1
|
Vanderheijden C, Yakkioui Y, Vaessen T, Santegoeds R, Temel Y, Hoogland G, Hovinga K. Developmental gene expression in skull-base chordomas and chondrosarcomas. J Neurooncol 2025; 172:249-256. [PMID: 39690395 PMCID: PMC11832612 DOI: 10.1007/s11060-024-04913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
PURPOSE Chordomas are malignant tumors of the axial spine and skull base, and they are notorious for their poor treatment response. Differentiating these tumors from comparatively less malignant chondrosarcomas is crucial for treatment and prognostication. Both tumor types differ in their developmental origin. Chordomas are considered to be derived from notochordal remnants and chondrosarcomas from mesenchymal cells. Here, we evaluated the differential expression of developmental transcription factors in these skull base tumors. METHODS Histopathologically-confirmed tumor biopsies were obtained from 12 chordoma and 7 chondrosarcoma patients. Following RNA extraction, samples were submitted to real-time quantitative PCR (RT-qPCR) for the evaluation of 32 evolutionary conserved genes that are known to associate with notochord, mesoderm, and axial spine development. Gene expression levels were normalized to housekeeping genes ACTB and RS27a. RESULTS Fifteen genes were either exclusively expressed (n = 12) or overexpressed (n = 3; 2.21-4.43 fold increase) in chordoma, compared to chondrosarcoma. Brachyury and CD24 were highly and exclusively expressed in chordoma. Other novel genes exclusive to chordomas included chordin, HOXA5 and ACAN. Vice versa, ten genes were either exclusively expressed (n = 2) or overexpressed (n = 8; 0.01-0.66 fold increase) in chondrosarcoma, compared to chordoma. CONCLUSION As chordoma patients demonstrate a worse prognosis compared to chondrosarcoma patients, the differential expression of chordin, HOXA5 and ACAN and CD24 could be relevant for the pathophysiology of chordomas and may have diagnostic and treatment value. Further study on role of these genes in tumorigenesis is therefore warranted.
Collapse
Affiliation(s)
- Cas Vanderheijden
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, 6202 AZ, Maastricht, The Netherlands
- School of Mental Health and Neuroscience, Experimental Neurosurgery, Maastricht University, Maastricht, The Netherlands
| | - Youssef Yakkioui
- School of Mental Health and Neuroscience, Experimental Neurosurgery, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Noordwest Hospital, Alkmaar, The Netherlands
| | - Thomas Vaessen
- School of Mental Health and Neuroscience, Experimental Neurosurgery, Maastricht University, Maastricht, The Netherlands
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Remco Santegoeds
- School of Mental Health and Neuroscience, Experimental Neurosurgery, Maastricht University, Maastricht, The Netherlands
- Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, 6202 AZ, Maastricht, The Netherlands
- School of Mental Health and Neuroscience, Experimental Neurosurgery, Maastricht University, Maastricht, The Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, 6202 AZ, Maastricht, The Netherlands
- School of Mental Health and Neuroscience, Experimental Neurosurgery, Maastricht University, Maastricht, The Netherlands
| | - Koos Hovinga
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, 6202 AZ, Maastricht, The Netherlands.
- School of Mental Health and Neuroscience, Experimental Neurosurgery, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
2
|
Wang K, Xie SN, Wang L, Du J, Ma JP, Huo XL, Tian KB, Zhang LW, Zhang JT, Wu Z. Natural Growth Dynamics of Untreated Skull Base Chordomas In Vivo. World Neurosurg 2020; 136:e310-e321. [PMID: 31926359 DOI: 10.1016/j.wneu.2019.12.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the natural growth dynamics of skull base chordomas. METHODS A retrospective study of skull base chordomas was performed. Patients with ≥2 preoperative magnetic resonance (MR) images and with pathologically confirmed chordomas were enrolled. All clinical data and MR images were studied. RESULTS Twenty-one patients with pathologically confirmed skull base chordomas were enrolled. The mean volume of the tumors at diagnosis was 19.9 ± 17.0 cm3, with a mean interval examination period of 22.4 ± 26.1 (range, 3-113) months. The mean tumor volume change was approximately 15.4 ± 16.3 cm3. The mean specific growth rate was 8% ± 9% per month, and the mean specific growth volume was 0.8 ± 0.7 cm3 per month. The tumor MR signal index grade, female gender, no dura mater breakthrough, endophytic type, small tumors, and soft tumor texture were related to a higher tumor growth rate (P < 0.05), and small tumors showed the greatest growth rate compared with the middle-sized and large tumors. Curve estimation was performed using a power function (R2 = 0.545). CONCLUSIONS The skull base chordoma is a slow-growing tumor. The cases involving characteristics of female gender, endophytic type, small tumor size, and MR grade 3 showed a higher growth rate.
Collapse
Affiliation(s)
- Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, People's Republic of China
| | - Si-Ning Xie
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, People's Republic of China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, People's Republic of China
| | - Jiang Du
- Department of Pathology, Beijing Neurosurgical Institute, Fengtai District, Beijing, People's Republic of China
| | - Jun-Peng Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, People's Republic of China
| | - Xu-Lei Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, People's Republic of China
| | - Kai-Bing Tian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, People's Republic of China
| | - Li-Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, People's Republic of China
| | - Jun-Ting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, People's Republic of China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Zou MX, Lv GH, Zhang QS, Wang SF, Li J, Wang XB. Prognostic Factors in Skull Base Chordoma: A Systematic Literature Review and Meta-Analysis. World Neurosurg 2018; 109:307-327. [DOI: 10.1016/j.wneu.2017.10.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 01/07/2023]
|
4
|
Wang K, Wang L, Tian K, Xiao X, Wu Z, Jia G, Zhang L, Zhang J. Surgical resection of upper-middle clivus chordomas via a modified anterior transpetrous approach. Clin Neurol Neurosurg 2015; 130:20-5. [DOI: 10.1016/j.clineuro.2014.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/06/2014] [Accepted: 12/20/2014] [Indexed: 11/15/2022]
|
5
|
AlOtaibi F, Guiot MC, Muanza T, Di Maio S. Giant petroclival primary intradural chordoma: case report and systematic review of the literature. J Neurol Surg Rep 2014; 75:e160-9. [PMID: 25083378 PMCID: PMC4110134 DOI: 10.1055/s-0034-1378157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/09/2014] [Indexed: 11/24/2022] Open
Abstract
Background Chordomas are rare, locally aggressive neoplasms thought to arise from notochordal remnants in the axial skeleton. Primary intradural chordomas are considered to be extremely rare. In this article a giant intradural petroclival chordoma is presented, and a synthesis of the available literature is performed to measure overall survival (OS) and recurrence-free survival (RFS) and to identify prognostic factors. Methods A systematic Medline review yielded 47 patients with purely intradural tumors from 38 publications including 39 chordomas, 8 cases of ecchordosis physaliphora, and 1 case with features of both. The 5-year OS and RFS were calculated based on the Kaplan-Meier method. Risk factors for progression or mortality were analyzed using binomial logistic regression. Results Maximal tumor diameter varied from 1.5 to 6.0 cm (mean: 3.2 cm). Tumors were located predominantly in the prepontine area (66.7%). Combined 5-year Kaplan-Meier OS and RFS were 77% ± 11% and 74% ± 11%, respectively. Incomplete surgical resection, larger tumor diameter, and an elevated Ki-67 index were statistically more frequent in cases of recurrence and mortality. Conclusions Based on a systematic literature review, the behavior of primary intradural chordomas may be closer to typical chordomas than was previously thought.
Collapse
Affiliation(s)
- Fahad AlOtaibi
- Division of Neurosurgery, Department of Radiation Oncology, McGill University, Jewish General Hospital, Montreal, Quebec, Canada ; Department of Neurosurgery, National Neuroscience Institute, King Fahad Medical Center, Riyadh, Saudi Arabia
| | - Marie-Christine Guiot
- Department of Neuropathology, McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Thierry Muanza
- Department of Radiation Oncology, McGill University, Jewish General Hospital, Montreal, Quebec, Canada
| | - Salvatore Di Maio
- Division of Neurosurgery, Department of Radiation Oncology, McGill University, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Kitamura Y, Sasaki H, Kimura T, Miwa T, Takahashi S, Kawase T, Yoshida K. Molecular and clinical risk factors for recurrence of skull base chordomas: gain on chromosome 2p, expression of brachyury, and lack of irradiation negatively correlate with patient prognosis. J Neuropathol Exp Neurol 2013; 72:816-23. [PMID: 23965741 DOI: 10.1097/nen.0b013e3182a065d0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chordomas are invasive tumors that develop from notochordal remnants and frequently occur in the skull base. The T gene and its product (brachyury) have recently been suggested to play an important role in chordoma progression. To date, few studies have investigated the relationship between the molecular/genetic characteristics of chordoma and patient prognosis. We analyzed 37 skull base chordomas for chromosomal copy number aberrations using comparative genomic hybridization, brachyury expression by immunohistochemistry, and T gene copy number by fluorescence in situ hybridization. The results of these molecular analyses and clinical parameters were compared with the patients' clinical courses. Univariate analyses using the log-rank test demonstrated that losses on chromosome 1p and gains on 1q and 2p were negatively correlated with progression-free survival, as were factors such as female sex, partial tumor removal, lack of postoperative irradiation, and high MIB-1 index. Expression of brachyury and copy number gain of the T gene were also significantly associated with shorter progression-free survival. Multivariate analysis using the Cox hazards model showed that lack of irradiation, gain on chromosome 2p, and expression of brachyury were independently associated with a poor prognosis. Our results suggest that brachyury-negative chordomas arebiologically distinct from brachyury-positive chordomas and that T/brachyury might be an appropriate molecular therapeutic target for chordoma.
Collapse
Affiliation(s)
- Yohei Kitamura
- Departments of Neurosurgery, and Pathology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Kitamura Y, Sasaki H, Kimura T, Miwa T, Takahashi S, Kawase T, Yoshida K. Molecular and Clinical Risk Factors for Recurrence of Skull Base Chordomas: Gain on Chromosome 2p, Expression of Brachyury, and Lack of Irradiation Negatively Correlate With Patient Prognosis. J Neuropathol Exp Neurol 2013. [DOI: 10.1093/jnen/72.9.814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|