1
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
2
|
Gil-Gas C, Sánchez-Díez M, Honrubia-Gómez P, Sánchez-Sánchez JL, Alvarez-Simón CB, Sabater S, Sánchez-Sánchez F, Ramírez-Castillejo C. Self-Renewal Inhibition in Breast Cancer Stem Cells: Moonlight Role of PEDF in Breast Cancer. Cancers (Basel) 2023; 15:5422. [PMID: 38001682 PMCID: PMC10670784 DOI: 10.3390/cancers15225422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer is the leading cause of death among females in developed countries. Although the implementation of screening tests and the development of new therapies have increased the probability of remission, relapse rates remain high. Numerous studies have indicated the connection between cancer-initiating cells and slow cellular cycle cells, identified by their capacity to retain long labeling (LT+). In this study, we perform new assays showing how stem cell self-renewal modulating proteins, such as PEDF, can modify the properties, percentage of biomarker-expressing cells, and carcinogenicity of cancer stem cells. The PEDF signaling pathway could be a useful tool for controlling cancer stem cells' self-renewal and therefore control patient relapse, as PEDF enhances resistance in breast cancer patient cells' in vitro culture. We have designed a peptide consisting of the C-terminal part of this protein, which acts by blocking endogenous PEDF in cell culture assays. We demonstrate that it is possible to interfere with the self-renewal capacity of cancer stem cells, induce anoikis in vivo, and reduce resistance against docetaxel treatment in cancer patient cells in in vitro culture. We have also demonstrated that this modified PEDF protein produces a significant decrease in the percentage of expressed cancer stem cell markers.
Collapse
Affiliation(s)
- Carmen Gil-Gas
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
| | - Marta Sánchez-Díez
- HST Group, Department Biotechnology-BV, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Paloma Honrubia-Gómez
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
| | - Jose Luis Sánchez-Sánchez
- Oncology Unit, Hospital General de Almansa, 02640 Albacete, Spain;
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Carmen B. Alvarez-Simón
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Sebastia Sabater
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Francisco Sánchez-Sánchez
- Laboratory of Medical Genetic, Faculty of Medicine, Instituto de Investigaciones en Discapacidades Neurológicas (IDINE), University of Castilla La-Mancha, 02006 Albacete, Spain
| | - Carmen Ramírez-Castillejo
- HST Group, Department Biotechnology-BV, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Oncology Group, Instituto de Investigación Sanitaria San Carlos, 28040 Madrid, Spain
| |
Collapse
|
3
|
Sánchez-Díez M, Alegría-Aravena N, López-Montes M, Quiroz-Troncoso J, González-Martos R, Menéndez-Rey A, Sánchez-Sánchez JL, Pastor JM, Ramírez-Castillejo C. Implication of Different Tumor Biomarkers in Drug Resistance and Invasiveness in Primary and Metastatic Colorectal Cancer Cell Lines. Biomedicines 2022; 10:1083. [PMID: 35625820 PMCID: PMC9139065 DOI: 10.3390/biomedicines10051083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
Protein expression profiles are directly related to the different properties of cells and are conditioned by the cellular niche. As an example, they are the cause of the characteristic cell plasticity, epithelium-mesenchymal transition (EMT), and drug resistance of cancer cells. This article characterizes ten biomarkers related to these features in three human colorectal cancer cell lines: SW-480, SW-620, and DLD-1, evaluated by flow cytometry; and in turn, resistance to oxaliplatin is studied through dose-response trials. The main biomarkers present in the three studied lines correspond to EpCAM, CD-133, and AC-133, with the latter two in low proportions in the DLD-1 line. The biomarker CD166 is present in greater amounts in SW-620 and DLD-1 compared to SW-480. Finally, DLD-1 shows high values of Trop2, which may explain the aggressiveness and resistance of these cells to oxaliplatin treatments, as EpCAM is also highly expressed. Exposure to oxaliplatin slows cell growth but also helps generate resistance to the treatment. In conclusion, the response of the cell lines is variable, due to their genetic variability, which will condition protein expression and cell growth. Further analyses in this area will provide important information for better understanding of patients' cellular response and how to prevent resistance.
Collapse
Affiliation(s)
- Marta Sánchez-Díez
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Nicolás Alegría-Aravena
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
| | - Marta López-Montes
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
| | - Josefa Quiroz-Troncoso
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Raquel González-Martos
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Adrián Menéndez-Rey
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
| | | | - Juan Manuel Pastor
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Carmen Ramírez-Castillejo
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (N.A.-A.); (M.L.-M.); (J.Q.-T.); (R.G.-M.); (A.M.-R.)
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- ETSIAAB, Departamento Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, IdISSC, 28040 Madrid, Spain
| |
Collapse
|
4
|
Filip S, Vymetalkova V, Petera J, Vodickova L, Kubecek O, John S, Cecka F, Krupova M, Manethova M, Cervena K, Vodicka P. Distant Metastasis in Colorectal Cancer Patients-Do We Have New Predicting Clinicopathological and Molecular Biomarkers? A Comprehensive Review. Int J Mol Sci 2020; 21:E5255. [PMID: 32722130 PMCID: PMC7432613 DOI: 10.3390/ijms21155255] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) remains a serious health problem worldwide. Approximately half of patients will develop distant metastasis after CRC resection, usually with very poor prognosis afterwards. Because patient performance after distant metastasis surgery remains very heterogeneous, ranging from death within 2 years to a long-term cure, there is a clinical need for a precise risk stratification of patients to aid pre- and post-operative decisions. Furthermore, around 20% of identified CRC cases are at IV stage disease, known as a metastatic CRC (mCRC). In this review, we overview possible molecular and clinicopathological biomarkers that may provide prognostic and predictive information for patients with distant metastasis. These may comprise sidedness of the tumor, molecular profile and epigenetic characteristics of the primary tumor and arising metastatic CRC, and early markers reflecting cancer cell resistance in mCRC and biomarkers identified from transcriptome. This review discusses current stage in employment of these biomarkers in clinical practice as well as summarizes current experience in identifying predictive biomarkers in mCRC treatment.
Collapse
Affiliation(s)
- Stanislav Filip
- Department of Oncology and Radiotherapy, Charles University, Faculty of Medicine in Hradec Kralove, Šimkova 870, 50001 Hradec Králové, Czech Republic; (J.P.); (O.K.); (S.J.)
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (V.V.); (L.V.); (K.C.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 32300 Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 12800 Prague, Czech Republic
| | - Jiri Petera
- Department of Oncology and Radiotherapy, Charles University, Faculty of Medicine in Hradec Kralove, Šimkova 870, 50001 Hradec Králové, Czech Republic; (J.P.); (O.K.); (S.J.)
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (V.V.); (L.V.); (K.C.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 32300 Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 12800 Prague, Czech Republic
| | - Ondrej Kubecek
- Department of Oncology and Radiotherapy, Charles University, Faculty of Medicine in Hradec Kralove, Šimkova 870, 50001 Hradec Králové, Czech Republic; (J.P.); (O.K.); (S.J.)
| | - Stanislav John
- Department of Oncology and Radiotherapy, Charles University, Faculty of Medicine in Hradec Kralove, Šimkova 870, 50001 Hradec Králové, Czech Republic; (J.P.); (O.K.); (S.J.)
| | - Filip Cecka
- Department of Surgery, University Hospital in Hradec Kralove, Sokolská 581, 50005 Hradec Králové, Czech Republic;
| | - Marketa Krupova
- The Fingerland Department of Pathology, University Hospital in Hradec Kralove, Sokolská 581, 50005 Hradec Králové, Czech Republic; (M.K.); (M.M.)
| | - Monika Manethova
- The Fingerland Department of Pathology, University Hospital in Hradec Kralove, Sokolská 581, 50005 Hradec Králové, Czech Republic; (M.K.); (M.M.)
| | - Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (V.V.); (L.V.); (K.C.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 12800 Prague, Czech Republic
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (V.V.); (L.V.); (K.C.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 32300 Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 12800 Prague, Czech Republic
| |
Collapse
|
5
|
Huang R, Mo D, Wu J, Ai H, Lu Y. CD133 expression correlates with clinicopathologic features and poor prognosis of colorectal cancer patients: An updated meta-analysis of 37 studies. Medicine (Baltimore) 2018; 97:e10446. [PMID: 29879012 PMCID: PMC5999490 DOI: 10.1097/md.0000000000010446] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND CD133 has been identified as a putative cancer stem cell marker in colorectal cancer (CRC). However, the clinicopathological and prognostic significance of CD133 in CRC patients remains controversial. Thus, we conducted a meta-analysis to quantitatively evaluate the above issues. METHODS We collected a comprehensive literature search from PubMed, Web of Science, and Embase database up to September 20, 2016 examining CD133 and clinical features of colorectal cancer patients. We used the odds ratio (OR) with 95% confidence interval (CI) to estimate the effects by overall and stratified analysis. RESULTS The overall result of our meta-analysis indicated that CD133 expression was positively correlated with T category, distant metastasis, lymphatic invasion, and vascular invasion. Moreover, patients with higher CD133 expression had a poorer overall survival (OS) (HR=2.01, P < .001) and a lower 5-year OS rate (OR = 3.26, P < .001) than those with lower expression. Disease-free survival (DFS) and 5-year DFS rate were similar with the above results. Though the correlation between CD133 expression with the clinical characteristic was not positive in some ways when we analyzed the different subgroup. The prognostic value of CD133 expression for 5-year OS rate of CRC patients was noticeable in spite of different patients' region, multiple antibodies used in studies, various cut-off values of CD133 expression, and adjuvant therapy situation of patients. CONCLUSION CD133 is a useful predictive or prognostic biomarker for CRC in clinical assessment and may serve as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
| | - Dan Mo
- Department of Surgery, Maternal and Child Health Hospital of The Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Junrong Wu
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huaying Ai
- Department of Injection Room, The People's Hospital of Yingtan City, Yingtan, Jiangxi
| | - Yiping Lu
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Chen X, Guan H, Liu XD, Xie DF, Wang Y, Ma T, Huang B, Zhou PK. p53 positively regulates the expression of cancer stem cell marker CD133 in HCT116 colon cancer cells. Oncol Lett 2018; 16:431-438. [PMID: 29928431 DOI: 10.3892/ol.2018.8619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023] Open
Abstract
Colon cancer stem cells (CSCs), which are highly capable of self-renewal and proliferation, are involved in colon tumorigenesis and response to therapy. CD133 is considered the most robust surface marker for colorectal cancer stem cells. Although the TP53 gene is frequently mutated in colon cancer, it remains not fully understood whether and how tumor protein p53 (p53) is associated with CD133 expression in colon cancer cells. In the present study, the expression of the CSC biomarker CD133 was investigated in terms of p53 status in colorectal carcinoma HCT116 cells. p53 wild-type HCT116 (HCT116 p53+/+) and depleted HCT116 (HCT116 p53-/-) cells were used throughout this study. Cells carrying the CSC biomarkers CD133 and CD44 were examined by flow cytometry. A dual-luciferase reporter assay was employed to further confirm the transcriptional regulation of the CD133 promoter by p53. The results demonstrated that there was a significant difference in the % of CD133-positive cells between the HCT116 p53+/+ cell line (84.84±0.05%) and the HCT116 p53-/- cell line (4.13±0.02%). The mRNA expression levels of CD133 in HCT116 p53+/+ cells were also significantly higher compared with HCT116 p53-/- cells. Knockdown of p53 by specific small interfering RNA greatly reduced the expression of CD133 in HCT116 p53+/+ cells. Transcription factor binding site analysis indicated that there are several p53 binding elements in the CD133 promoter region. A dual-luciferase reporter assay further demonstrated the transcriptional activation of CD133 promoter by p53. In conclusion, these results suggest that p53 positively regulates the expression of CSC marker CD133 in the HCT116 human colon colorectal cancer cell line. p53 may be involved in the initiation and maintenance of colorectal cancer stem cells through regulating the expression of CD133.
Collapse
Affiliation(s)
- Xia Chen
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, Hunan 421001, P.R. China.,Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiao-Dan Liu
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Da-Fei Xie
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yu Wang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Teng Ma
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Bo Huang
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ping-Kun Zhou
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, Hunan 421001, P.R. China.,Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
7
|
Kazama S, Kishikawa J, Kiyomatsu T, Kawai K, Nozawa H, Ishihara S, Watanabe T. Expression of the stem cell marker CD133 is related to tumor development in colorectal carcinogenesis. Asian J Surg 2017; 41:274-278. [PMID: 28190751 DOI: 10.1016/j.asjsur.2016.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/21/2016] [Accepted: 12/07/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND/OBJECTIVE CD133 is currently considered the most robust surface marker for colorectal cancer stem cells. Two meta-analysis reports have suggested that CD133 expression is significantly associated with shorter survival, and CD133 may play an important role in the progression of colorectal cancer. However, the role of CD133 in colorectal adenoma has not been fully elucidated. METHODS We used immunohistochemistry to evaluate CD133 expression in 200 endoscopically resected colorectal polyps from 200 patients and 20 normal mucosae between January 1993 and December 1996. RESULTS CD133 staining was positive in 17.9% of the colorectal adenomas. Moreover, CD133 expression was associated with differentiation status (p = 0.003) and tumor size (p = 0.03). CONCLUSION CD133 might play an important role in tumor development.
Collapse
Affiliation(s)
- Shinsuke Kazama
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Junko Kishikawa
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomomichi Kiyomatsu
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazushige Kawai
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroaki Nozawa
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Soichiro Ishihara
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshiaki Watanabe
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
8
|
CD133 expression may be useful as a prognostic indicator in colorectal cancer, a tool for optimizing therapy and supportive evidence for the cancer stem cell hypothesis: a meta-analysis. Oncotarget 2017; 7:10023-36. [PMID: 26840260 PMCID: PMC4891101 DOI: 10.18632/oncotarget.7054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/08/2015] [Indexed: 12/14/2022] Open
Abstract
We performed a meta-analysis of CD133-related clinical data to investigate the role of cancer stem cells (CSCs) in the clinical outcomes of colorectal cancer (CRC) patients, analyzing the effectiveness of various therapeutic strategies and examining the validity of the CSC hypothesis. For 28 studies (4546 patients), the relative risk (RR) to survival outcomes associated with CD133+ CRCs were calculated using STATA 12.0 software. Pooled results showed that CD133High patients had poor 5-year overall survival (RR 0.713, 95% CI 0·616-0·826) and 5-year disease free survival (RR 0·707, 95% CI 0·602-0·831). Both associations were consistently observed across different races, research techniques and therapeutic strategies. In a subgroup receiving adjuvant therapy, CD133Low patients achieved significantly better survival than CD133High patients. The findings suggest that CD133 could serve as a predictive marker of poor prognosis and treatment failure in CRC. CD133Low patients could benefit from adjuvant treatments, while CD133High patients should be given novel treatments besides adjuvant therapy. Our results also provide evidence in support of the CSC hypothesis.
Collapse
|
9
|
Abstract
Based on an analysis of a large number of sources of literature, the paper gives general information on the markers for cancer stem cells (CSCs), which allow the detection of this rare cell subpopulation, on the possibilities of estimating their immunohistochemical or immunofluorescent expression in tumors, and on the prognostic and predictive values of these molecules. For their detection, investigators generally use definite molecules, the so-called markers of CSCs, among which there are CD44, CD133, CD24, aldehyde dehydrogenase, and others. The expression of these molecules in the tumor tissue obtained from patients affects survival rates and permits the prediction of a response to therapy. A better insight into the immunophenotype of CSCs, the role of CSC markers in retaining the special properties of this call population, and the clinical significance of the expression of CSC markers will be able to elaborate new approaches to therapy for malignancies.
Collapse
Affiliation(s)
- M V Puchinskaya
- Belarusian State Medical University, Minsk, Republic of Belarus
| |
Collapse
|