1
|
Nagasaka H, Sato S, Suzuki A, Terao H, Nakamura Y, Yoshihara M, Okubo Y, Washimi K, Yokose T, Kishida T, Miyagi Y. Clinicopathological Significance of Extranodal Adipose Tissue Invasion in Metastatic Lymph Nodes in Patients With Prostate Cancer. Prostate 2025; 85:283-293. [PMID: 39567857 DOI: 10.1002/pros.24825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Lymph node (LN) metastasis is a poor prognostic factor in patients with prostate cancer. Elucidating the mechanisms underlying cancer progression in the metastatic microenvironment of LNs is crucial to establishing novel therapies. Adipocytes interact with cancer cells and regulate cancer progression. In this study, we aimed to clarify the clinicopathological significance of extranodal adipose tissue invasion in metastatic LNs and preoperative adipokine concentration in patients with prostate cancer exhibiting metastatic LNs. METHODS We examined the pathological findings of primary and metastatic nodes and clinical information of 66 specimens from 46 patients with prostate cancer. A sub-analysis was performed to assess the relationship between preoperative adiponectin/leptin concentrations and clinical/pathological findings in the blood samples of 56 patients with prostate cancer who either did or did not show LN metastasis. RESULTS The number of metastatic LNs in patients correlated with the involvement of adipose tissue and lymphovascular invasion (p = 0.039 and < 0.001, respectively). Preoperative adiponectin concentration was lower in patients with resected margin-positive and extraprostatic extension-positive primary cancers (p = 0.0071 and 0.02, respectively). Preoperative adiponectin concentrations were significantly lower in patients with metastatic LNs than in patients without LN metastasis (p < 0.001). Moreover, leptin concentrations were significantly higher in patients with metastatic LNs than in patients without LN metastasis (p < 0.001). In patients with metastatic LNs, preoperative adiponectin concentrations were significantly lower in patients with biochemical recurrence than in patients without biochemical recurrence (p = 0.031). There was no correlation between biochemical recurrence and pathological findings. CONCLUSIONS This is the first report on the detailed histopathological characteristics of prostate cancer with LN metastases and the significance of preoperative adiponectin concentration in predicting the pathological features of primary cancers. Also, adipokines are a significant prediction factor of LN metastases for prostate cancer patients. Adipose tissue and adipose-secreting factors may be involved in the progression of metastatic and primary prostate cancer.
Collapse
Affiliation(s)
- Hirotaka Nagasaka
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Shinya Sato
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Atsuto Suzuki
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Hideyuki Terao
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yoshiyasu Nakamura
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Mitsuyo Yoshihara
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Yoichiro Okubo
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Kota Washimi
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Takeshi Kishida
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yohei Miyagi
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Kakkat S, Suman P, Turbat- Herrera EA, Singh S, Chakroborty D, Sarkar C. Exploring the multifaceted role of obesity in breast cancer progression. Front Cell Dev Biol 2024; 12:1408844. [PMID: 39040042 PMCID: PMC11260727 DOI: 10.3389/fcell.2024.1408844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Obesity is a multifaceted metabolic disorder characterized by excessive accumulation of adipose tissue. It is a well-established risk factor for the development and progression of breast cancer. Adipose tissue, which was once regarded solely as a passive energy storage depot, is now acknowledged as an active endocrine organ producing a plethora of bioactive molecules known as adipokines that contribute to the elevation of proinflammatory cytokines and estrogen production due to enhanced aromatase activity. In the context of breast cancer, the crosstalk between adipocytes and cancer cells within the adipose microenvironment exerts profound effects on tumor initiation, progression, and therapeutic resistance. Moreover, adipocytes can engage in direct interactions with breast cancer cells through physical contact and paracrine signaling, thereby facilitating cancer cell survival and invasion. This review endeavors to summarize the current understanding of the intricate interplay between adipocyte-associated factors and breast cancer progression. Furthermore, by discussing the different aspects of breast cancer that can be adversely affected by obesity, this review aims to shed light on potential avenues for new and novel therapeutic interventions.
Collapse
Affiliation(s)
- Sooraj Kakkat
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Prabhat Suman
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Elba A. Turbat- Herrera
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Debanjan Chakroborty
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Chandrani Sarkar
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
3
|
Engin A. Obesity-Associated Breast Cancer: Analysis of Risk Factors and Current Clinical Evaluation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:767-819. [PMID: 39287872 DOI: 10.1007/978-3-031-63657-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
4
|
Lu X, Jin Y, Li D, Zhang J, Han J, Li Y. Multidisciplinary Progress in Obesity Research. Genes (Basel) 2022; 13:1772. [PMID: 36292657 PMCID: PMC9601416 DOI: 10.3390/genes13101772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
Obesity is a chronic disease that endangers human health. In recent years, the phenomenon of obesity has become more and more common, and it has become a global epidemic. Obesity is closely associated with many adverse metabolic changes and diseases, such as insulin resistance, type 2 diabetes mellitus, coronary heart disease, nervous system diseases and some malignant tumors, which have caused a huge burden on the country's medical finance. In most countries of the world, the incidence of cancer caused by obesity is increasing year on year. Diabetes associated with obesity can lead to secondary neuropathy. How to treat obesity and its secondary diseases has become an urgent problem for patients, doctors and society. This article will summarize the multidisciplinary research on obesity and its complications.
Collapse
Affiliation(s)
- Xiaoqing Lu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Yuxin Jin
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Dexin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Jingxin Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Jingyan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Yin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| |
Collapse
|
5
|
Qu J, Luo M, Zhang J, Han F, Hou N, Pan R, Sun X. A paradoxical role for sestrin 2 protein in tumor suppression and tumorigenesis. Cancer Cell Int 2021; 21:606. [PMID: 34784907 PMCID: PMC8596924 DOI: 10.1186/s12935-021-02317-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Sestrin 2, a highly conserved stress-induced protein, participates in the pathological processes of metabolic and age-related diseases. This p53-inducible protein also regulates cell growth and metabolism, which is closely related to malignant tumorigenesis. Sestrin 2 was reported to regulate various cellular processes, such as tumor cell proliferation, invasion and metastasis, apoptosis, anoikis resistance, and drug resistance. Although sestrin 2 is associated with colorectal, lung, liver, and other cancers, sestrin 2 expression varies among different types of cancer, and the effects and mechanisms of action of this protein are also different. Sestrin 2 was considered a tumor suppressor gene in most studies, whereas conflicting reports considered sestrin 2 an oncogene. Thus, this review aims to examine the literature regarding sestrin 2 in various cancers, summarize its roles in suppression and tumorigenesis, discuss potential mechanisms in the regulation of cancer, and provide a basis for follow-up research and potential cancer treatment development.
Collapse
Affiliation(s)
- Junsheng Qu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Moyi Luo
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China.
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
6
|
Hu X, Cui C, Sun T, Wang W. Associations between ADIPOQ rs2241766 SNP and breast cancer risk: a systematic review and a meta-analysis. Genes Environ 2021; 43:48. [PMID: 34742352 PMCID: PMC8572453 DOI: 10.1186/s41021-021-00221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 10/13/2021] [Indexed: 11/12/2022] Open
Abstract
Purpose We aimed to conduct a meta-analysis to accurately evaluate the potential association between ADIPOQ rs2241766 gene SNP and breast cancer risk. Methods A systematic literature search on Cochrane Library, PubMed, Embase, Web of Science and China National Knowledge Infrastructure (CNKI) identified 8 articles with 1692 cases and 1890 controls. Strength of association was evaluated by pooled odds ratio (OR), 95 % confidence interval (CI) and p value. Funnel plots and Begger’s regression test were applied for testing the publication bias. Statistical analysis of all data was performed by Stata 12.0. Results The meta-analysis results indicated that the ADIPOQ rs2241766 gene polymorphism did not significantly associated with the risk of breast cancer for these genetic models (TT vs. TG + GG: OR = 1.20, 95 % CI = 0.77–1.89, p=0.417; TT + TG vs. GG: OR = 1.05, 95 % CI = 0.71–1.56, p=0.805; T vs. G: OR =1.17, 95 % CI = 0.79–1.74, p=0.437). Conclusions This study indicated that no significant relationship between the ADIPOQ rs2241766 SNP and breast cancer. Further large-scale and well-designed studies will be indispensable to confirm our result.
Collapse
Affiliation(s)
- Xue Hu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Blvd, 130033, Changchun, China
| | - Chunguo Cui
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Blvd, 130033, Changchun, China
| | - Tong Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Blvd, 130033, Changchun, China
| | - Wan Wang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Blvd, 130033, Changchun, China.
| |
Collapse
|
7
|
Dong S, Wang Z, Shen K, Chen X. Metabolic Syndrome and Breast Cancer: Prevalence, Treatment Response, and Prognosis. Front Oncol 2021; 11:629666. [PMID: 33842335 PMCID: PMC8027241 DOI: 10.3389/fonc.2021.629666] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome is a type of multifactorial metabolic disease with the presence of at least three factors: obesity, diabetes mellitus, low high-density lipoprotein, hypertriglyceridemia, and hypertension. Recent studies have shown that metabolic syndrome and its related components exert a significant impact on the initiation, progression, treatment response, and prognosis of breast cancer. Metabolic abnormalities not only increase the disease risk and aggravate tumor progression but also lead to unfavorable treatment responses and more treatment side effects. Moreover, biochemical reactions caused by the imbalance of these metabolic components affect both the host general state and organ-specific tumor microenvironment, resulting in increased rates of recurrence and mortality. Therefore, this review discusses the recent advances in the association of metabolic syndrome and breast cancer, providing potential novel therapeutic targets and intervention strategies to improve breast cancer outcome.
Collapse
Affiliation(s)
| | | | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Zhang F, Liu S. Mechanistic insights of adipocyte metabolism in regulating breast cancer progression. Pharmacol Res 2020; 155:104741. [PMID: 32151679 DOI: 10.1016/j.phrs.2020.104741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Adipocyte account for the largest component in breast tissue. Dysfunctional adipocyte metabolism, such as metaflammation in metabolically abnormal obese patients, will cause hyperplasia and hypertrophy of its constituent adipocytes. Inflamed adipose tissue is one of the biggest risk factors causing breast cancer. Factors linking adipocyte metabolism to breast cancer include dysfunctional secretion of proinflammatory mediators, proangiogenic factors and estrogens. The accumulation of tumor supporting cells and systemic effects, such as insulin resistance, dyslipidemia and oxidative stress, which are caused by abnormal adipocyte metabolism, further contribute to a more aggressive tumor microenvironment and stimulate breast cancer stem cell to influence the development and progression of breast cancer. Here, in this review, we focus on the adipocyte metabolism in regulating breast cancer progression, and discuss the potential targets which can be used for breast cancer therapy.
Collapse
Affiliation(s)
- Fuchuang Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Key Laboratory of Medical Epigenetics and Metabolism, Innovation Center for Cell Signaling Network, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Key Laboratory of Medical Epigenetics and Metabolism, Innovation Center for Cell Signaling Network, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Naimo GD, Gelsomino L, Catalano S, Mauro L, Andò S. Interfering Role of ERα on Adiponectin Action in Breast Cancer. Front Endocrinol (Lausanne) 2020; 11:66. [PMID: 32132979 PMCID: PMC7041409 DOI: 10.3389/fendo.2020.00066] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is characterized by an excess of adipose tissue, due to adipocyte hypertrophy and hyperplasia. Adipose tissue is an endocrine organ producing many bioactive molecules, called adipokines. During obesity, dysfunctional adipocytes alter adipokine secretion, contributing to pathophysiology of obesity-associated diseases, including metabolic syndrome, type 2-diabetes, cardiovascular diseases and many types of malignancies. Circulating adiponectin levels are inversely correlated with BMI, thus adiponectin concentrations are lower in obese than normal-weight subjects. Many clinical investigations highlight that low adiponectin levels represent a serious risk factor in breast carcinogenesis, and are associated with the development of more aggressive phenotype. A large-scale meta-analysis suggests that BMI was positively associated with breast cancer mortality in women with ERα-positive disease, regardless menopausal status. This suggests the importance of estrogen signaling contribution in breast tumorigenesis of obese patients. It has been largely demonstrated that adiponectin exerts a protective role in ERα-negative cells, promoting anti-proliferative and pro-apoptotic effects, while controversial data have been reported in ERα-positive cells. Indeed, emerging data provide evidences that adiponectin in obese patients behave as growth factor in ERα-positive breast cancer cells. This addresses how ERα signaling interference may enhance the potential inhibitory threshold of adiponectin in ERα-positive cells. Thus, we may reasonably speculate that the relatively low adiponectin concentrations could be still not adequate to elicit, in ERα-positive breast cancer cells, the same inhibitory effects observed in ERα-negative cells. In the present review we will focus on the molecular mechanisms through which adiponectin affects breast cancer cell behavior in relationship to ERα expression.
Collapse
Affiliation(s)
- Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
- *Correspondence: Loredana Mauro
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
- Health Center, University of Calabria, Arcavacata, Italy
- Sebastiano Andò
| |
Collapse
|
10
|
Adiponectin, Obesity, and Cancer: Clash of the Bigwigs in Health and Disease. Int J Mol Sci 2019; 20:ijms20102519. [PMID: 31121868 PMCID: PMC6566909 DOI: 10.3390/ijms20102519] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
Adiponectin is one of the most important adipocytokines secreted by adipocytes and is called a “guardian angel adipocytokine” owing to its unique biological functions. Adiponectin inversely correlates with body fat mass and visceral adiposity. Identified independently by four different research groups, adiponectin has multiple names; Acrp30, apM1, GBP28, and AdipoQ. Adiponectin mediates its biological functions via three known receptors, AdipoR1, AdipoR2, and T-cadherin, which are distributed throughout the body. Biological functions of adiponectin are multifold ranging from anti-diabetic, anti-atherogenic, anti-inflammatory to anti-cancer. Lower adiponectin levels have been associated with metabolic syndrome, type 2 diabetes, insulin resistance, cardiovascular diseases, and hypertension. A plethora of experimental evidence supports the role of obesity and increased adiposity in multiple cancers including breast, liver, pancreatic, prostrate, ovarian, and colorectal cancers. Obesity mediates its effect on cancer progression via dysregulation of adipocytokines including increased production of oncogenic adipokine leptin along with decreased production of adiponectin. Multiple studies have shown the protective role of adiponectin in obesity-associated diseases and cancer. Adiponectin modulates multiple signaling pathways to exert its physiological and protective functions. Many studies over the years have shown the beneficial effect of adiponectin in cancer regression and put forth various innovative ways to increase adiponectin levels.
Collapse
|
11
|
Challenges and perspectives in the treatment of diabetes associated breast cancer. Cancer Treat Rev 2018; 70:98-111. [PMID: 30130687 DOI: 10.1016/j.ctrv.2018.08.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus is one of the most common chronic disease worldwide and affects all cross-sections of the society including children, women, youth and adults. Scientific evidence has linked diabetes to higher incidence, accelerated progression and increased aggressiveness of different cancers. Among the different forms of cancer, research has reinforced a link between diabetes and the risk of breast cancer. Some studies have specifically linked diabetes to the highly aggressive, triple negative breast cancers (TNBCs) which do not respond to conventional hormonal/HER2 targeted interventions, have chances of early recurrence, metastasize, tend to be more invasive in nature and develop drug resistance. Commonly used anti-diabetic drugs, such as metformin, have recently gained importance in the treatment of breast cancer due to their proposed anti-cancer properties. Here we discuss the link between diabetes and breast cancer, the metabolic disturbances in diabetes that support the development of breast cancer, the challenges involved and future perspective and directions. We link the three main metabolic disturbances (dyslipidemia, hyperinsulinemia and hyperglycemia) that occur in diabetes to potential aberrant molecular pathways that may lead to the development of an oncogenic phenotype of the breast tissue, thereby leading to acceleration of cell growth, proliferation, migration, inflammation, angiogenesis, EMT and metastasis and inhibition of apoptosis in breast cancer cells. Furthermore, managing diabetes and treating cancer using a combination of anti-diabetic and classical anti-cancer drugs should prove to be more efficient in the treatment diabetes associated cancers.
Collapse
|
12
|
Waragai M, Ho G, Takamatsu Y, Shimizu Y, Sugino H, Sugama S, Takenouchi T, Masliah E, Hashimoto M. Dual-therapy strategy for modification of adiponectin receptor signaling in aging-associated chronic diseases. Drug Discov Today 2018; 23:1305-1311. [PMID: 29747002 DOI: 10.1016/j.drudis.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/14/2018] [Accepted: 05/02/2018] [Indexed: 01/23/2023]
Abstract
Given the paradigm of anti-insulin resistance in therapies for metabolic syndrome, there has been considerable interest in adiponectin (APN), an adipocyte-derived sensitizer of insulin receptor signaling. In contrast to hypoadiponectinemia in metabolic syndrome, evidence suggests that Alzheimer's disease (AD) and other diseases, including chronic heart failure (CHF) and chronic kidney disease (CKD), are characterized by hyperadiponectinemia as well as the APN/obesity paradoxes, indicating that a decrease in APN might also be beneficial for these diseases. Thus, distinct from metabolic syndrome, it is anticipated that APN receptor antagonists rather than agonists might be effective in therapy for some chronic diseases.
Collapse
Affiliation(s)
- Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Gilbert Ho
- The PCND Neuroscience Research Institute, Poway, CA, USA
| | - Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Yuka Shimizu
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Hiromu Sugino
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.
| |
Collapse
|
13
|
Gyamfi J, Eom M, Koo JS, Choi J. Multifaceted Roles of Interleukin-6 in Adipocyte-Breast Cancer Cell Interaction. Transl Oncol 2018; 11:275-285. [PMID: 29413760 PMCID: PMC5884177 DOI: 10.1016/j.tranon.2017.12.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide, with a developmental process spanning decades. The malignant cells recruit a variety of cells including fibroblasts, endothelial cells, immune cells, and adipocytes, creating the tumor microenvironment. The tumor microenvironment has emerged as active participants in breast cancer progression and response to treatment through autocrine and paracrine interaction with the malignant cells. Adipose tissue is abundant in the breast cancer microenvironment; interactions with cancer cells create cancer-associated adipocytes which produce a variety of adipokines that influence breast cancer initiation, metastasis, angiogenesis, and cachexia. Interleukin (IL)-6 has emerged as key compound significantly produced by breast cancer cells and adipocytes, with the potential of inducing proliferation, epithelial-mesenchymal phenotype, stem cell phenotype, angiogenesis, cachexia, and therapeutic resistance in breast cancer cells. Our aim is to present a brief knowledge of IL-6’s role in breast cancer. This review summarizes our current understanding of the breast microenvironment, with emphasis on adipocytes as key players in breast cancer tumorigenesis. The effects of key adipocytes such as leptin, adipokines, TGF-b, and IL-6 are discussed. Finally, we discuss the role of IL-6 in various aspects of cancer progression.
Collapse
Affiliation(s)
- Jones Gyamfi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Minseob Eom
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Ja-Seung Koo
- Department of Pathology, Yonsei University College of Medicine.
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea.
| |
Collapse
|
14
|
Choi J, Cha YJ, Koo JS. Adipocyte biology in breast cancer: From silent bystander to active facilitator. Prog Lipid Res 2018; 69:11-20. [DOI: 10.1016/j.plipres.2017.11.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
|
15
|
Chung SJ, Nagaraju GP, Nagalingam A, Muniraj N, Kuppusamy P, Walker A, Woo J, Győrffy B, Gabrielson E, Saxena NK, Sharma D. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy 2017; 13:1386-1403. [PMID: 28696138 DOI: 10.1080/15548627.2017.1332565] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
ADIPOQ/adiponectin, an adipocytokine secreted by adipocytes in the breast tumor microenvironment, negatively regulates cancer cell growth hence increased levels of ADIPOQ/adiponectin are associated with decreased breast cancer growth. However, its mechanisms of action remain largely elusive. We report that ADIPOQ/adiponectin induces a robust accumulation of autophagosomes, increases MAP1LC3B-II/LC3B-II and decreases SQSTM1/p62 in breast cancer cells. ADIPOQ/adiponectin-treated cells and xenografts exhibit increased expression of autophagy-related proteins. LysoTracker Red-staining and tandem-mCherry-GFP-LC3B assay show that fusion of autophagosomes and lysosomes is augmented upon ADIPOQ/adiponectin treatment. ADIPOQ/adiponectin significantly inhibits breast cancer growth and induces apoptosis both in vitro and in vivo, and these events are preceded by macroautophagy/autophagy, which is integral for ADIPOQ/adiponectin-mediated cell death. Accordingly, blunting autophagosome formation, blocking autophagosome-lysosome fusion or genetic-knockout of BECN1/Beclin1 and ATG7 effectively impedes ADIPOQ/adiponectin induced growth-inhibition and apoptosis-induction. Mechanistic studies show that ADIPOQ/adiponectin reduces intracellular ATP levels and increases PRKAA1 phosphorylation leading to ULK1 activation. AMPK-inhibition abrogates ADIPOQ/adiponectin-induced ULK1-activation, LC3B-turnover and SQSTM1/p62-degradation while AMPK-activation potentiates ADIPOQ/adiponectin's effects. Further, ADIPOQ/adiponectin-mediated AMPK-activation and autophagy-induction are regulated by upstream master-kinase STK11/LKB1, which is a key node in antitumor function of ADIPOQ/adiponectin as STK11/LKB1-knockout abrogates ADIPOQ/adiponectin-mediated inhibition of breast tumorigenesis and molecular analyses of tumors corroborate in vitro mechanistic findings. ADIPOQ/adiponectin increases the efficacy of chemotherapeutic agents. Notably, high expression of ADIPOQ receptor ADIPOR2, ADIPOQ/adiponectin and BECN1 significantly correlates with increased overall survival in chemotherapy-treated breast cancer patients. Collectively, these data uncover that ADIPOQ/adiponectin induces autophagic cell death in breast cancer and provide in vitro and in vivo evidence for the integral role of STK11/LKB1-AMPK-ULK1 axis in ADIPOQ/adiponectin-mediated cytotoxic autophagy.
Collapse
Affiliation(s)
- Seung J Chung
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | | | - Arumugam Nagalingam
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | - Nethaji Muniraj
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | - Panjamurthy Kuppusamy
- c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Alyssa Walker
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | - Juhyung Woo
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | - Balázs Győrffy
- d MTA TTK Momentum Cancer Biomarker Research Group , Budapest , Hungary.,e Semmelweis University 2nd Dept. of Pediatrics , Budapest , Hungary
| | - Ed Gabrielson
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | - Neeraj K Saxena
- c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Dipali Sharma
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| |
Collapse
|
16
|
Engin A. Obesity-associated Breast Cancer: Analysis of risk factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:571-606. [PMID: 28585217 DOI: 10.1007/978-3-319-48382-5_25] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Furthermore, obese women are at higher risk of all-cause and breast cancer specific mortality when compared to non-obese women with breast cancer. In this context, increased levels of estrogens due to excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, hyperactivation of insulin-like growth factors (IGFs) pathways, adipocyte-derived adipokines, hypercholesterolemia and excessive oxidative stress contribute to the development of breast cancer in obese women. While higher breast cancer risk with hormone replacement therapy is particularly evident among lean women, in postmenopausal women who are not taking exogenous hormones, general obesity is a significant predictor for breast cancer. Moreover, increased plasma cholesterol leads to accelerated tumor formation and exacerbates their aggressiveness. In contrast to postmenopausal women, premenopausal women with high BMI are inversely associated with breast cancer risk. Nevertheless, life-style of women for breast cancer risk is regulated by avoiding the overweight and a high-fat diet. Estrogen-plus-progestin hormone therapy users for more than 5 years have elevated risks of both invasive ductal and lobular breast cancer. Additionally, these cases are more commonly node-positive and have a higher cancer-related mortality. Collectively, in this chapter, the impacts of obesity-related estrogen, cholesterol, saturated fatty acid, leptin and adiponectin concentrations, aromatase activity, leptin and insulin resistance on breast cancer patients are evaluated. Obesity-related prognostic factors of breast cancer also are discussed at molecular basis.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey. .,, Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
17
|
Liu D, Li S, Li Z. Adiponectin: A biomarker for chronic hepatitis C? Cytokine 2015; 89:27-33. [PMID: 26683021 DOI: 10.1016/j.cyto.2015.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
Abstract
Adiponectin, a hormone primarily synthesized and secreted by adipose tissue, plays a pivotal role in lipid metabolism. Chronic hepatitis C (CHC) infection is characterized by disordered lipid metabolism, which may potentially evolve into steatosis over a period of time. A growing body of evidence appears to link decreased adiponectin plasma levels with severe CHC-related steatosis, which suggests a potential role of this adipokine as a diagnostic and therapeutic target for clinical application. In this review, we have attempted to summarize the current status of adiponectin research in the context of CHC, concentrating predominantly on its roles in CHC, and its potential relevance as a biomarker for CHC.
Collapse
Affiliation(s)
- Ding Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shengyu Li
- Department of General Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Adiponectin inhibits mouse mammary tumor growth and reduced tumor-induced hematopoiesis. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0019-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
19
|
Mauro L, Naimo GD, Ricchio E, Panno ML, Andò S. Cross-Talk between Adiponectin and IGF-IR in Breast Cancer. Front Oncol 2015; 5:157. [PMID: 26236690 PMCID: PMC4502352 DOI: 10.3389/fonc.2015.00157] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/29/2015] [Indexed: 01/22/2023] Open
Abstract
Obesity is a chronic and multifactorial disorder that is reaching epidemic proportions. It is characterized by an enlarged mass of adipose tissue caused by a combination of size increase of preexisting adipocytes (hypertrophy) and de novo adipocyte differentiation (hyperplasia). Obesity is related to many metabolic disorders like hypertension, type 2 diabetes, metabolic syndrome, and cardiovascular disease, and it is associated with an increased risk of cancer development in different tissues including breast. Adipose tissue is now regarded as not just a storage reservoir for excess energy, but rather as an endocrine organ, secreting a large number of bioactive molecules called adipokines. Among these, adiponectin represents the most abundant adipose tissue-excreted protein, which exhibits insulin sensitizing, anti-inflammatory, and antiatherogenic properties. The serum concentrations of adiponectin are inversely correlated with body mass index. Recently, low levels of plasma adiponectin have been associated with an increased risk for obesity-related cancers and development of more aggressive phenotype, concomitantly with alterations in the bioavailability of insulin-like growth factor-I (IGF-I) and IGF-I receptor (IGF-IR) signaling pathways. In this review, we discuss the cross-talk between adiponectin/AdipoR1 and IGF-I/IGF-IR in breast cancer.
Collapse
Affiliation(s)
- Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Cosenza , Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Cosenza , Italy
| | - Emilia Ricchio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Cosenza , Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Cosenza , Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Cosenza , Italy
| |
Collapse
|
20
|
Thompson HJ, Sedlacek SM, Wolfe P, Paul D, Lakoski SG, Playdon MC, McGinley JN, Matthews SB. Impact of Weight Loss on Plasma Leptin and Adiponectin in Overweight-to-Obese Post Menopausal Breast Cancer Survivors. Nutrients 2015; 7:5156-76. [PMID: 26132992 PMCID: PMC4516992 DOI: 10.3390/nu7075156] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/10/2015] [Accepted: 06/18/2015] [Indexed: 12/13/2022] Open
Abstract
Women who are obese at the time of breast cancer diagnosis have higher overall mortality than normal weight women and some evidence implicates adiponectin and leptin as contributing to prognostic disadvantage. While intentional weight loss is thought to improve prognosis, its impact on these adipokines is unclear. This study compared the pattern of change in plasma leptin and adiponectin in overweight-to-obese post-menopausal breast cancer survivors during weight loss. Given the controversies about what dietary pattern is most appropriate for breast cancer control and regulation of adipokine metabolism, the effect of a low fat versus a low carbohydrate pattern was evaluated using a non-randomized, controlled study design. Anthropometric data and fasted plasma were obtained monthly during the six-month weight loss intervention. While leptin was associated with fat mass, adiponectin was not, and the lack of correlation between leptin and adiponectin concentrations throughout weight loss implies independent mechanisms of regulation. The temporal pattern of change in leptin but not adiponectin was affected by magnitude of weight loss. Dietary pattern was without effect on either adipokine. Mechanisms not directly related to dietary pattern, weight loss, or fat mass appear to play dominant roles in the regulation of circulating levels of these adipokines.
Collapse
Affiliation(s)
- Henry J Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523-1173, USA.
| | - Scot M Sedlacek
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523-1173, USA.
- Rocky Mountain Cancer Centers, Denver, CO 80220, USA.
| | - Pamela Wolfe
- Colorado Biostatistics Consortium, University of Colorado, Denver, CO 80045, USA.
| | - Devchand Paul
- Rocky Mountain Cancer Centers, Denver, CO 80220, USA.
| | - Susan G Lakoski
- Department of Internal Medicine, University of Vermont, Burlington, VT 05405, USA.
| | - Mary C Playdon
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523-1173, USA.
- Department of Chronic Disease Epidemiology, Yale University, New Haven, CT 06520, USA.
| | - John N McGinley
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523-1173, USA.
| | - Shawna B Matthews
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523-1173, USA.
| |
Collapse
|
21
|
Mauro L, Pellegrino M, Giordano F, Ricchio E, Rizza P, De Amicis F, Catalano S, Bonofiglio D, Panno ML, Andò S. Estrogen receptor-α drives adiponectin effects on cyclin D1 expression in breast cancer cells. FASEB J 2015; 29:2150-60. [PMID: 25657113 DOI: 10.1096/fj.14-262808] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/13/2015] [Indexed: 11/11/2022]
Abstract
Obesity is a risk factor for breast cancer, largely due to altered expression of various adipocytokines. As it concerns adiponectin, there are not univocal results regarding its role in breast cancer occurrence and progression. Here, we demonstrate that in animals injected with human estrogen receptor (ER)-α-negative MDA-MB-231 cells pretreated with adiponectin (1 and 5 µg/ml), a significant reduction (60 and 40%, respectively) in tumor volume is observed, whereas an increased tumor growth (54 and 109%, respectively) is evidenced in the animals receiving human ER-α-positive MCF-7 cells. Moreover, cyclin D1 (CD1) mRNA and protein levels are decreased in MDA-MB-231 cells, whereas they are up-regulated in ER-α-positive cells by adiponectin. These findings fit with the opposite effects of adiponectin on CD1 promoter: 0.44- and 0.34-fold decrease in MDA-MB-231 cells and 0.63- and 0.95-fold increase in MCF-7 cells, treated with 1 and 5 µg/ml, respectively. Functional studies indicate that these effects are mediated by the specific protein 1 motif located in the CD1 promoter. In the absence of ER-α, the adiponectin-mediated down-regulation of CD1 involves the recruitment of corepressors. In the presence of ER-α, the adiponectin-induced expression of CD1 requires the involvement of an activator complex. In conclusion, we propose that a possible mechanism through which adiponectin differently affects breast cancer growth is the opposite modulation of CD1 levels accordingly to ER-α expression.
Collapse
Affiliation(s)
- Loredana Mauro
- *Department of Pharmacy, Health and Nutritional Sciences, and Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Pellegrino
- *Department of Pharmacy, Health and Nutritional Sciences, and Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | - Francesca Giordano
- *Department of Pharmacy, Health and Nutritional Sciences, and Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | - Emilia Ricchio
- *Department of Pharmacy, Health and Nutritional Sciences, and Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | - Pietro Rizza
- *Department of Pharmacy, Health and Nutritional Sciences, and Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | - Francesca De Amicis
- *Department of Pharmacy, Health and Nutritional Sciences, and Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | - Stefania Catalano
- *Department of Pharmacy, Health and Nutritional Sciences, and Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | - Daniela Bonofiglio
- *Department of Pharmacy, Health and Nutritional Sciences, and Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | - Maria Luisa Panno
- *Department of Pharmacy, Health and Nutritional Sciences, and Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | - Sebastiano Andò
- *Department of Pharmacy, Health and Nutritional Sciences, and Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
22
|
Minatoya M, Kutomi G, Shima H, Asakura S, Otokozawa S, Ohnishi H, Akasaka H, Miura T, Mori M, Hirata K. Relation of Serum Adiponectin Levels and Obesity with Breast Cancer: A Japanese Case-Control Study. Asian Pac J Cancer Prev 2014; 15:8325-30. [DOI: 10.7314/apjcp.2014.15.19.8325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
23
|
Macis D, Guerrieri-Gonzaga A, Gandini S. Circulating adiponectin and breast cancer risk: a systematic review and meta-analysis. Int J Epidemiol 2014; 43:1226-36. [PMID: 24737805 DOI: 10.1093/ije/dyu088] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND We conducted a meta-analysis in order to investigate whether circulating adiponectin, an insulin-sensitizing hormone produced by adipocytes, is associated with breast cancer risk. METHODS A systematic literature search was performed in PubMed, Medline, EMBASE, ISI Web of Knowledge and the Cochrane Library. The summary relative risk (SRR) was calculated by pooling the different study-specific estimates using the random effect models. Meta-regression, subgroup and sensitivity analyses were carried out to investigate between-study heterogeneity and to test publication bias. RESULTS Data from 15 observational studies, published between 2003 and April 2013 for a total of 4249 breast cancer cases, were analysed. The SRR for the 'highest' vs 'lowest' adiponectin levels indicated a 34% reduction in breast cancer risk [95% confidence interval (CI): 13%-50%]. Between-study heterogeneity was not substantial (I(2)=53%). Ten studies were included in the dose-response analysis: the SRR for an increase of 3 µg/ml of adiponectin corresponded to a 5% risk reduction (95% CI: 1%-9%). The comparison between 'highest' and 'lowest' levels of adiponectin showed an inverse association in postmenopausal women (SRR=0.80; 95% CI: 0.63-1.01) and an indication of an inverse relationship in premenopausal women (SRR=0.72, 95% CI: 0.30-1.72). No evidence of publication bias was found. CONCLUSIONS Low circulating adiponectin levels are associated with an increased breast cancer risk. However, properly designed studies are needed to confirm the role of adiponectin as breast cancer biomarker, and clinical trials should be performed to identify those interventions that may be effective in modulating adiponectin levels and reducing breast cancer risk.
Collapse
Affiliation(s)
- Debora Macis
- Division of Cancer Prevention and Genetics and Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics and Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Sara Gandini
- Division of Cancer Prevention and Genetics and Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| |
Collapse
|
24
|
Dossus L, Jimenez-Corona A, Romieu I, Boutron-Ruault MC, Boutten A, Dupré T, Fagherazzi G, Clavel-Chapelon F, Mesrine S. C-reactive protein and postmenopausal breast cancer risk: results from the E3N cohort study. Cancer Causes Control 2014; 25:533-9. [PMID: 24504436 DOI: 10.1007/s10552-014-0355-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/28/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND C-reactive protein (CRP), a marker of low-grade inflammation, has been associated with breast cancer risk, but results are scarce and inconsistent. METHODS A case-control study nested within the E3N prospective cohort included 549 postmenopausal breast cancer cases and 1,040 matched controls, all free of breast cancer at baseline. Serum levels of CRP were measured in samples collected between 1995 and 1999. Unconditional logistic regression models were used to evaluate the association between CRP and breast cancer risk, adjusting for matching factors and known breast cancer risk factors. RESULTS No association was observed between CRP levels and breast cancer risk overall. However, a significant interaction was observed between CRP levels and body mass index (BMI). A statistically significant increase in breast cancer risk was observed in overweight and obese women (BMI ≥ 25 kg/m(2)) (OR 1.92, 95 % CI 1.20-3.08 for CRP ≥ 2.5 mg/L compared with CRP < 1.5 mg/l, p trend = 0.003, p interaction between CRP and BMI = 0.03). Similar results were observed in women with waist circumference (WC) ≥ 88 cm (p trend = 0.01, p interaction = 0.06) and waist-to-hip ratio (WHR) ≥ 0.80 (p trend = 0.06, p interaction = 0.35). CRP levels were not associated with breast cancer risk in women with normal BMI, WC, or WHR. CONCLUSIONS We found a positive association between CRP levels and postmenopausal breast cancer risk restricted to women with excess adiposity. The suggested relationship between low-grade inflammation, abdominal adiposity, and postmenopausal breast cancer risk deserves further investigation.
Collapse
Affiliation(s)
- Laure Dossus
- Team 9: Nutrition, Hormones and Women's Health, Center for Research in Epidemiology and Population Health, Institut National de la Santé et de la Recherche Médicale (INSERM) U1018, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94805, Villejuif Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mauro L, Pellegrino M, De Amicis F, Ricchio E, Giordano F, Rizza P, Catalano S, Bonofiglio D, Sisci D, Panno ML, Andò S. Evidences that estrogen receptor α interferes with adiponectin effects on breast cancer cell growth. Cell Cycle 2013; 13:553-64. [PMID: 24335340 DOI: 10.4161/cc.27455] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adiponectin, the most abundant protein secreted by adipose tissue, exhibits insulin-sensitizing, anti-inflammatory, antiatherogenic, and antiproliferative properties. In addition, it appears to play an important role also in the development and progression of several obesity-related malignancies, including breast cancer. Here, we demonstrated that adiponectin induces a dichotomic effect on breast cancer growth. Indeed, it stimulates growth in ERα+ MCF-7 cells while inhibiting proliferation of ERα- MDA-MB-231 cells. Notably, only in MCF-7 cells adiponectin exposure exerts a rapid activation of MAPK phosphorylation, which is markedly reduced when knockdown of the ERα gene occurred. In addition, adiponectin induces rapid IGF-IR phosphorylation in MCF-7 cells, and the use of ERα siRNA prevents this effect. Moreover, MAPK activation induced by adiponectin was reversed by IGF-IR siRNA. Coimmunoprecipitation studies show the existence of a multiprotein complex involving AdipoR1, APPL1, ERα, IGF-IR, and c-Src that is responsible for MAPK signaling activation in ERα+ positive breast cancer cells. It is well known that in addition to the rapid effects through non-genomic mechanisms, ERα also mediates nuclear genomic actions. In this concern, we demonstrated that adiponectin is able to transactivate ERα in MCF-7 cells. We showed the classical features of ERα transactivation: nuclear localization, downregulation of mRNA and protein levels, and upregulation of estrogen-dependent genes. Thus, our study clarifies the molecular mechanism through which adiponectin modulates breast cancer cell growth, providing evidences on the cell-type dependency of adiponectin action in relationship to ERα status.
Collapse
Affiliation(s)
- Loredana Mauro
- Department of Pharmacy, Health, and Nutritional Sciences; University of Calabria; Cosenza, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health, and Nutritional Sciences; University of Calabria; Cosenza, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health, and Nutritional Sciences; University of Calabria; Cosenza, Italy; Centro Sanitario; University of Calabria; Cosenza, Italy
| | - Emilia Ricchio
- Department of Pharmacy, Health, and Nutritional Sciences; University of Calabria; Cosenza, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health, and Nutritional Sciences; University of Calabria; Cosenza, Italy
| | - Pietro Rizza
- Department of Pharmacy, Health, and Nutritional Sciences; University of Calabria; Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health, and Nutritional Sciences; University of Calabria; Cosenza, Italy; Centro Sanitario; University of Calabria; Cosenza, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health, and Nutritional Sciences; University of Calabria; Cosenza, Italy; Centro Sanitario; University of Calabria; Cosenza, Italy
| | - Diego Sisci
- Department of Pharmacy, Health, and Nutritional Sciences; University of Calabria; Cosenza, Italy; Centro Sanitario; University of Calabria; Cosenza, Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health, and Nutritional Sciences; University of Calabria; Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health, and Nutritional Sciences; University of Calabria; Cosenza, Italy; Centro Sanitario; University of Calabria; Cosenza, Italy
| |
Collapse
|
26
|
Surmacz E. Leptin and adiponectin: emerging therapeutic targets in breast cancer. J Mammary Gland Biol Neoplasia 2013; 18:321-32. [PMID: 24136336 DOI: 10.1007/s10911-013-9302-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 12/13/2022] Open
Abstract
Obesity is a recognized risk factor for breast cancer development and poorer response to therapy. Two major fat tissue-derived adipokines, leptin and adiponectin have been implicated in mammary carcinogenesis. Leptin appears to promote breast cancer progression through activation of mitogenic, antiapoptotic, and metastatic pathways, while adiponectin may restrict tumorigenic processes primarily by inhibiting cell metabolism. Furthermore, adiponectin is known to counteract detrimental leptin effects in breast cancer models. Thus, therapeutic inhibition of pro-neoplastic leptin pathways and reactivation of anti-neoplastic adiponectin signaling may benefit breast cancer patients, especially the obese subpopulation. This review focuses on current experimental strategies aiming at leptin and adiponectin pathways in breast cancer models. Novel leptin receptor antagonists and adiponectin receptor agonists as well as other compounds for therapeutic modulation of adipokine pathways are discussed in detail, including potential pharmacological advantages and limitations of these approaches.
Collapse
Affiliation(s)
- Eva Surmacz
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, 1900 N12th Street, BioLife Bldg. Rm 425, Philadelphia, PA, 19122, USA,
| |
Collapse
|
27
|
Integral role of PTP1B in adiponectin-mediated inhibition of oncogenic actions of leptin in breast carcinogenesis. Neoplasia 2013; 15:23-38. [PMID: 23358729 DOI: 10.1593/neo.121502] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 11/21/2012] [Accepted: 12/03/2012] [Indexed: 01/07/2023] Open
Abstract
The molecular effects of obesity are mediated by alterations in the levels of adipocytokines. High leptin level associated with obese state is a major cause of breast cancer progression and metastasis, whereas adiponectin is considered a "guardian angel adipocytokine" for its protective role against various obesity-related pathogenesis including breast cancer. In the present study, investigating the role of adiponectin as a potential inhibitor of leptin, we show that adiponectin treatment inhibits leptin-induced clonogenicity and anchorage-independent growth. Leptin-stimulated migration and invasion of breast cancer cells is also effectively inhibited by adiponectin. Analyses of the underlying molecular mechanisms reveal that adiponectin suppresses activation of two canonical signaling molecules of leptin signaling axis: extracellular signal-regulated kinase (ERK) and Akt. Pretreatment of breast cancer cells with adiponectin protects against leptin-induced activation of ERK and Akt. Adiponectin increases expression and activity of the physiological inhibitor of leptin signaling, protein tyrosine phosphatase 1B (PTP1B), which is found to be integral to leptin-antagonist function of adiponectin. Inhibition of PTP1B blocks adiponectin-mediated inhibition of leptin-induced breast cancer growth. Our in vivo studies show that adenovirus-mediated adiponectin treatment substantially reduces leptin-induced mammary tumorigenesis in nude mice. Exploring therapeutic strategies, we demonstrate that treatment of breast cancer cells with rosiglitazone results in increased adiponectin expression and inhibition of migration and invasion. Rosiglitazone treatment also inhibits leptin-induced growth of breast cancer cells. Taken together, these data show that adiponectin treatment can inhibit the oncogenic actions of leptin through blocking its downstream signaling molecules and raising adiponectin levels could be a rational therapeutic strategy for breast carcinoma in obese patients with high leptin levels.
Collapse
|
28
|
Role of adipokines and cytokines in obesity-associated breast cancer: therapeutic targets. Cytokine Growth Factor Rev 2013; 24:503-13. [PMID: 24210902 DOI: 10.1016/j.cytogfr.2013.10.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 02/06/2023]
Abstract
Obesity is the cause of a large proportion of breast cancer incidences and mortality in post-menopausal women. In obese people, elevated levels of various growth factors such as insulin and insulin-like growth factors (IGFs) are found. Elevated insulin level leads to increased secretion of estrogen by binding to the circulating sex hormone binding globulin (SHBG). The increased estrogen-mediated downstream signaling favors breast carcinogenesis. Obesity leads to altered expression profiles of various adipokines and cytokines including leptin, adiponectin, IL-6, TNF-α and IL-1β. The increased levels of leptin and decreased adiponectin secretion are directly associated with breast cancer development. Increased levels of pro-inflammatory cytokines within the tumor microenvironment promote tumor development. Efficacy of available breast cancer drugs against obesity-associated breast cancer is yet to be confirmed. In this review, we will discuss different adipokine- and cytokine-mediated molecular signaling pathways involved in obesity-associated breast cancer, available therapeutic strategies and potential therapeutic targets for obesity-associated breast cancer.
Collapse
|
29
|
Abstract
Published results suggests that high adiponectin level may decrease the risk of breast cancer. However, available evidence on breast cancer is conflicting. Therefore a meta-analysis was performed to assess the association between blood adiponectin and breast cancer risk. PubMed database, Web of Science, Elsevier Science, Springer Link and bibliographies of retrieved articles were searched for epidemiological studies published up to March 2013. Meta-analysis was performed on the combined effect values (OR) as well as standardized mean difference (SMD) including 17 studies. Fixed or random effect pooled measure was selected on the basis of homogeneity test among studies. The publication bias was assessed by the Egger's regression asymmetry test and Begg's rank correlation test with Begg's funnel plot. Subgroup analyses and sensitivity analysis were also performed. A total of 13 studies involving 3578 breast cancer cases and 4363 controls contributed to the OR analysis. The high adiponectin level did not significantly affect breast cancer risk (OR=0.902, 95% CI=0.773-1.053). After excluding articles that were the key contributors to between-study heterogeneity, the OR of high adiponectin level was associated with decreased breast cancer risk (OR=0.838, 95% CI=0.744-0.943). There was a significantly association between high adiponectin level and postmenopausal breast cancer women (OR=0.752, 95%CI=0.604-0.936); and it was not associated with premenopausal breast cancer women (OR=0.895, 95%CI=0.638-1.256). The result of pooled measure on SMD was that the high adiponectin level was associated with decreased breast cancer risk (SMD= -0.348, 95% CI= -0.533--0.614) after excluding articles which were the key contributors to between-study heterogeneity. Our findings indicate that high adiponectin level might decrease the risk of postmenopausal breast cancer. More randomized clinical trials and observational studies are needed to confirm this association with underlying biological mechanisms in the future.
Collapse
|
30
|
Miller JA, Thompson PA, Hakim IA, Lopez AM, Thomson CA, Hsu CH, Chow HHS. Expression of epidermal growth factor, transforming growth factor-β1 and adiponectin in nipple aspirate fluid and plasma of pre and post-menopausal women. Biomark Res 2013; 1:18. [PMID: 24252368 PMCID: PMC4177617 DOI: 10.1186/2050-7771-1-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/06/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Nipple aspirate fluid (NAF) contains large amounts of protein thought to reflect the microenvironment of the breast, and is of interest in breast cancer prevention research. The correlation between specific NAF proteins to plasma concentrations have not been well studied in healthy women. We collected matched NAF and plasma from 43 healthy pre and postmenopausal women participating in an early phase clinical study to compare the levels of putative cancer protein biomarkers. We compared baseline NAF and plasma levels of epidermal growth factor (EGF), transforming growth factor-beta 1 (TGF-β1), and adiponectin and evaluated menopausal status and body mass index (BMI) as potential modifying factors. FINDINGS NAF and plasma levels of EGF, TGF-β1 and adiponectin were not correlated. EGF and TGF-β1 levels in NAF of premenopausal women were significantly higher than postmenopausal women (P's < 0.01). These differences by menopausal status were not observed in plasma. Both NAF and plasma adiponectin levels were non-significantly higher in postmenopausal women. NAF biomarker levels were not associated with BMI whereas plasma EGF, TGF-β1 and adiponectin levels in postmenopausal women were all inversely correlated with BMI (P's < 0.05). CONCLUSIONS Protein biomarkers differ significantly between NAF and plasma and are affected differently by both BMI and menopausal status. This study demonstrates important differences in biological information gained by characterizing biomarkers in NAF compared to plasma and suggests each sample source may independently inform on breast cancer risk.
Collapse
Affiliation(s)
| | | | - Iman A Hakim
- Zuckerman College of Public Health, The University of Arizona, Tucson, AZ, USA
| | | | - Cynthia A Thomson
- Zuckerman College of Public Health, The University of Arizona, Tucson, AZ, USA
| | - Chiu-Hsieh Hsu
- Zuckerman College of Public Health, The University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
31
|
|
32
|
Abstract
It is estimated that about half of the population in developed countries are either overweight or obese. In some developing nations obesity rates have increased to surpass those seen in Western countries. This rate increase in obesity has many implications as obesity has been associated with numerous negative health effects including increased risks of hypertension, diabetes, cardiovascular disease, stroke, liver disease, apnea, and some cancer types. Obesity is now considered to be one of the major public health concerns facing the society. Cholangiocarcinomas (bile duct cancers) are malignant tumors arising from cholangiocytes inside or outside of the liver. Although cholangiocarcinomas are relatively rare, they are highly lethal. The low survival rate associated with cholangiocarcinoma is due to the advanced stage of the disease at the time of diagnosis. Prevention is therefore especially important in this cancer type. Some data suggest that the incidence of cholangiocarcinoma in the western world is on the rise. Increasing rate of obesity may be one of the factors responsible for this increase. Determining whether obesity is a risk factor for cholangiocarcinoma has significant clinical and societal implications as obesity is both prevalent and modifiable. This paper seeks to provide a summary of the current knowledge linking obesity and cholangiocarcinoma, and encourage further research on this topic.
Collapse
|
33
|
Campbell KL, Foster-Schubert KE, Makar KW, Kratz M, Hagman D, Schur EA, Habermann N, Horton M, Abbenhardt C, Kuan LY, Xiao L, Davison J, Morgan M, Wang CY, Duggan C, McTiernan A, Ulrich CM. Gene expression changes in adipose tissue with diet- and/or exercise-induced weight loss. Cancer Prev Res (Phila) 2013; 6:217-31. [PMID: 23341572 DOI: 10.1158/1940-6207.capr-12-0212] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Adipose tissue plays a role in obesity-related cancers via increased production of inflammatory factors, steroid hormones, and altered adipokines. The impact of weight loss on adipose tissue gene expression may provide insights into pathways linking obesity with cancer risk. We conducted an ancillary study within a randomized trial of diet, exercise, or combined diet + exercise versus control among overweight/obese postmenopausal women. In 45 women, subcutaneous adipose tissue biopsies were conducted at baseline and after 6 months, and changes in adipose tissue gene expression were determined by microarray with an emphasis on prespecified candidate pathways as well as by unsupervised clustering of more than 37,000 transcripts (Illumina). Analyses were conducted first by randomization group and then by degree of weight change at 6-months in all women combined. At 6 months, diet, exercise, and diet + exercise participants lost a mean of 8.8, 2.5, and 7.9 kg (all P < 0.05 vs. no change in controls). There was no significant change in candidate gene expression by intervention group. In analysis by weight change category, greater weight loss was associated a decrease in 17β-hydroxysteroid dehydrogenase-1 (HSD17B1, Ptrend < 0.01) and leptin (LEP, Ptrend < 0.01) expression, and marginally significant increased expression of estrogen receptor-1 (ESR1, Ptrend = 0.08) and insulin-like growth factor-binding protein-3 (IGFBP3, Ptrend = 0.08). Unsupervised clustering revealed 83 transcripts with statistically significant changes. Multiple gene expression changes correlated with changes in associated serum biomarkers. Weight loss was associated with changes in adipose tissue gene expression after 6 months, particularly in two pathways postulated to link obesity and cancer, that is, steroid hormone metabolism and IGF signaling. Cancer Prev Res; 6(3); 217-31. ©2013 AACR.
Collapse
Affiliation(s)
- Kristin L Campbell
- National Center for Tumor Diseases (NCT), Division of Preventive Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, Heidelberg 69120, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Almabouada F, Diaz-Ruiz A, Rabanal-Ruiz Y, Peinado JR, Vazquez-Martinez R, Malagon MM. Adiponectin receptors form homomers and heteromers exhibiting distinct ligand binding and intracellular signaling properties. J Biol Chem 2012; 288:3112-25. [PMID: 23255609 DOI: 10.1074/jbc.m112.404624] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Adiponectin binds to two widely expressed receptors (AdipoR1 and AdipoR2) that contain seven transmembrane domains but, unlike G-protein coupled receptors, present an extracellular C terminus and a cytosolic N terminus. Recently, AdipoR1 was found to associate in high order complexes. However, it is still unknown whether AdipoR2 may also form homomers or heteromers with AdipoR1 or if such interactions may be functionally relevant. Herein, we have analyzed the oligomerization pattern of AdipoRs by FRET and immunoprecipitation and evaluated both the internalization of AdipoRs in response to various adiponectin isoforms and the effect of adiponectin binding to different AdipoR combinations on AMP-activated protein kinase phosphorylation and peroxisome proliferator-activated receptor α activation. Transfection of HEK293AD cells with AdipoR1 and AdipoR2 showed that both receptors colocalize at both the plasma membrane and the endoplasmic reticulum. Co-transfection with the different AdipoR pairs yielded high FRET efficiencies in non-stimulated cells, which indicates that AdipoR1 and AdipoR2 form homo- and heteromeric complexes under resting conditions. Live FRET imaging suggested that both homo- and heteromeric AdipoR complexes dissociate in response to adiponectin, but heteromers separate faster than homomers. Finally, phosphorylation of AMP-activated protein kinase in response to adiponectin was delayed in cells wherein heteromer formation was favored. In sum, our findings indicate that AdipoR1 and AdipoR2 form homo- and heteromers that present unique interaction behaviors and signaling properties. This raises the possibility that the pleiotropic, tissue-dependent functions of adiponectin depend on the expression levels of AdipoR1 and AdipoR2 and, therefore, on the steady-state proportion of homo- and heteromeric complexes.
Collapse
Affiliation(s)
- Farid Almabouada
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimonides de Investigacion Biomedica de Cordoba/University Hospital Reina Sofia, University of Cordoba, 14014 Cordoba, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Chen X, Lu J, Bao J, Guo J, Shi J, Wang Y. Adiponectin: a biomarker for rheumatoid arthritis? Cytokine Growth Factor Rev 2012; 24:83-9. [PMID: 22910140 DOI: 10.1016/j.cytogfr.2012.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 12/27/2022]
Abstract
Recent achievements in the biology and the function of adipose tissue have regarded white adipose tissue (WAT) as an important endocrine and secretory organ. Releasing a series of multiple-function mediators, WAT is involved in a wide spectrum of diseases, including not only cardiovascular and metabolic complications, such as atherosclerosis and type 2 diabetes, but also inflammatory- and immune-related disorders, such as rheumatoid arthritis (RA) and osteoarthritis (OA). A large number of these mediators, called adipokines, such as tumor necrosis factor alpha (TNF-α), leptin, adiponectin, resistin, chemerin, interleukin-6 (IL-6), visfatin, and so on have been identified and studied widely. Important advances related to these proteins shed new insights into the pathophysiological mechanisms of many complicated diseases, although details of which remain unclear. Adiponectin, one of the most widely investigated adipokine, has been shown to possess both anti- and pro-inflammatory effects. RA is a chronic systemic inflammatory-related autoimmune disease. Accumulated evidence has demonstrated that cytokines and adipokines play an important role in the pathogenesis of RA. In this review, we have summarized the most recent advances in adiponectin research in the context of RA, focusing primarily on its effect on RA-related cells, its regulation on pro-inflammatory cytokines, as well as its validation as a biomarker for RA.
Collapse
Affiliation(s)
- Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | | | | | | | | | | |
Collapse
|