1
|
Kotowska-Zimmer A, Pewinska M, Olejniczak M. Artificial miRNAs as therapeutic tools: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1640. [PMID: 33386705 DOI: 10.1002/wrna.1640] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022]
Abstract
RNA interference (RNAi) technology has been used for almost two decades to study gene functions and in therapeutic approaches. It uses cellular machinery and small, designed RNAs in the form of synthetic small interfering RNAs (siRNAs) or vector-based short hairpin RNAs (shRNAs), and artificial miRNAs (amiRNAs) to inhibit a gene of interest. Artificial miRNAs, known also as miRNA mimics, shRNA-miRs, or pri-miRNA-like shRNAs have the most complex structures and undergo two-step processing in cells to form mature siRNAs, which are RNAi effectors. AmiRNAs are composed of a target-specific siRNA insert and scaffold based on a natural primary miRNA (pri-miRNA). siRNAs serve as a guide to search for complementary sequences in transcripts, whereas pri-miRNA scaffolds ensure proper processing and transport. The dynamics of siRNA maturation and siRNA levels in the cell resemble those of endogenous miRNAs; therefore amiRNAs are safer than other RNAi triggers. Delivered as viral vectors and expressed under tissue-specific polymerase II (Pol II) promoters, amiRNAs provide long-lasting silencing and expression in selected tissues. Therefore, amiRNAs are useful therapeutic tools for a broad spectrum of human diseases, including neurodegenerative diseases, cancers and viral infections. Recent reports on the role of sequence and structure in pri-miRNA processing may contribute to the improvement of the amiRNA tools. In addition, the success of a recently initiated clinical trial for Huntington's disease could pave the way for other amiRNA-based therapies, if proven effective and safe. This article is categorized under: RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anna Kotowska-Zimmer
- Department of Genome Engineering, Institute of Bioorganic Chemistry PAS, Poznan, Poland
| | - Marianna Pewinska
- Department of Genome Engineering, Institute of Bioorganic Chemistry PAS, Poznan, Poland
| | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry PAS, Poznan, Poland
| |
Collapse
|
2
|
Targeting MicroRNAs in Cancer Gene Therapy. Genes (Basel) 2017; 8:genes8010021. [PMID: 28075356 PMCID: PMC5295016 DOI: 10.3390/genes8010021] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a kind of conserved small non-coding RNAs that participate in regulating gene expression by targeting multiple molecules. Early studies have shown that the expression of miRNAs changes significantly in different tumor tissues and cancer cell lines. It is well acknowledged that such variation is involved in almost all biological processes, including cell proliferation, mobility, survival and differentiation. Increasing experimental data indicate that miRNA dysregulation is a biomarker of several pathological conditions including cancer, and that miRNA can exert a causal role, as oncogenes or tumor suppressor genes, in different steps of the tumorigenic process. Anticancer therapies based on miRNAs are currently being developed with a goal to improve outcomes of cancer treatment. In our present study, we review the function of miRNAs in tumorigenesis and development, and discuss the latest clinical applications and strategies of therapy targeting miRNAs in cancer.
Collapse
|
3
|
Azarnezhad A, Mehdipour P. Cancer Genetics at a Glance: The Comprehensive Insights. CANCER GENETICS AND PSYCHOTHERAPY 2017:79-389. [DOI: 10.1007/978-3-319-64550-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Li R, Yang HQ, Xi HL, Feng S, Qin RH. Inhibition of CDH17 gene expression via RNA interference reduces proliferation and apoptosis of human MKN28 gastric cancer cells. Int J Oncol 2016; 50:15-22. [PMID: 27909714 PMCID: PMC5182006 DOI: 10.3892/ijo.2016.3783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/24/2016] [Indexed: 01/22/2023] Open
Abstract
Gastric cancer is the fourth most common type of cancer and the second cause of cancer-related mortalities worldwide despite the use of multimodal therapy. Cadherins are transmembrane glycoproteins that are involved in tumorigenesis. CDH17 has been found to be over-expressed in gastric cancer and its overexpression was associated with lymph node metastasis and tumor-node-metastasis stage of the patients, yet the exact role and molecular mechanism of CDH17 in gastric cancer have not been determined. Using a lentiviral system as a delivery mediator of RNA interference, we found that inhibition of CDH17 can lead to reduce proliferation and increase apoptosis of gastric cancer cell line MKN28 in vitro and significantly diminish their tumorigenicity in vivo. Our results of the present study suggest that CDH17 may be a promising candidate for the therapeutic targeting of gastric cancer.
Collapse
Affiliation(s)
- Rui Li
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Hong-Qiang Yang
- Department of General Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Hai-Lin Xi
- Department of General Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Su Feng
- Department of General Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Rui-Hao Qin
- Department of General Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
5
|
Song B, Du J, Deng N, Ren JC, Shu ZB. Comparative analysis of gene expression profiles of gastric cardia adenocarcinoma and gastric non-cardia adenocarcinoma. Oncol Lett 2016; 12:3866-3874. [PMID: 27895742 PMCID: PMC5104197 DOI: 10.3892/ol.2016.5161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/04/2016] [Indexed: 12/17/2022] Open
Abstract
In the present study, gene expression profiles were analyzed to identify the molecular mechanisms underlying gastric cardia adenocarcinoma (GCA) and gastric non-cardia adenocarcinoma (GNCA). A gene expression dataset (accession number GSE29272) was downloaded from Gene Expression Omnibus, and consisted of 62 GCA samples and 62 normal controls, as well as 72 GNCA samples and 72 normal controls. The two groups of differentially-expressed genes (DEGs) were compared to obtain common and unique DEGs. A differential analysis was performed using the Linear Models for Microarray Data package in R. Functional enrichment analysis was conducted for the DEGs using the Database for Annotation, Visualization and Integrated Discovery. Protein-protein interaction (PPI) networks were constructed for the DEGs with information from the Search Tool for the Retrieval of Interacting Genes. Subnetworks were extracted from the whole network with Cytoscape. Compared with the control, 284 and 268 genes were differentially-expressed in GCA and GNCA, respectively, of which 194 DEGs were common between GCA and GNCA. Common DEGs [e.g., claudin (CLDN)7, CLDN4 and CLDN3] were associated with cell adhesion and digestion. GCA-unique DEGs [e.g., MAD1 mitotic arrest deficient like 1, cyclin (CCN)B1, CCNB2 and CCNE1] were associated with the cell cycle and the regulation of cell proliferation, while GNCA-unique DEGs (e.g., GATA binding protein 6 and hyaluronoglucosaminidase 1) were implicated in cell death. A PPI network with 141 nodes and 446 edges were obtained, from which two subnetworks were extracted. Genes [e.g., fibronectin 1, collagen type I α2 chain (COL1A2) and COL1A1] from the two subnetworks were implicated in extracellular matrix organization. These common DEGs could advance our understanding of the etiology of gastric cancer, while the unique DEGs in GCA and GNCA could better define the properties of specific cancers and provide potential biomarkers for diagnosis, prognosis or therapy.
Collapse
Affiliation(s)
- Bin Song
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Juan Du
- Second Department of Internal Medicine, The Tumor Hospital of Jilin, Changchun, Jilin 130012, P.R. China
| | - Neng Deng
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ji-Chen Ren
- Second Department of Internal Medicine, The Tumor Hospital of Jilin, Changchun, Jilin 130012, P.R. China
| | - Zhen-Bo Shu
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
6
|
Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets. PLoS One 2015; 10:e0141869. [PMID: 26544691 PMCID: PMC4636151 DOI: 10.1371/journal.pone.0141869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023] Open
Abstract
Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess several drawbacks: subset size limitations, erroneous estimation results, multicollinearity, and heavy time consumption. We introduce a novel statistical strategy, called a Recursive Random Lasso (RRLasso), for high dimensional genomic data analysis and investigation of driver genes. For time-effective analysis, we consider a recursive bootstrap procedure in line with the random lasso. Furthermore, we introduce a parametric statistical test for driver gene selection based on bootstrap regression modeling results. The proposed RRLasso is not only rapid but performs well for high dimensional genomic data analysis. Monte Carlo simulations and analysis of the "Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer Genome Project" show that the proposed RRLasso is an effective tool for high dimensional genomic data analysis. The proposed methods provide reliable and biologically relevant results for cancer driver gene selection.
Collapse
|
7
|
Long ZW, Zhou ML, Fu JW, Chu XQ, Wang YN. Association between cadherin-17 expression and pathological characteristics of gastric cancer: A meta-analysis. World J Gastroenterol 2015; 21:3694-3705. [PMID: 25834338 PMCID: PMC4375595 DOI: 10.3748/wjg.v21.i12.3694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/03/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a meta-analysis in order to examine the relationship between cadherin-17 (CDH17) and gastric cancer (GC).
METHODS: Related articles were selected by searching the following English or Chinese electronic databases: CINAHL, MEDLINE, Science Citation Index, the Chinese Journal Full-Text, and the Weipu Journal. Newcastle-Ottawa Scale (NOS) criteria were used to ensure consistency in reviewing and reporting results. Statistical analyses were conducted with Version 12.0 STATA statistical software.
RESULTS: Ultimately, 11 articles, with a total of 2,120 GC patients, were found to be eligible for study inclusion. In comparisons of GC patients by TNM stage (III-IV vs I-II: OR = 2.35, 95%CI: 1.15-4.825, P = 0.019), histologic grade (3-4 vs 1-2: OR = 3.48, 95%CI: 1.36-8.92, P = 0.009), invasion grade (T3-4 vs T1-2: OR = 2.86; 95%CI: 1.69-4.83; P = 0.000), and lymph node metastasis (positive vs negative: OR = 2.64; 95%CI: 1.33-5.27; P = 0.006), it was found that CDH17 showed more positive expressions in each of the more severe cases. Country-stratified analyses from all four experimental subgroups showed that high CDH17 expression levels may be related to GC among Chinese and Korean populations (all P < 0.05), with the exception of the invasion grade T3-4 vs T1-2 comparison, where the relation only held among the Chinese population (OR = 2.86, 95%CI: 1.69-4.83, P = 0.000).
CONCLUSION: Collectively, the data reflects the capacity of CDH17 in tumor proliferation and metastasis among GC patients.
Collapse
|
8
|
Cutcutache I, Suzuki Y, Tan IB, Ramgopal S, Zhang S, Ramnarayanan K, Gan A, Lee HH, Tay ST, Ooi A, Ong CK, Bolthouse JT, Lane BR, Anema JG, Kahnoski RJ, Tan P, Teh BT, Rozen SG. Exome-wide Sequencing Shows Low Mutation Rates and Identifies Novel Mutated Genes in Seminomas. Eur Urol 2015; 68:77-83. [PMID: 25597018 DOI: 10.1016/j.eururo.2014.12.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/29/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Testicular germ cell tumors are the most common cancer diagnosed in young men, and seminomas are the most common type of these cancers. There have been no exome-wide examinations of genes mutated in seminomas or of overall rates of nonsilent somatic mutations in these tumors. OBJECTIVE The objective was to analyze somatic mutations in seminomas to determine which genes are affected and to determine rates of nonsilent mutations. DESIGN, SETTING, AND PARTICIPANTS Eight seminomas and matched normal samples were surgically obtained from eight patients. INTERVENTION DNA was extracted from tissue samples and exome sequenced on massively parallel Illumina DNA sequencers. Single-nucleotide polymorphism chip-based copy number analysis was also performed to assess copy number alterations. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The DNA sequencing read data were analyzed to detect somatic mutations including single-nucleotide substitutions and short insertions and deletions. The detected mutations were validated by independent sequencing and further checked for subclonality. RESULTS AND LIMITATIONS The rate of nonsynonymous somatic mutations averaged 0.31 mutations/Mb. We detected nonsilent somatic mutations in 96 genes that were not previously known to be mutated in seminomas, of which some may be driver mutations. Many of the mutations appear to have been present in subclonal populations. In addition, two genes, KIT and KRAS, were affected in two tumors each with mutations that were previously observed in other cancers and are presumably oncogenic. CONCLUSIONS Our study, the first report on exome sequencing of seminomas, detected somatic mutations in 96 new genes, several of which may be targetable drivers. Furthermore, our results show that seminoma mutation rates are five times higher than previously thought, but are nevertheless low compared to other common cancers. Similar low rates are seen in other cancers that also have excellent rates of remission achieved with chemotherapy. PATIENT SUMMARY We examined the DNA sequences of seminomas, the most common type of testicular germ cell cancer. Our study identified 96 new genes in which mutations occurred during seminoma development, some of which might contribute to cancer development or progression. The study also showed that the rates of DNA mutations during seminoma development are higher than previously thought, but still lower than for other common solid-organ cancers. Such low rates are also observed among other cancers that, like seminomas, show excellent rates of disease remission after chemotherapy.
Collapse
Affiliation(s)
- Ioana Cutcutache
- Centre for Computational Biology, Duke-NUS Graduate Medical School, Singapore; Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Yuka Suzuki
- Centre for Computational Biology, Duke-NUS Graduate Medical School, Singapore; Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Iain Beehuat Tan
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore; Genome Institute of Singapore, A*STAR, Singapore
| | - Subhashini Ramgopal
- Centre for Computational Biology, Duke-NUS Graduate Medical School, Singapore; Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Shenli Zhang
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Kalpana Ramnarayanan
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Anna Gan
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore; Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Heng Hong Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore; Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Su Ting Tay
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Aikseng Ooi
- Laboratory of Interdisciplinary Renal Oncology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Choon Kiat Ong
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | | | - Brian R Lane
- Division of Urology, Spectrum Health Hospital System, Grand Rapids, MI, USA
| | - John G Anema
- Division of Urology, Spectrum Health Hospital System, Grand Rapids, MI, USA
| | - Richard J Kahnoski
- Division of Urology, Spectrum Health Hospital System, Grand Rapids, MI, USA
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore; Genome Institute of Singapore, A*STAR, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| | - Bin Tean Teh
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore; Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| | - Steven G Rozen
- Centre for Computational Biology, Duke-NUS Graduate Medical School, Singapore; Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore.
| |
Collapse
|
9
|
β1 integrin mediates colorectal cancer cell proliferation and migration through regulation of the Hedgehog pathway. Tumour Biol 2014; 36:2013-21. [PMID: 25387809 DOI: 10.1007/s13277-014-2808-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 11/04/2014] [Indexed: 12/31/2022] Open
Abstract
β1 integrin (ITGB1) is the major expressed integrin protein of normal cells and tumor-associated cells. It is often up-regulated in human malignancies and is involved in many developmental processes, such as tumor progression and metastasis. However, little is known about the function of ITGB1 in colorectal cancer. We constructed lentiviral vectors expressing ITGB1 or ITGB1-specific RNA interference (RNAi) and an unrelated control vector. After infecting HT29 cells in vitro, proliferation and migration were evaluated by Cell Counting Kit 8 (CCK-8) assays, transwell invasion assays, and Western blots. The influence of lentivirus infection on the tumor development capacity of HT29 cells in vivo was examined by xenografting the tumor cells. The expression of ITGB1 in the xenografted tumor cells was analyzed by immunohistochemistry. The up-regulation of ITGB1 significantly increased the proliferation in HT29 cells in vitro. Moreover, we found that the overexpression of ITGB1 up-regulated sonic hedgehog (Shh) while down-regulating Gli1 and SuFu in HT29-ITGB1 cells compared to controls. Moreover, the levels of c-myc and cyclin D1 proteins were up-regulated. Transwell assays showed that the number of migrating HT29-RNAi cells was lower than that in the other cell groups, indicating that ITGB1 significantly enhances the invasive ability of HT29 cells. In addition to these in vitro results, ITGB1 was found to be a significantly effective growth factor in a xenografted tumor mouse model. These results suggest that ITGB1 induces growth and invasion in a human colorectal cancer cell line through the hedgehog (Hh) signaling pathway in vitro and in vivo.
Collapse
|
10
|
Gu CH, Shang GC, Li R, Tian SX, Chen WG, Zheng Y. Significance of expression of Li-cadherin in gastric adenocarcinoma in Xinjiang Kazakh and Han patients. Shijie Huaren Xiaohua Zazhi 2014; 22:1280-1284. [DOI: 10.11569/wcjd.v22.i9.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the significance of expression of Li-cadherin in gastric adenocarcinoma in Xinjiang Kazakh and Han patients.
METHODS: The mRNA and protein expression of CDH17 was detected by RT-qPCR and immunohistochemisty in 30 gastric adenocarcinoma tissues and 20 normal gastric mucosal tissues from Kazakh patients, as well as 30 gastric adenocarcinoma tissues and 20 normal gastric mucosal tissues from Han patients.
RESULTS: The expression level of CDH17 mRNA was significantly higher in gastric adenocarcinoma than in normal gastric mucosal tissue in Kazakh patients (1.22 ± 0.22 vs 2.37 ± 0.30, P < 0.001). In Kakzkh patients, the positive expression rate of CDH17 protein was 70.0% in gastric adenocarcinoma, and 0 in the normal gastric mucosal tissue. No correlation was found between expression of CDH17 protein and sex, age, or tumor differentiation in gastric adenocarcinoma in Kazakh patients. There was no significant difference in the expression of CDH17 in tumor or normal tissues between Kazakh and Han patients.
CONCLUSION: The expression of CDH17 in gastric adenocarcinoma was significantly higher than that in normal gastric mucosal tissues in Kazakh patients, suggesting that CDH17 may play an important role in the occurrence and development of gastric adenocarcinoma in Xinjiang Kazakh patients. There was no significant difference in the expression of CDH17 between Kazakh and Han patients.
Collapse
|
11
|
Lin Z, Zhang C, Zhang M, Xu D, Fang Y, Zhou Z, Chen X, Qin N, Zhang X. Targeting cadherin-17 inactivates Ras/Raf/MEK/ERK signaling and inhibits cell proliferation in gastric cancer. PLoS One 2014; 9:e85296. [PMID: 24465527 PMCID: PMC3896370 DOI: 10.1371/journal.pone.0085296] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 11/26/2013] [Indexed: 01/01/2023] Open
Abstract
Cadherin-17 (CDH17), one member of 7D-cadherin superfamily, was overexpressed in gastric cancer (GC) and was associated with poor survival, tumor recurrence, metastasis, and advanced tumor stage. So far the cellular function and signaling mechanism of CDH17 in GC remains unclear. In this study, we showed that over 66% of GC cell lines (20/30) were CDH17 positive. Tissue microarray (TMA) assay showed that 73.6% Chinese GC tissues (159/216) were CDH17 positive, while 37% respective adjacent normal tissues were CDH17 positive. Knockdown of CDH17 inhibited cell proliferation, migration, adhesion and colony formation, and also induced a cell cycle arrest and apoptosis in AGS human GC cells. On the other side, overexpression of CDH17 facilitated MGC-803 GC tumor growth in nude mice. Antibody array and Western blotting assay demonstrated that knockdown of CDH17 in AGS cells down-regulated integrin β series proteins, further inactivated the Ras/Raf/MEK/ERK pathway and led to p53 and p21 accumulation, which resulted in proliferation inhibition, cell-cycle arrest and apoptosis induction. Collectively, our data firstly demonstrate the capacity of CDH17 to regulate the activity of Ras/Raf/MEK/ERK pathway for cell proliferation in GC, and suggest that CDH17 can serve as an attractive therapeutic target for future research.
Collapse
Affiliation(s)
- Zhaohu Lin
- Department of Discovery Technology, Roche Pharma Research and Early Development China, Shanghai, China
| | - Chao Zhang
- Department of Discovery Technology, Roche Pharma Research and Early Development China, Shanghai, China
| | - Meifang Zhang
- Department of Discovery Technology, Roche Pharma Research and Early Development China, Shanghai, China
| | - Danqing Xu
- Department of Discovery Technology, Roche Pharma Research and Early Development China, Shanghai, China
| | - Yanfen Fang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, China
| | - Zheng Zhou
- Department of Discovery Technology, Roche Pharma Research and Early Development China, Shanghai, China
| | - Xiaolong Chen
- Department of Discovery Technology, Roche Pharma Research and Early Development China, Shanghai, China
| | - Ning Qin
- Department of Discovery Technology, Roche Pharma Research and Early Development China, Shanghai, China
| | - Xiongwen Zhang
- Department of Discovery Technology, Roche Pharma Research and Early Development China, Shanghai, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
12
|
Samborski A, Graf A, Krebs S, Kessler B, Bauersachs S. Deep sequencing of the porcine endometrial transcriptome on day 14 of pregnancy. Biol Reprod 2013; 88:84. [PMID: 23426436 DOI: 10.1095/biolreprod.113.107870] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In pigs, conceptus attachment to the uterine surface epithelium starts around Day 14 of pregnancy preceded by a pronounced vascularization at the implantation zones, initiating the epitheliochorial placentation. To characterize the complex transcriptome changes in the endometrium in the course of initial conceptus attachment, deep sequencing of endometrial RNA samples of pregnant animals (n = 4) and corresponding cyclic controls (n = 4) was performed using Illumina RNA-Seq. The obtained sequence reads were mapped to the porcine genome, and relative expression values were calculated for the analysis of differential gene expression. Statistical analysis revealed 1933 differentially expressed genes (false discovery rate 1%), 1229 with higher and 704 with lower mRNA concentration, in the samples from pregnant animals. Expression of selected genes was validated by the use of quantitative real-time RT-PCR. The RNA-Seq data were compared to results of a microarray study of bovine endometrium on Day 18 of pregnancy and additional related data sets. Bioinformatics analysis revealed for the genes with higher mRNA concentration in pregnant samples strong overrepresentation, particularly for immune-related functional terms but also for apoptosis and cell adhesion. Overrepresented terms for the genes with lower mRNA concentration in pregnant samples were related to extracellular region, ion transport, cell adhesion, and lipid and steroid metabolic process. In conclusion, RNA-Seq analysis revealed comprehensive transcriptome differences in porcine endometrium between Day 14 of pregnancy and corresponding cyclic endometrium and highlighted new processes and pathways probably involved in regulation of noninvasive implantation in the pig.
Collapse
Affiliation(s)
- Anastazia Samborski
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | | | | | | | | |
Collapse
|
13
|
Wang J, Kang WM, Yu JC, Liu YQ, Meng QB, Cao ZJ. Cadherin-17 induces tumorigenesis and lymphatic metastasis in gastric cancer through activation of NFκB signaling pathway. Cancer Biol Ther 2013; 14:262-70. [PMID: 23298905 DOI: 10.4161/cbt.23299] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cadherin-17 (CDH17), as a structurally unique member of the cadherin superfamily, has been identified to predict a poor prognosis for gastric cancer (GC). Our previous study demonstrated the positive correlation between CDH17 and lymph node micrometastasis in GC. We sought to further identify the role of CDH17 in the tumorigenesis and lymphatic metastasis of GC. Hence, we inhibited the CDH17 expression in MKN-45 gastric cancer cells by using RNA interference. Consequently, the malignant potency of cancer cells was evaluated, and the change in NFκB signaling pathway was also probed. Tumor growth and lymphatic metastasis model were conducted in nude mice to confirm the hypothesis. Downregulation of CDH17 not only suppressed the proliferation, adherence and invasion potency of MKN-45 cells, but also induced cell cycle arrest. Meanwhile, the NFκB signaling pathway was inactivated as well, with the reductions of downstream proteins including VEGF-C and MMP-9. Moreover, silencing CDH17 inhibited tumor growth in vivo significantly, and there was no lymph node metastasis detected in the mice without CDH17 expression, as opposed to the positive nodes found in controls. CDH17 is a novel oncogene in gastric cancer cells, which is associated with lymphatic metastasis and proliferation strongly. The inactivation of NFκB signaling pathway might be involved in targeting CDH17 in GC. On the whole, CDH17 is proposed to serve as a biomarker and attractive therapeutic target in GC.
Collapse
Affiliation(s)
- Jin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
14
|
Chen RY, Cao JJ, Chen J, Yang JP, Liu XB, Zhao GQ, Zhang YF. Single nucleotide polymorphisms in the CDH17 gene of colorectal carcinoma. World J Gastroenterol 2012; 18:7251-7261. [PMID: 23326130 PMCID: PMC3544027 DOI: 10.3748/wjg.v18.i48.7251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/13/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between c.343A>G and c.2216A>C polymorphism sites in the CDH17 gene and colorectal carcinoma.
METHODS: Ninety-three non-consanguineous colorectal carcinoma patients admitted to the Department of Oncology at the First Affiliated Hospital of Zhengzhou University were included in this study. Ninety-three peripheral venous blood samples, of approximately one milliliter from each patient, were collected between December 2009 and August 2010. The genomic DNA of these peripheral venous blood samples were extracted and purified using a Fermentas Genomic DNA Purification Kit (Fermentas, CA) according to the manufacturer’s protocol. The single nucleotide polymorphisms (SNPs) of the liver-intestine cadherin (CDH17) gene c.343A>G and c.2216A>C were determined by the polymerase chain reaction-single strand conformation polymorphism method (PCR-SSCP) in 93 peripheral venous blood samples from patients suffering with colorectal carcinoma. Typical samples that showed different migration bands in SSCP were confirmed by sequencing. Directed DNA sequencing was used to check the correctness of the genotype results from the PCR-SSCP method.
RESULTS: There was a significant association between the c.2216 A>C SNPs of the CDH17 gene and the tumor-node-metastasis (TNM) grade, as well as with lymph node status, in 93 peripheral venous blood samples from colorectal carcinoma patients. The genotype frequencies of A/C, A/A, and C/C were 12.90%, 33.33% and 53.76%, respectively. There was a significant correlation between lymph node metastasis, TNM grade, and the genotype distribution (P < 0.05). The C/C genotype raised the risk of lymph node metastasis and the TNM grade. There was a significant difference in the TNM grade and lymph node metastasis between the A/A and C/C genotypes (P = 0.003 and P = 0.013, respectively). Patients with colorectal carcinoma carrying the C allele tended to have a higher risk of lymph node metastasis and have a higher TNM grade. The difference between the TNM grades, as well as the lymph node metastasis of the two alleles, was statistically significant (P < 0.01).
CONCLUSION: The SNPs of the CDH17 gene c.2216 A>C might be clinically important in the prognosis of colorectal carcinoma.
Collapse
|
15
|
Du J, Zhao W, Wang Y, Cai Y. Lentivirus vector-mediated knockdown of erythropoietin-producing hepatocellular carcinoma receptors B4 inhibits laser-induced choroidal neovascularization. J Ocul Pharmacol Ther 2012; 29:14-22. [PMID: 23035975 DOI: 10.1089/jop.2012.0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To evaluate the efficacy of erythropoietin-producing hepatocellular carcinoma receptors B4 (EphB4) knockdown on the development of laser-induced choroidal neovascularization (CNV) in vivo. METHODS We constructed recombinant lentiviral vectors (Lv) Lv-shRNA-EphB4 to specifically knock down the expression of EphB4. The mRNA and protein expression of EphB4 was investigated by real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blot. CNV was induced by laser photocoagulation in C57BL/6 mice. The mice were then randomly assigned to be intravitreally injected with phosphate-buffered saline (PBS), Lv-shRNA-EphB4 recombinant lentivirus, or an unrelated shRNA recombinant lentivirus (pFU LV-shRNA-NC). An uninjected group was used as the control. Fundus fluorescein angiography (FFA), histologic analysis, and choroidal flat mounts analysis were applied to evaluate the inhibition of CNV after an intravitreal injection. RESULTS Transfection of Lv-shRNA-EphB4 led to the knockdown of EphB4, and EphB4 mRNA was down-regulated by about 80%. FFA and histologic analysis revealed that the leakage areas and the mean thickness of CNV were much smaller in the Lv-shRNA-EphB4 group than in the PBS-treated, pFU Lv-shRNA-NC group and the non-injection group. Choroidal flat mounts showed significantly less leakage and smaller leakage areas in the Lv-shRNA-EphB4 group than those in other groups. CONCLUSION Knocking down the expression of EphB4 exerts an inhibitory effect on CNV in vivo. It may provide a potential strategy for the treatment of CNV.
Collapse
Affiliation(s)
- Jing Du
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University , Xi'an, People's Republic of China
| | | | | | | |
Collapse
|
16
|
Huang LP, Yu YH, Sheng C, Wang SH. Up-regulation of cadherin 17 and down-regulation of homeodomain protein CDX2 correlate with tumor progression and unfavorable prognosis in epithelial ovarian cancer. Int J Gynecol Cancer 2012; 22:1170-6. [PMID: 22810971 DOI: 10.1097/igc.0b013e318261d89c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Cadherin 17 (CDH17), belonging to the 7D-cadherin superfamily, represents a novel oncogene, which is involved in tumor invasion and metastasis. Its expression has been demonstrated to be regulated by caudal-related homeobox transcription factor CDX2. The roles of 2 biomarkers have been conflictingly explained. Therefore, the aims of this study were to investigate the expression patterns of CDH17 and CDX2 in human epithelial ovarian cancer (EOC) and to evaluate the clinical significance of these 2 markers in the progression and prognosis of EOC. METHODS CDH17 and CDX2 expressions in 182 paraffin-embedded EOC specimens were detected by immunohistochemical staining. Associations of their expression with clinical pathological factors and overall survival were statistically evaluated. RESULTS Compared with normal surface ovarian epithelium tissues, CDH17 expression was upregulated and CDX2 expression was downregulated in EOC tissues. There was a negative correlation between CDH17 and CDX2 expression in EOC tissues (r = -0.76, P = 0.001). Tumors with high CDH17 expression were more likely to have advanced stage (P = 0.01) and higher grade (P = 0.03). Patients with low CDX2 expression were more frequently to be at the advanced stage of disease (P = 0.01). In addition, univariate analysis indicated that the patients with high CDH17 expression correlated with poor prognosis in patients with EOC (P = 0.001), as opposed to CDX2 (P = 0.003). Especially, the survival rate of patients with EOC with CDH17-high/CDX2-low expression was the lowest (P < 0.001). Multivariate statistical analysis showed that the conjoined expression of CDH17/CDX2 was an independent prognostic indicator of EOC (P = 0.01). CONCLUSIONS Our data suggest that both the up-regulation of CDH17 and the down-regulation of CDX2 may be associated with the advanced stage of EOC. A conjoined detection of CDH17/CDX2 expression may be associated with unfavorable prognosis in patients with this disease.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/mortality
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Clear Cell/surgery
- Adenocarcinoma, Mucinous/mortality
- Adenocarcinoma, Mucinous/pathology
- Adenocarcinoma, Mucinous/surgery
- CDX2 Transcription Factor
- Cadherins/metabolism
- Case-Control Studies
- Cystadenocarcinoma, Serous/mortality
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/surgery
- Disease Progression
- Endometrial Neoplasms/mortality
- Endometrial Neoplasms/pathology
- Endometrial Neoplasms/surgery
- Female
- Homeodomain Proteins/metabolism
- Humans
- Immunoenzyme Techniques
- Middle Aged
- Neoplasm Grading
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/surgery
- Neoplasm Staging
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/surgery
- Ovary/metabolism
- Ovary/pathology
- Prognosis
- Survival Rate
Collapse
Affiliation(s)
- Li-Ping Huang
- Department of Obstetrics and Gynecology, Nan Fang Hospital, Guangzhou, China
| | | | | | | |
Collapse
|
17
|
Fattash I, Khraiwesh B, Arif MA, Frank W. Expression of artificial microRNAs in Physcomitrella patens. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 847:293-315. [PMID: 22351018 DOI: 10.1007/978-1-61779-558-9_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) are ∼21-nt-long small RNAs transcribed from endogenous MIR genes which form precursor RNAs with a characteristic hairpin structure. MiRNAs control the expression of cognate target genes by binding to reverse complementary sequences resulting in cleavage or translational inhibition of the target RNA. Artificial miRNAs (amiRNAs) can be generated by exchanging the miRNA/miRNA sequence of endogenous MIR precursor genes, while maintaining the general pattern of matches and mismatches in the foldback. Thus, for functional gene analysis, amiRNAs can be designed to target any gene of interest. During the last decade, the moss Physcomitrella patens emerged as a model plant for functional gene analysis based on its unique ability to integrate DNA into the nuclear genome by homologous recombination which allows for the generation targeted gene knockout mutants. In addition to this, we developed a protocol to express amiRNAs in P. patens that has particular advantages over the generation of knockout mutants and might be used to speed up reverse genetics approaches in this model species.
Collapse
Affiliation(s)
- Isam Fattash
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|