1
|
Liu Q, Bode AM, Chen X, Luo X. Metabolic reprogramming in nasopharyngeal carcinoma: Mechanisms and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:189023. [PMID: 37979733 DOI: 10.1016/j.bbcan.2023.189023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
The high prevalence of metabolic reprogramming in nasopharyngeal carcinoma (NPC) offers an abundance of potential therapeutic targets. This review delves into the distinct mechanisms underlying metabolic reprogramming in NPC, including enhanced glycolysis, nucleotide synthesis, and lipid metabolism. All of these changes are modulated by Epstein-Barr virus (EBV) infection, hypoxia, and tumor microenvironment. We highlight the role of metabolic reprogramming in the development of NPC resistance to standard therapies, which represents a challenging barrier in treating this malignancy. Furthermore, we dissect the state of the art in therapeutic strategies that target these metabolic changes, evaluating the successes and failures of clinical trials and the strategies to tackle resistance mechanisms. By providing a comprehensive overview of the current knowledge and future directions in this field, this review sets the stage for new therapeutic avenues in NPC.
Collapse
Affiliation(s)
- Qian Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| | - Xiangjian Luo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
2
|
Xiang T, Lin YX, Ma W, Zhang HJ, Chen KM, He GP, Zhang X, Xu M, Feng QS, Chen MY, Zeng MS, Zeng YX, Feng L. Vasculogenic mimicry formation in EBV-associated epithelial malignancies. Nat Commun 2018; 9:5009. [PMID: 30479336 PMCID: PMC6258759 DOI: 10.1038/s41467-018-07308-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated epithelial cancers, including nasopharyngeal carcinoma (NPC) and approximately 10% of gastric cancers, termed EBVaGC, represent 80% of all EBV-related malignancies. However, the exact role of EBV in epithelial cancers remains elusive. Here, we report that EBV functions in vasculogenic mimicry (VM). Epithelial cancer cells infected with EBV develop tumor vascular networks that correlate with tumor growth, which is different from endothelial-derived angiogenic vessels and is VEGF-independent. Mechanistically, activation of the PI3K/AKT/mTOR/HIF-1α signaling cascade, which is partly mediated by LMP2A, is responsible for EBV-induced VM formation. Both xenografts and clinical samples of NPC and EBVaGC exhibit VM histologically, which are correlated with AKT and HIF-1α activation. Furthermore, although anti-VEGF monotherapy shows limited effects, potent synergistic antitumor activities are achieved by combination therapy with VEGF and HIF-1α-targeted agents. Our findings suggest that EBV creates plasticity in epithelial cells to express endothelial phenotype and provides a novel EBV-targeted antitumor strategy. EBV latent infection contributes to the pathogenesis of epithelial malignancies by inducing angiogenesis. Here, the authors show EBV promotes vasculogenic mimicry in EBV associated epithelial cancers via AKT/HIF-1α pathway and combination therapy of HIF-1α and VEGF reduces tumour growth.
Collapse
Affiliation(s)
- Tong Xiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.,Department of Oncology, No. 421 Hospital of PLA, 510318, Guangzhou, China
| | - Yu-Xin Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Wenlong Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Hao-Jiong Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Ke-Ming Chen
- Department of Pathology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Gui-Ping He
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Xiao Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Miao Xu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Qi-Sheng Feng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Ming-Yuan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Mu-Sheng Zeng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yi-Xin Zeng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| | - Lin Feng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| |
Collapse
|
3
|
Koh YW, Han JH, Yoon DH, Suh C, Huh J. Epstein-Barr virus positivity is associated with angiogenesis in, and poorer survival of, patients receiving standard treatment for classical Hodgkin's lymphoma. Hematol Oncol 2017; 36:182-188. [DOI: 10.1002/hon.2468] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Young Wha Koh
- Department of Pathology; Ajou University School of Medicine; Suwon Korea
| | - Jae-Ho Han
- Department of Pathology; Ajou University School of Medicine; Suwon Korea
| | - Dok Hyun Yoon
- Departments of Oncology; University of Ulsan College of Medicine; Seoul Korea
| | - Cheolwon Suh
- Departments of Oncology; University of Ulsan College of Medicine; Seoul Korea
| | - Jooryung Huh
- Pathology, Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| |
Collapse
|
4
|
Taylor JG, Liapis K, Gribben JG. The role of the tumor microenvironment in HIV-associated lymphomas. Biomark Med 2016; 9:473-82. [PMID: 25985176 DOI: 10.2217/bmm.15.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There has been considerable interest in the role of the lymphoma microenvironment. Despite the use of highly active antiretroviral therapy (HAART), AIDS-related diffuse large-B-cell lymphoma remains common and HIV-relatedHIV-associated classical Hodgkin's lymphoma is increasing in incidence. Less is known about the impact HIV and HAART have on the lymphoma microenvironment. AIDS-related diffuse large B-cell lymphoma is highly angiogenic, demonstrates increased lymphoblastic histology, proliferation, increased activated cytotoxic T cells, reduced CD4(+) and FOXP3(+) T cells, but no differences in tumor-associated macrophages. Early initiation of HAART improves immunosurveillance, but cases without viral antigens appear able to avoid immunologic reaction. Increased T cell infiltrates seen with HAART treatment in HIV-related classical Hodgkin's lymphoma may contribute to malignant cell growth.
Collapse
Affiliation(s)
- Joseph G Taylor
- 1Barts Cancer Institute, Centre for Haemato-Oncology, Charterhouse Square, London, EC1M 6BQ, UK
| | - Konstantinos Liapis
- 1Barts Cancer Institute, Centre for Haemato-Oncology, Charterhouse Square, London, EC1M 6BQ, UK
| | - John G Gribben
- 1Barts Cancer Institute, Centre for Haemato-Oncology, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
5
|
Jonigk D, Izykowski N, Maegel L, Schormann E, Ludewig B, Kreipe H, Hussein K. Tumour angiogenesis in Epstein-Barr virus-associated post-transplant smooth muscle tumours. Clin Sarcoma Res 2014; 4:1. [PMID: 24398114 PMCID: PMC3896710 DOI: 10.1186/2045-3329-4-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/01/2013] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated post-transplant smooth muscle tumours (PTSMT), are rare complications following organ/stem cell transplantation. Despite the mainly benign behaviour of PTSMT, alternative therapies are needed for those patients with progressive tumours. In tumours not approachable by surgery or reduction of immunosuppression, the angiogenic microenvironment might be a potential target of therapy, an approach that is well utilised in other soft tissue neoplasms. In a previous study, we evaluated the expression of EBV-related genes and the microRNA profile in PTSMT, but so far the characteristics of angiogenesis in PTSMT are not known. Therefore, the aim of this study was to evaluate the expression pattern of angiogenesis-related genes in PTSMT, in order to identify potential target molecules for anti-angiogenic therapy.PTSMT (n = 5 tumours) were compared with uterine leiomyomas (n = 7). Analyses included real-time PCR of 45 angiogenesis-associated genes, immunohistochemistry (CD31, prostaglandin endoperoxide synthase 1/PTGS1) and assessment of tumour vascularisation by conventional histopathology.PTSMT showed similar or fewer vessels than leiomyomas. Of the genes under investigation, 23 were down-deregulated (pro-angiogenic and some anti-angiogenic factors) and five were up-regulated (e.g. PTGS1 which is expressed at very low levels in leiomyomas but moderately higher levels in PTSMT).In summary, no particular target molecule could be identified, because tumour angiogenesis in PTSMT is characterised by low levels of major pro-angiogenic factors and there is no prominent increase in tumour vascularisation. EBV can induce angiogenesis via its viral late membrane protein 1 (LMP1) but PTSMT frequently do not express LMP1, which could be an explanation why, despite EBV infection, PTSMT show no exaggerated tumour angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kais Hussein
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Str, 1, D-30625 Hanover, Germany.
| |
Collapse
|