onco Targets Ther 2025; 18:35-47. [PMID: 39835273 PMCID: PMC11745074 DOI: 10.2147/ott.s483576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Lung cancer is a malignant tumor with high morbidity and mortality in China and worldwide. Once it metastasizes to the brain, its prognosis is very poor. Brain metastases are found in about 20% of newly diagnosed non-small-cell lung cancer (NSCLC) patients. About 30% of NSCLC patients develop brain metastases during treatment. NSCLC that is positive for EGFR, ALK, and ROS1 variations is especially likely to metastasize to the brain. SPOCK1 is a proteoglycan with systemic physiological functions. It regulates the self-renewal of brain metastasis-initiating cells, regulates invasion and metastasis from the lung to the brain, plays an important role in tumor progression and treatment resistance, and has higher expression in metastatic tumor tissues than other tissues. Current treatments for NSCLC brain metastases include surgery, whole-brain radiotherapy, stereotactic radiotherapy, targeted therapy, and chemotherapy. SPOCK1 is involved in many signaling pathways, by which it influences a variety of NSCLC treatment methods. In this paper, the progress of research on the treatment of NSCLC brain metastases is reviewed to guide decisions on treatment options in clinical practice.
Collapse
Affiliation(s)
- Xuebing Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Xia Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Department of Oncology, Dalian Fifth People’s Hospital, Dalian, Liaoning, People’s Republic of China
| | - Hang Yin
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Qizheng Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Buqun Fan
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Bolun Jiang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Anqi Xie
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Dandan Guo
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Huanling Hao
- Department of Oncology, Dandong First Hospital, Dandong, Liaoning, People’s Republic of China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| |
Collapse
|
2
|
Sereno M, Hernandez de Córdoba I, Gutiérrez-Gutiérrez G, Casado E. Brain metastases and lung cancer: molecular biology, natural history, prediction of response and efficacy of immunotherapy. Front Immunol 2024; 14:1297988. [PMID: 38283359 PMCID: PMC10811213 DOI: 10.3389/fimmu.2023.1297988] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Brain metastases stemming from lung cancer represent a common and challenging complication that significantly impacts patients' overall health. The migration of these cancerous cells from lung lesions to the central nervous system is facilitated by diverse molecular changes and a specific environment that supports their affinity for neural tissues. The advent of immunotherapy and its varied combinations in non-small cell lung cancer has notably improved patient survival rates, even in cases involving brain metastases. These therapies exhibit enhanced penetration into the central nervous system compared to traditional chemotherapy. This review outlines the molecular mechanisms underlying the development of brain metastases in lung cancer and explores the efficacy of novel immunotherapy approaches and their combinations.
Collapse
Affiliation(s)
- Maria Sereno
- Medical Oncology Department, Infanta Sofía University Hospital, Madrid, Spain
- European University of Madrid, Madrid, Spain
- Fundación para la Innovación e Investigación Biomédica (FIIB) Hospital Universitario Infanta Sofía (HUIS) Hospital de Henares (HHEN), Madrid, Spain
- Instituto Madrileño Investigación Estudios Avanzados (IMDEA), Precision Nutrition and Cancer Program, Clinical Oncology Group, IMDEA Food Institute, CEI Universidad Autónoma de Madrid (UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - Gerardo Gutiérrez-Gutiérrez
- European University of Madrid, Madrid, Spain
- Fundación para la Innovación e Investigación Biomédica (FIIB) Hospital Universitario Infanta Sofía (HUIS) Hospital de Henares (HHEN), Madrid, Spain
- Neurology Department, Infanta Sofía University Hospital, Madrid, Spain
| | - Enrique Casado
- Medical Oncology Department, Infanta Sofía University Hospital, Madrid, Spain
- European University of Madrid, Madrid, Spain
- Fundación para la Innovación e Investigación Biomédica (FIIB) Hospital Universitario Infanta Sofía (HUIS) Hospital de Henares (HHEN), Madrid, Spain
- Instituto Madrileño Investigación Estudios Avanzados (IMDEA), Precision Nutrition and Cancer Program, Clinical Oncology Group, IMDEA Food Institute, CEI Universidad Autónoma de Madrid (UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
3
|
Vasco C, Rizzo A, Cordiglieri C, Corsini E, Maderna E, Ciusani E, Salmaggi A. The Role of Adhesion Molecules and Extracellular Vesicles in an In Vitro Model of the Blood-Brain Barrier for Metastatic Disease. Cancers (Basel) 2023; 15:cancers15113045. [PMID: 37297006 DOI: 10.3390/cancers15113045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Metastatic brain disease (MBD) has seen major advances in clinical management, focal radiation therapy approaches and knowledge of biological factors leading to improved prognosis. Extracellular vesicles (EVs) have been found to play a role in tumor cross-talk with the target organ, contributing to the formation of a premetastatic niche. Human lung and breast cancer cell lines were characterized for adhesion molecule expression and used to evaluate their migration ability in an in vitro model. Conditioned culture media and isolated EVs, characterized by super resolution and electron microscopy, were tested to evaluate their pro-apoptotic properties on human umbilical vein endothelial cells (HUVECs) and human cerebral microvascular endothelial cells (HCMEC/D3) by annexin V binding assay. Our data showed a direct correlation between expression of ICAM1, ICAM2, β3-integrin and α2-integrin and the ability to firmly adhere to the blood-brain barrier (BBB) model, whereas the same molecules were down-regulated at a later step. Extracellular vesicles released by tumor cell lines were shown to be able to induce apoptosis in HUVEC while brain endothelial cells showed to be more resistant.
Collapse
Affiliation(s)
- Chiara Vasco
- Laboratory of Clinical Chemistry SMeL122, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Ambra Rizzo
- Laboratory of Clinical Chemistry SMeL122, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Chiara Cordiglieri
- Preclinical Neuroimmunology Lab, Neurology IV Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
- Imaging Facility, National Institute of Molucular Genetics (INGM) "Romeo ed Enrica Invernizzi", c/o Policlinico di Milano Hospital, Padiglione Invernizzi, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Elena Corsini
- Laboratory of Clinical Chemistry SMeL122, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Emanuela Maderna
- Neurology 5/Neuropathology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milan, Italy
| | - Emilio Ciusani
- Laboratory of Clinical Chemistry SMeL122, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Andrea Salmaggi
- Neuroscience Department-Neurology/Stroke Unit, Ospedale A. Manzoni, ASST Lecco, 23900 Lecco, Italy
| |
Collapse
|
4
|
Tămaș F, Bălașa R, Manu D, Gyorki G, Chinezu R, Tămaș C, Bălașa A. The Importance of Small Extracellular Vesicles in the Cerebral Metastatic Process. Int J Mol Sci 2022; 23:1449. [PMID: 35163368 PMCID: PMC8835738 DOI: 10.3390/ijms23031449&set/a 886656060+812772520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Brain metastases represent more than 50% of all cerebral tumors encountered in clinical practice. Recently, there has been increased interest in the study of extracellular vesicles, and the knowledge about exosomes is constantly expanding. Exosomes are drivers for organotropic metastatic spread, playing important roles in the brain metastatic process by increasing the permeability of the blood-brain barrier and preparing the premetastatic niche. The promising results of the latest experimental studies raise the possibility of one day using exosomes for liquid biopsies or as drug carriers, contributing to early diagnosis and improving the efficacy of chemotherapy in patients with brain metastases. In this review, we attempted to summarize the latest knowledge about the role of exosomes in the brain metastatic process and future research directions for the use of exosomes in patients suffering from brain metastatic disease.
Collapse
Affiliation(s)
- Flaviu Tămaș
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Rodica Bălașa
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurology, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania
| | - Doina Manu
- Center for Advanced Pharmaceutical and Medical Research, 540139 Târgu Mures, Romania;
| | - Gabriel Gyorki
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Rareș Chinezu
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Corina Tămaș
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
- Correspondence: ; Tel.: +40-749-867-513
| | - Adrian Bălașa
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| |
Collapse
|
5
|
The Importance of Small Extracellular Vesicles in the Cerebral Metastatic Process. Int J Mol Sci 2022. [DOI: 10.3390/ijms23031449
expr 878511370 + 954121262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Brain metastases represent more than 50% of all cerebral tumors encountered in clinical practice. Recently, there has been increased interest in the study of extracellular vesicles, and the knowledge about exosomes is constantly expanding. Exosomes are drivers for organotropic metastatic spread, playing important roles in the brain metastatic process by increasing the permeability of the blood–brain barrier and preparing the premetastatic niche. The promising results of the latest experimental studies raise the possibility of one day using exosomes for liquid biopsies or as drug carriers, contributing to early diagnosis and improving the efficacy of chemotherapy in patients with brain metastases. In this review, we attempted to summarize the latest knowledge about the role of exosomes in the brain metastatic process and future research directions for the use of exosomes in patients suffering from brain metastatic disease.
Collapse
|
6
|
Tămaș F, Bălașa R, Manu D, Gyorki G, Chinezu R, Tămaș C, Bălașa A. The Importance of Small Extracellular Vesicles in the Cerebral Metastatic Process. Int J Mol Sci 2022; 23:1449. [PMID: 35163368 PMCID: PMC8835738 DOI: 10.3390/ijms23031449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Brain metastases represent more than 50% of all cerebral tumors encountered in clinical practice. Recently, there has been increased interest in the study of extracellular vesicles, and the knowledge about exosomes is constantly expanding. Exosomes are drivers for organotropic metastatic spread, playing important roles in the brain metastatic process by increasing the permeability of the blood-brain barrier and preparing the premetastatic niche. The promising results of the latest experimental studies raise the possibility of one day using exosomes for liquid biopsies or as drug carriers, contributing to early diagnosis and improving the efficacy of chemotherapy in patients with brain metastases. In this review, we attempted to summarize the latest knowledge about the role of exosomes in the brain metastatic process and future research directions for the use of exosomes in patients suffering from brain metastatic disease.
Collapse
Affiliation(s)
- Flaviu Tămaș
- Doctoral School of University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Rodica Bălașa
- Doctoral School of University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurology, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania
| | - Doina Manu
- Center for Advanced Pharmaceutical and Medical Research, 540139 Târgu Mures, Romania;
| | - Gabriel Gyorki
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Rareș Chinezu
- Doctoral School of University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Corina Tămaș
- Doctoral School of University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Adrian Bălașa
- Doctoral School of University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| |
Collapse
|
7
|
Srinivasan ES, Deshpande K, Neman J, Winkler F, Khasraw M. The microenvironment of brain metastases from solid tumors. Neurooncol Adv 2021; 3:v121-v132. [PMID: 34859239 PMCID: PMC8633769 DOI: 10.1093/noajnl/vdab121] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Brain metastasis (BrM) is an area of unmet medical need that poses unique therapeutic challenges and heralds a dismal prognosis. The intracranial tumor microenvironment (TME) presents several challenges, including the therapy-resistant blood-brain barrier, a unique immune milieu, distinct intercellular interactions, and specific metabolic conditions, that are responsible for treatment failures and poor clinical outcomes. There is a complex interplay between malignant cells that metastasize to the central nervous system (CNS) and the native TME. Cancer cells take advantage of vascular, neuronal, immune, and anatomical vulnerabilities to proliferate with mechanisms specific to the CNS. In this review, we discuss unique aspects of the TME in the context of brain metastases and pathways through which the TME may hold the key to the discovery of new and effective therapies for patients with BrM.
Collapse
Affiliation(s)
- Ethan S Srinivasan
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina, USA
| | - Krutika Deshpande
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Josh Neman
- Department of Neurological Surgery, Physiology and Neuroscience, USC Brain Tumor Center, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Mustafa Khasraw
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|
8
|
Carcereny E, Fernández-Nistal A, López A, Montoto C, Naves A, Segú-Vergés C, Coma M, Jorba G, Oliva B, Mas JM. Head to head evaluation of second generation ALK inhibitors brigatinib and alectinib as first-line treatment for ALK+ NSCLC using an in silico systems biology-based approach. Oncotarget 2021; 12:316-332. [PMID: 33659043 PMCID: PMC7899557 DOI: 10.18632/oncotarget.27875] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Around 3-7% of patients with non-small cell lung cancer (NSCLC), which represent 85% of diagnosed lung cancers, have a rearrangement in the ALK gene that produces an abnormal activity of the ALK protein cell signaling pathway. The developed ALK tyrosine kinase inhibitors (TKIs), such as crizotinib, ceritinib, alectinib, brigatinib and lorlatinb present good performance treating ALK+ NSCLC, although all patients invariably develop resistance due to ALK secondary mutations or bypass mechanisms. In the present study, we compare the potential differences between brigatinib and alectinib's mechanisms of action as first-line treatment for ALK+ NSCLC in a systems biology-based in silico setting. Therapeutic performance mapping system (TPMS) technology was used to characterize the mechanisms of action of brigatinib and alectinib and the impact of potential resistances and drug interferences with concomitant treatments. The analyses indicate that brigatinib and alectinib affect cell growth, apoptosis and immune evasion through ALK inhibition. However, brigatinib seems to achieve a more diverse downstream effect due to a broader cancer-related kinase target spectrum. Brigatinib also shows a robust effect over invasiveness and central nervous system metastasis-related mechanisms, whereas alectinib seems to have a greater impact on the immune evasion mechanism. Based on this in silico head to head study, we conclude that brigatinib shows a predicted efficacy similar to alectinib and could be a good candidate in a first-line setting against ALK+ NSCLC. Future investigation involving clinical studies will be needed to confirm these findings. These in silico systems biology-based models could be applied for exploring other unanswered questions.
Collapse
Affiliation(s)
- Enric Carcereny
- Catalan Institute of Oncology B-ARGO Group, Hospital Germans Trias i Pujol, Badalona, Spain
| | | | | | | | | | | | | | - Guillem Jorba
- Anaxomics Biotech, Barcelona, Spain
- Structural Bioinformatics (GRIB-IMIM), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Baldomero Oliva
- Structural Bioinformatics (GRIB-IMIM), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
9
|
Wu KJ, Wang W, Wang HMD, Leung CH, Ma DL. Interfering with S100B-effector protein interactions for cancer therapy. Drug Discov Today 2020; 25:1754-1761. [PMID: 32679172 DOI: 10.1016/j.drudis.2020.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
S100 calcium-binding protein B (S100B) is overexpressed in various malignant tumors, where it regulates cancer cell proliferation and metabolism by physical interactions with other molecules. Interfering with S100B-effector protein interactions is a potential strategy to treat malignant tumors. Although some S100B inhibitors have been discovered by virtual screening (VS), most target the S100B-p53 interaction. Hence, there is scope for the discovery of other S100B-effector protein interaction modulators for malignant tumors. In this review, we provide an overview of S100B-effector protein interaction inhibitor discovery using VS and discuss promising S100B-effector protein interaction targets that permit in silico analysis for drug discovery.
Collapse
Affiliation(s)
- Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao SAR, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao SAR, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China.
| |
Collapse
|
10
|
Effects of single-nucleotide polymorphisms in the mTORC1 pathway on the risk of brain metastasis in patients with non-small cell lung cancer. J Cancer Res Clin Oncol 2019; 146:273-285. [PMID: 31641854 PMCID: PMC6942024 DOI: 10.1007/s00432-019-03059-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/16/2019] [Indexed: 01/14/2023]
Abstract
Purpose The mammalian target of rapamycin complex 1 (mTORC1) signaling pathway plays a vital role in cancer development and progression. This study aimed to investigate the relationship between genotype variants in mTORC1 pathway and the risk of brain metastasis (BM) in patients with non-small cell lung cancer (NSCLC). Methods We extracted genomic DNA from blood samples of 501 NSCLC patients and genotyped eight single-nucleotide polymorphisms (SNPs) in three core genes [mammalian target of rapamycin (mTOR), mammalian lethal with sec-13 protein 8 (mLST8) and regulatory-associated protein of mTOR (RPTOR)] of the mTORC1 pathway. The associations between these SNPs and the risk of BM development were assessed. Results The AG/GG genotype of mLST8:rs26865 and TC/CC genotype of mLST8:rs3160 were associated with an increased risk of BM [hazard ratios (HR) 2.938, 95% confidence interval (CI) 1.664–5.189, p < 0.001 and HR = 2.490, 95% CI = 1.543–4.016, p < 0.001, respectively]. These risk polymorphisms had a cumulative effect on BM risk, with two risk genotypes exhibiting the highest increased risk (p < 0.001). Furthermore, these risk SNPs were associated with the lymph node metastasis (N2/3), body mass index (BMI) (≥ 25 kg/m2), high level of squamous cell carcinoma (SCC) antigen and Ki-67 proliferation index. Moreover, patients with AG/GG genotype of mLST8:rs26865 had significantly lower median overall survival than those with AA genotype (12.1 months versus 21.6 months, p = 0.04). Conclusions Our results indicate that polymorphisms in mTORC1 pathway were significantly associated with increased risk of BM and may be valuable biomarkers to identify NSCLC patients with a high risk of BM. Electronic supplementary material The online version of this article (10.1007/s00432-019-03059-y) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Xu ZH, Miao ZW, Jiang QZ, Gan DX, Wei XG, Xue XZ, Li JQ, Zheng F, Qin XX, Fang WG, Chen YH, Li B. Brain microvascular endothelial cell exosome–mediated S100A16 up‐regulation confers small‐cell lung cancer cell survival in brain. FASEB J 2018; 33:1742-1757. [DOI: 10.1096/fj.201800428r] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhi-Hua Xu
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| | - Zi-Wei Miao
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| | - Qian-Zhu Jiang
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| | - Dong-Xue Gan
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| | - Xu-Ge Wei
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| | - Xiao-Zhi Xue
- Department of Clinical MedicineChina Medical UniversityShenyangChina
| | - Jue-Qi Li
- Department of Clinical MedicineChina Medical UniversityShenyangChina
| | - Fei Zheng
- Department of Clinical MedicineChina Medical UniversityShenyangChina
| | - Xiao-Xue Qin
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| | - Wen-Gang Fang
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| | - Yu-Hua Chen
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| | - Bo Li
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| |
Collapse
|
12
|
Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell Oncol (Dordr) 2017; 40:419-441. [PMID: 28921309 DOI: 10.1007/s13402-017-0345-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Lung cancer is the most common cause of cancer-related mortality in humans. There are several reasons for this high rate of mortality, including metastasis to several organs, especially the brain. In fact, lung cancer is responsible for approximately 50% of all brain metastases, which are very difficult to manage. Understanding the cellular and molecular mechanisms underlying lung cancer-associated brain metastasis brings up novel therapeutic promises with the hope to ameliorate the severity of the disease. Here, we provide an overview of the molecular mechanisms underlying the pathogenesis of lung cancer dissemination and metastasis to the brain, as well as promising horizons for impeding lung cancer brain metastasis, including the role of cancer stem cells, the blood-brain barrier, interactions of lung cancer cells with the brain microenvironment and lung cancer-driven systemic processes, as well as the role of growth factor/receptor tyrosine kinases, cell adhesion molecules and non-coding RNAs. In addition, we provide an overview of current and novel therapeutic approaches, including radiotherapy, surgery and stereotactic radiosurgery, chemotherapy, as also targeted cancer stem cell and epithelial-mesenchymal transition (EMT)-based therapies, micro-RNA-based therapies and other small molecule or antibody-based therapies. We will also discuss the daunting potential of some combined therapies. CONCLUSIONS The identification of molecular mechanisms underlying lung cancer metastasis has opened up new avenues towards their eradication and provides interesting opportunities for future research aimed at the development of novel targeted therapies.
Collapse
|
13
|
Chen LJ, Li XY, Zhao YQ, Liu WJ, Wu HJ, Liu J, Mu XQ, Wu HB. Down-regulated microRNA-375 expression as a predictive biomarker in non-small cell lung cancer brain metastasis and its prognostic significance. Pathol Res Pract 2017; 213:882-888. [PMID: 28688608 DOI: 10.1016/j.prp.2017.06.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 05/17/2017] [Accepted: 06/04/2017] [Indexed: 02/02/2023]
Abstract
Brain metastases (BM) are common among patients with non-small cell lung cancer (NSCLC) and have been associated with significant morbidity and limited survival. Early and sensitive detection of BM is essential for improving prognosis. Recently, microRNA-375(miR-375) which is specifically expressed in the brain has been found significantly dysregulated in many human cancers. However, there is still no data whether miR-375 is associated with higher risk of BM development in NSCLC. In this study, we detected the miR-375 expression using quantitative real-time PCR (qRT-PCR) and assessed its predictive and prognostic significance. Our result showed that miR-375 expression was significantly down-regulated in NSCLC patients with BM(BM+, N=30) compared with NSCLC without BM(BM-, N=30) (P<0.001). Statistical analysis indicated that low miR-375 expression was linked to advanced disease stage (P<0.001) and brain metastasis (P<0.001) in NSCLC patient. Survival analysis suggested that low-expression group had significantly shorter overall survival than high-expression group in NSCLC patients with BM(log-rank test: P<0.05) as well as the total cases(log-rank test: P<0.01). Multivariate Cox proportional hazards model analysis indicated that low miR-375 expression was independently linked to poor survival of patients with NSCLC (HR=5.48, 95% CI: 1.93-15.56, P=0.001). In addition, we found that VEGF and MMP-9 were over-expressed in down-regulated miR-375 expression cases. Collectively, this study demonstrated that miR-375 may play an important role as a predictive biomarker in brain metastasis and an independent prognostic factor in NSCLC. Over-expression of VEGF and MMP-9 may be the reason for poor prognosis of NSCLC patients with low miR-375 expression.
Collapse
Affiliation(s)
- Li-Juan Chen
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, PR China; First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Xing-Ya Li
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
| | - Yan-Qiu Zhao
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, PR China.
| | - Wen-Jing Liu
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Hui-Juan Wu
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Jie Liu
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Xiao-Qian Mu
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Hong-Bo Wu
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| |
Collapse
|
14
|
Zinc and zinc-containing biomolecules in childhood brain tumors. J Mol Med (Berl) 2016; 94:1199-1215. [PMID: 27638340 DOI: 10.1007/s00109-016-1454-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
Abstract
Zinc ions are essential cofactors of a wide range of enzymes, transcription factors, and other regulatory proteins. Moreover, zinc is also involved in cellular signaling and enzymes inhibition. Zinc dysregulation, deficiency, over-supply, and imbalance in zinc ion transporters regulation are connected with various diseases including cancer. A zinc ion pool is maintained by two types of proteins: (i) zinc-binding proteins, which act as a buffer and intracellular donors of zinc and (ii) zinc transporters responsible for zinc fluxes into/from cells and organelles. The decreased serum zinc ion levels have been identified in patients suffering from various cancer diseases, including head and neck tumors and breast, prostate, liver, and lung cancer. On the contrary, increased zinc ion levels have been found in breast cancer and other malignant tissues. Zinc metalloproteomes of a majority of tumors including brain ones are still not yet fully understood. Current knowledge show that zinc ion levels and detection of certain zinc-containing proteins may be utilized for diagnostic and prognostic purposes. In addition, these proteins can also be promising therapeutic targets. The aim of the present work is an overview of the importance of zinc ions, zinc transporters, and zinc-containing proteins in brain tumors, which are, after leukemia, the second most common type of childhood cancer and the second leading cause of death in children after accidents.
Collapse
|
15
|
Hanibuchi M, Kim SJ, Fidler IJ, Nishioka Y. The molecular biology of lung cancer brain metastasis: an overview of current comprehensions and future perspectives. THE JOURNAL OF MEDICAL INVESTIGATION 2016; 61:241-53. [PMID: 25264041 DOI: 10.2152/jmi.61.241] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Brain metastases occur in 20-40% of patients with advanced malignancies and lung cancer is one of the most common causes of brain metastases. The occurrence of brain metastases is associated with poor prognosis and high morbidity in patients with advanced lung cancer, even after intensive multimodal therapy. Progress in treating brain metastases has been hampered by a lack of model systems, a lack of human tissue samples, and the exclusion of brain metastatic patients from many clinical trials. While the biology of brain metastasis is still poorly understood, it is encouraging to see more efforts are beginning to be directed toward the study of brain metastasis. During the multi-step process of metastasis, functional significance of gene expressions, changes in brain vasculature, abnormal secretion of soluble factors and activation of autocrine/paracrine signaling are considered to contribute to the brain metastasis development. A better understanding of the mechanism of this disease will help us to identify the appropriate therapeutic strategies, which leads to circumvent brain metastases. Recent findings on the biology of lung cancer brain metastases and translational leads identified by molecular studies are discussed in this review.
Collapse
Affiliation(s)
- Masaki Hanibuchi
- Department of Respiratory Medicine and Rheumatology, Institute of Health Biosciences, The University of Tokushima Graduate School
| | | | | | | |
Collapse
|
16
|
Wrobel JK, Toborek M. Blood-brain Barrier Remodeling during Brain Metastasis Formation. Mol Med 2016; 22:32-40. [PMID: 26837070 DOI: 10.2119/molmed.2015.00207] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/13/2016] [Indexed: 12/22/2022] Open
Abstract
Our understanding of the process of metastatic progression has improved markedly over the past decades, yet metastasis remains the most enigmatic component of cancer pathogenesis. This lack of knowledge has serious health-related implications, since metastasis is responsible for 90% of all cancer-related mortalities. The brain is considered a sanctuary site for metastatic tumor growth, where the blood-brain barrier (BBB) and other components of the brain microenvironment, provide protection to the tumor cells from immune surveillance, chemotherapeutics and other potentially harmful substances. The interactions between tumor cells and the brain microenvironment, principally brain vascular endothelium, are the critical determinants in their progression toward metastasis, dormancy, or clearance. This review discusses current knowledge of the biology of metastatic progression, with a particular focus on the tumor cell migration and colonization in the brain.
Collapse
Affiliation(s)
- Jagoda K Wrobel
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America.,Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
17
|
S100B protein as a possible participant in the brain metastasis of NSCLC. Med Oncol 2013; 29:2626-32. [PMID: 22286962 DOI: 10.1007/s12032-012-0169-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 01/14/2012] [Indexed: 01/02/2023]
Abstract
Brain metastasis is a frequent occurrence in lung cancer, especially non-small cell lung cancer (NSCLC), the prognosis for NSCLC with brain metastasis is very poor. Our previous study found high S100B expression in the brain-specific metastatic NSCLC line PC14/B, suggested S100B is closely correlated with brain metastasis in NSCLC. However, the details have not yet been revealed. The aim of this study was to investigate the correlation between S100B and brain metastasis in NSCLC and to study the effects of S100B on non-brain metastatic NSCLC line PC14. We investigated serum S100B levels in 30 newly diagnosed NSCLC patients (15 with brain metastasis and 15 without brain metastasis) using enzyme-linked immunosorbent assay. Results showed that serum S100B levels were significant higher in NSCLC patients with brain metastasis compared to those without brain metastasis (P<0.01). We constructed the full-length S100B expression vector and transfected into PC14 cells. MTT and flow cytometric analysis showed that S100B transfection promoted cell proliferation and inhibited cell apoptosis (P<0.05). Transwell migration and invasion assays indicated that S100B transfection promoted cell invasion and cell migration compared to control cells transfected with empty vector alone (P<0.01). These results suggested that S100B could be involved in the development of brain metastasis in NSCLC.
Collapse
|
18
|
Role of the blood-brain barrier in the formation of brain metastases. Int J Mol Sci 2013; 14:1383-411. [PMID: 23344048 PMCID: PMC3565326 DOI: 10.3390/ijms14011383] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 01/11/2023] Open
Abstract
The majority of brain metastases originate from lung cancer, breast cancer and malignant melanoma. In order to reach the brain, parenchyma metastatic cells have to transmigrate through the endothelial cell layer of brain capillaries, which forms the morphological basis of the blood-brain barrier (BBB). The BBB has a dual role in brain metastasis formation: it forms a tight barrier protecting the central nervous system from entering cancer cells, but it is also actively involved in protecting metastatic cells during extravasation and proliferation in the brain. The mechanisms of interaction of cancer cells and cerebral endothelial cells are largely uncharacterized. Here, we provide a comprehensive review on our current knowledge about the role of junctional and adhesion molecules, soluble factors, proteolytic enzymes and signaling pathways mediating the attachment of tumor cells to brain endothelial cells and the transendothelial migration of metastatic cells. Since brain metastases represent a great therapeutic challenge, it is indispensable to understand the mechanisms of the interaction of tumor cells with the BBB in order to find targets of prevention of brain metastasis formation.
Collapse
|
19
|
Jiang W, Jia Q, Liu L, Zhao X, Tan A, Ma N, Zhang H. S100B promotes the proliferation, migration and invasion of specific brain metastatic lung adenocarcinoma cell line. Cell Biochem Funct 2011; 29:582-8. [PMID: 21861268 DOI: 10.1002/cbf.1791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/01/2011] [Accepted: 07/05/2011] [Indexed: 01/08/2023]
Abstract
Brain metastasis frequently occurs in cancer patients and is associated with a poor prognosis. We previously reported that S100B was highly expressed in PC14/B, a specific brain metastatic lung adenocarcinoma cell line, which suggests that it is associated with brain metastasis of lung cancer. However, the role of S100B in brain metastasis remains to be elucidated. In this study, using PC14/B cell line, we found that siRNA mediated depletion of S100B in PC14/B cells led to notable differences in cell proliferation, apoptosis, cell cycle progression, colony formation ability, cell migratory and invasive activity compared with the mock-transfected cells. Therefore, our data suggest that S100B promotes the brain metastasis of lung adenocarcinoma by promoting cell proliferation, preventing apoptosis and increasing cell migration and invasion.
Collapse
Affiliation(s)
- Weifeng Jiang
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | |
Collapse
|