1
|
Shemesh R, Laufer-Geva S, Gorzalczany Y, Anoze A, Sagi-Eisenberg R, Peled N, Roisman LC. The interaction of mast cells with membranes from lung cancer cells induces the release of extracellular vesicles with a unique miRNA signature. Sci Rep 2023; 13:21544. [PMID: 38057448 PMCID: PMC10700580 DOI: 10.1038/s41598-023-48435-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Mast cells (MCs) are immune cells that play roles in both normal and abnormal processes. They have been linked to tumor progression in several types of cancer, including non-small cell lung cancer (NSCLC). However, the exact role of MCs in NSCLC is still unclear. Some studies have shown that the presence of a large number of MCs is associated with poor prognosis, while others have suggested that MCs have protective effects. To better understand the role of MCs in NSCLC, we aimed to identify the initial mechanisms underlying the communication between MCs and lung cancer cells. Here, we recapitulated cell-to-cell contact by exposing MCs to membranes derived from lung cancer cells and confirming their activation, as evidenced by increased phosphorylation of the ERK and AKT kinases. Profiling of the microRNAs that were selectively enriched in the extracellular vesicles (EVs) released by the lung cancer-activated MCs revealed that they contained significantly increased amounts of miR-100-5p and miR-125b, two protumorigenic miRNAs. We explored the pathways regulated by these miRNAs via enrichment analysis using the KEGG database, demonstrating that these two miRNAs regulate p53 signaling, cancer pathways, and pathways associated with apoptosis and the cell cycle.
Collapse
Affiliation(s)
- Rachel Shemesh
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | - Smadar Laufer-Geva
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Yaara Gorzalczany
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alaa Anoze
- The Helmsley Cancer Center, Shaare Zedek Medical Center, Shmu'el Bait St 12, Jerusalem, Israel
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Peled
- The Helmsley Cancer Center, Shaare Zedek Medical Center, Shmu'el Bait St 12, Jerusalem, Israel.
- The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Laila C Roisman
- The Helmsley Cancer Center, Shaare Zedek Medical Center, Shmu'el Bait St 12, Jerusalem, Israel.
- The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Elgeshy KM, Abdel Wahab AHA. The Role, Significance, and Association of MicroRNA-10a/b in Physiology of Cancer. Microrna 2022; 11:118-138. [PMID: 35616665 DOI: 10.2174/2211536611666220523104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the translation of mRNA and protein, mainly at the posttranscriptional level. Global expression profiling of miRNAs has demonstrated a broad spectrum of aberrations that correlated with several diseases, and miRNA- 10a and miRNA-10b were the first examined miRNAs to be involved in abnormal activities upon dysregulation, including many types of cancers and progressive diseases. It is expected that the same miRNAs behave inconsistently within different types of cancer. This review aims to provide a set of information about our updated understanding of miRNA-10a and miRNA-10b and their clinical significance, molecular targets, current research gaps, and possible future applications of such potent regulators.
Collapse
Affiliation(s)
- Khaled M Elgeshy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| | | |
Collapse
|
3
|
Liu L, Xiong X. Clinicopathologic Features and Molecular Biomarkers as Predictors of Epidermal Growth Factor Receptor Gene Mutation in Non-Small Cell Lung Cancer Patients. Curr Oncol 2021; 29:77-93. [PMID: 35049681 PMCID: PMC8774362 DOI: 10.3390/curroncol29010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer ranks first in the incidence and mortality of cancer in the world, of which more than 80% are non-small cell lung cancer (NSCLC). The majority of NSCLC patients are in stage IIIB~IV when they are admitted to hospital and have no opportunity for surgery. Compared with traditional chemotherapy, specific targeted therapy has a higher selectivity and fewer adverse reactions, providing a new treatment direction for advanced NSCLC patients. Tyrosine kinase inhibitors of epidermal growth factor receptor (EGFR-TKIs) are the widely used targeted therapy for NSCLC patients. Their efficacy and prognosis are closely related to the mutation status of the EGFR gene. Clinically, detecting EGFR gene mutation is often limited by difficulty obtaining tissue specimens, limited detecting technology, and economic conditions, so it is of great clinical significance to find indicators to predict EGFR gene mutation status. Clinicopathological characteristics, tumor markers, liquid biopsy, and other predictors are less invasive, economical, and easier to obtain. They can be monitored in real-time, which is supposed to predict EGFR mutation status and provide guidance for the accurate, individualized diagnosis and therapy of NSCLC patients. This article reviewed the correlation between the clinical indicators and EGFR gene mutation status in NSCLC patients.
Collapse
|
4
|
Angeles AK, Christopoulos P, Yuan Z, Bauer S, Janke F, Ogrodnik SJ, Reck M, Schlesner M, Meister M, Schneider MA, Dietz S, Stenzinger A, Thomas M, Sültmann H. Early identification of disease progression in ALK-rearranged lung cancer using circulating tumor DNA analysis. NPJ Precis Oncol 2021; 5:100. [PMID: 34876698 PMCID: PMC8651695 DOI: 10.1038/s41698-021-00239-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Targeted kinase inhibitors improve the prognosis of lung cancer patients with ALK alterations (ALK+). However, due to the emergence of acquired resistance and varied clinical trajectories, early detection of disease progression is warranted to guide patient management and therapy decisions. We utilized 343 longitudinal plasma DNA samples from 43 ALK+ NSCLC patients receiving ALK-directed therapies to determine molecular progression based on matched panel-based targeted next-generation sequencing (tNGS), and shallow whole-genome sequencing (sWGS). ALK-related alterations were detected in 22 out of 43 (51%) patients. Among 343 longitudinal plasma samples analyzed, 174 (51%) were ctDNA-positive. ALK variant and fusion kinetics generally reflected the disease course. Evidence for early molecular progression was observed in 19 patients (44%). Detection of ctDNA at therapy baseline indicated shorter times to progression compared to cases without mutations at baseline. In patients who succumbed to the disease, ctDNA levels were highly elevated towards the end of life. Our results demonstrate the potential utility of these NGS assays in the clinical management of ALK+ NSCLC.
Collapse
Affiliation(s)
- Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Petros Christopoulos
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Oncology, Thoraxklinik and National Center for Tumor Disease (NCT) at Heidelberg University Hospital, Heidelberg, Germany
| | - Zhao Yuan
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simone Bauer
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Simon John Ogrodnik
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martin Reck
- Lung Clinic Grosshansdorf, Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany
| | - Matthias Schlesner
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Biomedical Informatics, Data Mining and Data Analytics, Faculty for Applied Informatics, Augsburg University, Augsburg, Germany
| | - Michael Meister
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Marc A Schneider
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Steffen Dietz
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- AstraZeneca GmbH, Wedel, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Thomas
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Oncology, Thoraxklinik and National Center for Tumor Disease (NCT) at Heidelberg University Hospital, Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
5
|
Serum microRNA expression profiling revealing potential diagnostic biomarkers for lung adenocarcinoma. Chin Med J (Engl) 2020; 133:2532-2542. [PMID: 32947363 PMCID: PMC7722592 DOI: 10.1097/cm9.0000000000001100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Recent studies have demonstrated that microRNAs (miRNAs) in the blood circulation can serve as promising diagnostic markers for cancers. This four-stage study aimed at finding serum miRNAs as potential biomarkers for lung adenocarcinoma (LA) diagnosis. Methods The study was carried out between 2016 and 2017. The Exiqon miRNA qPCR panel (3 LA vs. 1 normal control [NC] pooled serum samples) was used for initial screening to acquire miRNA profiles. Thirty-five dysregulated miRNAs were further evaluated in the training (24 LA vs. 24 NCs) and testing stages (110 LA vs. 110 NCs) using quantitative real-time polymerase chain reaction assays. Results Four serum miRNAs (miR-133a-3p, miR-584-5p, miR-10b-5p, and miR-221-3p) were significantly overexpressed in LA patients compared with NCs. The diagnostic value of the four-miRNA panel was validated by an external cohort (36 LA vs. 36 NCs). The areas under the receiver operating characteristic curve of the four-miRNA panel in the training, testing, and external validation stages were 0.734, 0.803, and 0.894 respectively. Meanwhile, the expression level of miR-221-3p was much higher in LA tumor samples than that in the adjacent normal tissues (19 LA vs. 19 NCs). The expression level of miR-10b-5p was also elevated in the serum-derived exosomes samples (18 LA vs. 18 NCs). The expression of miR-133a-3p, miR-584-5p, and miR-10b-5p was significantly elevated in LA patients with epidermal growth factor receptor mutation compared with NCs. Conclusion The study established a four-miRNA signature in serum that could improve the diagnostic capability of LA.
Collapse
|
6
|
Non-Coding RNAs in Lung Tumor Initiation and Progression. Int J Mol Sci 2020; 21:ijms21082774. [PMID: 32316322 PMCID: PMC7215285 DOI: 10.3390/ijms21082774] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is one of the deadliest forms of cancer affecting society today. Non-coding RNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), through the transcriptional, post-transcriptional, and epigenetic changes they impose, have been found to be dysregulated to affect lung cancer tumorigenesis and metastasis. This review will briefly summarize hallmarks involved in lung cancer initiation and progression. For initiation, these hallmarks include tumor initiating cells, immortalization, activation of oncogenes and inactivation of tumor suppressors. Hallmarks involved in lung cancer progression include metastasis and drug tolerance and resistance. The targeting of these hallmarks with non-coding RNAs can affect vital metabolic and cell signaling pathways, which as a result can potentially have a role in cancerous and pathological processes. By further understanding non-coding RNAs, researchers can work towards diagnoses and treatments to improve early detection and clinical response.
Collapse
|
7
|
Integrating circulating miRNA analysis in the clinical management of lung cancer: Present or future? Mol Aspects Med 2020; 72:100844. [DOI: 10.1016/j.mam.2020.100844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
|
8
|
Zheng YY, Fei Y, Wang Z, Chen Y, Qiu C, Li FR. Tissue microRNAs in non-small cell lung cancer detected with a new kind of liquid bead array detection system. J Transl Med 2020; 18:108. [PMID: 32122370 PMCID: PMC7053089 DOI: 10.1186/s12967-020-02280-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Background Commonly used miRNA detection methods cannot be applied for high-throughput analyses. However, this study was aimed to performed a liquid bead array detection system (LBAS) to detect tissue 6 miRNAs in non-small cell lung cancer (NSCLC). Methods In this study, evaluation of LBAS was performed to observe the precision, specificity, limitation and stability. Then, a total of 52 primary NSCLC patients who received resection operation without preoperative radiotherapy and chemotherapy between June 2013 and March 2014 were selected, and then the total RNA of the tissues were extracted. We prepared six NSCLC-related miRNAs for LBAS. After optimization and evaluation, LBAS was verified by detecting the relative expression levels of 6 microRNAs in the pathological tissues and corresponding normal tissues of 52 NSCLC patients. Results The results of evaluation of LBAS showed that the Mean Fluorescence Intensity (MFI) of the reaction only added with chimeric probes and beads showed no significant change after 180 days (P > 0.05). And the intra-assay Coefficient of Variation (CV) was between 1.57 and 3.5%, while the inter-assay CV was between 4.24 and 11.27%, indicating this system was ideal for diagnostic reagents. In addition, only the beads corresponding to the additional miRNAs showed high MFIs from 8426 to 18,769, whereas the fluorescence values of the other beads were under background levels (MFIs = 20 to 55) in each reaction, indicating no cross reactivity among the miRNAs. The limit of detection of miR-21, miR-210, miR-125b, miR-155, miR-375, and miR-31 were 5.27, 1.39, 1.85, 2.01, 1.34, and 2.73 amol/μL, respectively, showing that the lowest detection limit of miRNA by this system was under pM level. Then, the relative expression levels of miR-21, miR-210, miR-125b, miR-155, miR-375, and miR-31 by using this system were significantly correlated with NSCLC (P < 0.05). And the results of AUC method indicated that specific of the LBAS system was 94.2%. Conclusions Our findings suggest that LBAS was simple, high-throughput, and freely combined with absolute quantification. Thus, this system could be applied for tumor miRNAs detection.
Collapse
Affiliation(s)
- Yuan-Yuan Zheng
- Department of Pathophysiology, The Basic Medical School, Jinan University, Guangzhou, China.,Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, 518020, China
| | - Yun Fei
- Department of Clinical Diagnosis Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Zheng Wang
- Department of Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Yue Chen
- Department of Clinical Diagnosis Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Cheng Qiu
- Institute of Respiratory Diseases, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, 518020, China. .,Institute of Respiratory Diseases, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.
| |
Collapse
|
9
|
Abstract
Lung cancer is the number one cause of cancer-related mortality worldwide. To improve disease outcome, it is crucial to implement biomarkers into the clinics which assist physicians in their decisions regarding diagnosis, prognosis, as well as prediction of treatment response. Liquid biopsy offers an opportunity to obtain such biomarkers in a minimal invasive manner by retrieving tumor-derived material from body fluids of the patient. The abundance of circulating microRNAs is known to be altered in disease and has therefore been studied extensively as a cancer biomarker. Circulating microRNAs present a variety of favorable characteristics for application as liquid biopsy-based biomarkers, including their high stability, relatively high abundance, and presence is nearly all body fluids. Although the application of circulating microRNAs for the management of lung cancer has not entered the clinics yet, several studies showed their utility for diagnosis, prognosis, and efficacy prediction of various treatment strategies, including surgery, radio-/chemotherapy, as well as targeted therapy. To compensate for their limited tumor specificity, several microRNAs are frequently combined into microRNA panels. Moreover, the possibility to combine single microRNAs or microRNA panels with tumor imaging or other cancer-specific biomarkers has the potential to increase specificity and sensitivity and could lead to the clinical application of novel multi-marker combinations.
Collapse
|
10
|
Szpechcinski A, Florczuk M, Duk K, Zdral A, Rudzinski S, Bryl M, Czyzewicz G, Rudzinski P, Kupis W, Wojda E, Giedronowicz D, Langfort R, Barinow-Wojewodzki A, Orlowski T, Chorostowska-Wynimko J. The expression of circulating miR-504 in plasma is associated with EGFR mutation status in non-small-cell lung carcinoma patients. Cell Mol Life Sci 2019; 76:3641-3656. [PMID: 30953094 PMCID: PMC6697756 DOI: 10.1007/s00018-019-03089-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/06/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs), key regulators of gene expression at the post-transcriptional level, are grossly misregulated in some human cancers, including non-small-cell lung carcinoma (NSCLC). The aberrant expression of specific miRNAs results in the abnormal regulation of key components of signalling pathways in tumour cells. MiRNA levels and the activity of the gene targets, including oncogenes and tumour suppressors, produce feedback that changes miRNA expression levels and indicates the cell's genetic activity. In this study, we measured the expression of five circulating miRNAs (miR-195, miR-504, miR-122, miR-10b and miR-21) and evaluated their association with EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) mutation status in 66 NSCLC patients. Moreover, we examined the discriminative power of circulating miRNAs for EGFR mutant-positive and -negative NSCLC patients using two different data normalisation approaches. We extracted total RNA from the plasma of 66 non-squamous NSCLC patients (31 of whom had tumours with EGFR mutations) and measured circulating miRNA levels using quantitative reverse transcription polymerase chain reaction (RT-qPCR). The miRNA expression levels were normalised using two endogenous controls: miR-191 and miR-16. We found significant associations between the expression of circulating miR-504 and EGFR-activating mutations in NSCLC patients regardless of the normalisation approach used (p = 0.0072 and 0.0236 for miR-16 and miR-191 normalisation, respectively). The greatest discriminative power of circulating miR-504 was observed in patients with EGFR exon 19 deletions versus wild-type EGFR normalised to miR-191 (area under the curve (AUC) = 0.81, p < 0.0001). Interestingly, circulating miR-504 levels were significantly reduced in the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutated subgroup compared to EGFR-mutated patients (p < 0.0030) and those with EGFR/KRAS wild-type tumours (p < 0.0359). Our study demonstrated the feasibility and potential diagnostic value of plasma miR-504 expression analysis to distinguish between EGFR-mutated and wild-type NSCLC patients. However, quality control and normalisation strategies are very important and have a major impact on the outcomes of circulating miRNA analyses.
Collapse
Affiliation(s)
- Adam Szpechcinski
- Department of Genetics and Clinical Immunology, National Research Institute of Tuberculosis and Lung Diseases, 26 Plocka St., 01-138, Warsaw, Poland.
| | - Mateusz Florczuk
- Department of Genetics and Clinical Immunology, National Research Institute of Tuberculosis and Lung Diseases, 26 Plocka St., 01-138, Warsaw, Poland
| | - Katarzyna Duk
- Department of Genetics and Clinical Immunology, National Research Institute of Tuberculosis and Lung Diseases, 26 Plocka St., 01-138, Warsaw, Poland
| | - Aneta Zdral
- Department of Genetics and Clinical Immunology, National Research Institute of Tuberculosis and Lung Diseases, 26 Plocka St., 01-138, Warsaw, Poland
| | - Stefan Rudzinski
- Department of Genetics and Clinical Immunology, National Research Institute of Tuberculosis and Lung Diseases, 26 Plocka St., 01-138, Warsaw, Poland
| | - Maciej Bryl
- Department of Oncology, E.J. Zeyland Wielkopolska Center of Pulmonology and Thoracic Surgery, Poznan, Poland
| | - Grzegorz Czyzewicz
- Department of Oncology, The John Paul II Specialist Hospital, Kraków, Poland
| | - Piotr Rudzinski
- Department of Surgery, National Research Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Wlodzimierz Kupis
- Department of Surgery, National Research Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Emil Wojda
- II Department of Lung Diseases, National Research Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Dorota Giedronowicz
- Department of Pathomorphology, National Research Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Renata Langfort
- Department of Pathomorphology, National Research Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | | | - Tadeusz Orlowski
- Department of Surgery, National Research Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Research Institute of Tuberculosis and Lung Diseases, 26 Plocka St., 01-138, Warsaw, Poland
| |
Collapse
|
11
|
Leonetti A, Assaraf YG, Veltsista PD, El Hassouni B, Tiseo M, Giovannetti E. MicroRNAs as a drug resistance mechanism to targeted therapies in EGFR-mutated NSCLC: Current implications and future directions. Drug Resist Updat 2019; 42:1-11. [PMID: 30544036 DOI: 10.1016/j.drup.2018.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/20/2022]
Abstract
The introduction of EGFR-tyrosine kinase inhibitors (TKIs) has revolutionized the treatment and prognosis of non-small cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) mutations. However, these patients display disease progression driven by the onset of acquired mechanisms of drug resistance that limit the efficacy of EGFR-TKI to no longer than one year. Moreover, a small fraction of EGFR-mutated NSCLC patients does not benefit from this targeted treatment due to primary (i.e. intrinsic) mechanisms of resistance that preexist prior to TKI drug treatment. Research efforts are focusing on deciphering the distinct molecular mechanisms underlying drug resistance, which should prompt the development of novel antitumor agents that surmount such chemoresistance modalities. The capability of microRNAs (miRNAs) to regulate the expression of many oncogenic pathways and their central role in lung cancer progression, provided new directions for research on prognostic biomarkers, as well as innovative tools for predicting patients' response to systemic therapies. Recent evidence suggests that modulation of key miRNAs may also reverse oncogenic signaling pathways, and potentiate the cytotoxic effect of anti-cancer therapies. In this review, we focus on the putative emerging role of miRNAs in modulating drug resistance to EGFR-TKI treatment in EGFR-mutated NSCLC. Moreover, we discuss the current implications of miRNAs analyses in the clinical setting, using both tissue and liquid biopsies, as well as the future potential use of miRNA-based therapies in overcoming resistance to targeted agents like TKIs.
Collapse
Affiliation(s)
- Alessandro Leonetti
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy; Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200000, Israel
| | - Paraskevi D Veltsista
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Btissame El Hassouni
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa and Fondazione Pisana per la Scienza, 56100 Pisa, Italy.
| |
Collapse
|
12
|
Bica-Pop C, Cojocneanu-Petric R, Magdo L, Raduly L, Gulei D, Berindan-Neagoe I. Overview upon miR-21 in lung cancer: focus on NSCLC. Cell Mol Life Sci 2018; 75:3539-3551. [PMID: 30030592 PMCID: PMC11105782 DOI: 10.1007/s00018-018-2877-x] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
Abstract
Considering the high mortality rate encountered in lung cancer, there is a strong need to explore new biomarkers for early diagnosis and also improved therapeutic targets to overcome this issue. The implementation of microRNAs as important regulators in cancer and other pathologies expanded the possibilities of lung cancer management and not only. MiR-21 represents an intensively studied microRNA in many types of cancer, including non-small cell lung cancer (NSCLC). Its role as an oncogene is underlined in multiple studies reporting the upregulated expression of this sequence in patients diagnosed with this malignancy; moreover, several studies associated this increased expression of miR-21 with a worse outcome within NSCLC patients. The same pattern is supported by the data existent in the Cancer Genome Atlas (TCGA). The carcinogenic advantage generated by miR-21 in NSCLC resides in the target genes involved in multiple pathways such as cell growth and proliferation, angiogenesis, invasion and metastasis, but also chemo- and radioresistance. Therapeutic modulation of miR-21 by use of antisense sequences entrapped in different delivery systems has shown promising results in impairment of NSCLC. Hereby, we review the mechanisms of action of miR-21 in cancer and the associated changes upon tumor cells together a focused perspective on NSCLC signaling, prognosis and therapy.
Collapse
Affiliation(s)
- Cecilia Bica-Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", Marinescu 23 Street, 400337, Cluj-Napoca, Romania
| | - Roxana Cojocneanu-Petric
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", Marinescu 23 Street, 400337, Cluj-Napoca, Romania
| | - Lorand Magdo
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", Marinescu 23 Street, 400337, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", Marinescu 23 Street, 400337, Cluj-Napoca, Romania
- Department of Pathophysiology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5 Street, 400372, Cluj-Napoca, Romania
| | - Diana Gulei
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400349, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", Marinescu 23 Street, 400337, Cluj-Napoca, Romania.
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400349, Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuţă", 400015, Cluj-Napoca, Romania.
| |
Collapse
|
13
|
Ghidini M, Hahne JC, Frizziero M, Tomasello G, Trevisani F, Lampis A, Passalacqua R, Valeri N. MicroRNAs as Mediators of Resistance Mechanisms to Small-Molecule Tyrosine Kinase Inhibitors in Solid Tumours. Target Oncol 2018; 13:423-436. [PMID: 30006826 DOI: 10.1007/s11523-018-0580-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Receptor tyrosine kinases (RTKs) are widely expressed transmembrane proteins that act as receptors for growth factors and other extracellular signalling molecules. Upon ligand binding, RTKs activate intracellular signalling cascades, and as such are involved in a broad variety of cellular functions including differentiation, proliferation, migration, invasion, angiogenesis, and survival under physiological as well as pathological conditions. Aberrant RTK activation can lead to benign proliferative conditions as well as to various forms of cancer. Indeed, more than 70% of the known oncogene and proto-oncogene transcripts involved in cancer code for RTKs. Consequently, these receptors are broadly studied as targets in the treatment of different tumours, and a large variety of small-molecule tyrosine kinase inhibitors (TKIs) are approved for therapy. In most cases, patients develop resistance to the TKIs within a short time. MicroRNAs are short (18-22 nucleotides) non-protein-coding RNAs that fine-tune cell homeostasis by controlling gene expression at the post-transcriptional level. Deregulation of microRNAs is common in many cancers, and increasing evidence exists for an important role of microRNAs in the development of resistance to therapies, including TKIs. In this review we focus on the role of microRNAs in mediating resistance to small-molecule TKIs in solid tumours.
Collapse
Affiliation(s)
- Michele Ghidini
- Medical Department, Division of Oncology, ASST di Cremona, Ospedale di Cremona, Cremona, Italy
| | - Jens C Hahne
- Centre for Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Melissa Frizziero
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Gianluca Tomasello
- Medical Department, Division of Oncology, ASST di Cremona, Ospedale di Cremona, Cremona, Italy
| | - Francesco Trevisani
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Lampis
- Centre for Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Rodolfo Passalacqua
- Medical Department, Division of Oncology, ASST di Cremona, Ospedale di Cremona, Cremona, Italy
| | - Nicola Valeri
- Centre for Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
14
|
Tang D, Yue L, Yao R, Zhou L, Yang Y, Lu L, Gao W. P53 prevent tumor invasion and metastasis by down-regulating IDO in lung cancer. Oncotarget 2017; 8:54548-54557. [PMID: 28903363 PMCID: PMC5589602 DOI: 10.18632/oncotarget.17408] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
Abstract
In present study, we are to clear demonstrate the genetic evidence of IDO signaling's impact on invasion and metastasis in lung cancer. Here we examined IDO1 expression levels in non-small cell lung cancer (NSCLC) patients (64) tumor/normal pairs underwent RT-PCR and comprehensive histological, immunohistochemica and clinical analysis. The NSCLC cells stably expressing IDO1 was analyzed for migration and invasion assays and the regulatory mechanism in vitro and metastasis assays in vivo. As results, we reported that IDO1 expression increased by more than 3.2-fold in lung cancer compared with their corresponding non-tumor tissues, and the up-regulation of IDO1 is significantly correlated to TNM stage and lymph node-metastasis. The over-expression of IDO1 significantly encouraged the metastasis and invasion of lung cancer cells, and IDO1 could promote metastasis formation in vivo. Furthermore, we further found that p53 could attenuate IDO signaling in lung cancer cell migration partly. In conclusion, these results demonstrate that the IDO signaling's impact on invasion and metastasis and the suppressive effect of p53 on IDO1 in lung cancer, present one novel therapeutic strategy for early metastatic lung cancer in clinical.
Collapse
Affiliation(s)
- Dongfang Tang
- Department of Thoracic Surgery, Huadong Hospital Affiliated to FuDan University, Huadong, China
| | - Lu Yue
- Department of Oncology of the Qingdao Municipal Hospital, Qingdao, China
| | - Ruyong Yao
- Central Laboratory of the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Lin Zhou
- Central Laboratory of Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, China
| | - Yuqin Yang
- Central Laboratory of Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, China
| | - Liming Lu
- Central Laboratory of Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, China
| | - Wen Gao
- Department of Thoracic Surgery, Huadong Hospital Affiliated to FuDan University, Huadong, China
| |
Collapse
|
15
|
miRNAs as Biomarkers and Therapeutic Targets in Non-Small Cell Lung Cancer: Current Perspectives. Target Oncol 2017; 12:179-200. [DOI: 10.1007/s11523-017-0478-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Hu L, Ai J, Long H, Liu W, Wang X, Zuo Y, Li Y, Wu Q, Deng Y. Integrative microRNA and gene profiling data analysis reveals novel biomarkers and mechanisms for lung cancer. Oncotarget 2017; 7:8441-54. [PMID: 26870998 PMCID: PMC4890978 DOI: 10.18632/oncotarget.7264] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/13/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Studies on the accuracy of microRNAs (miRNAs) in diagnosing non-small cell lung cancer (NSCLC) have still controversial. Therefore, we conduct to systematically identify miRNAs related to NSCLC, and their target genes expression changes using microarray data sets. METHODS We screened out five miRNAs and six genes microarray data sets that contained miRNAs and genes expression in NSCLC from Gene Expression Omnibus. RESULTS Our analysis results indicated that fourteen miRNAs were significantly dysregulated in NSCLC. Five of them were up-regulated (miR-9, miR-708, miR-296-3p, miR-892b, miR-140-5P) while nine were down-regulated (miR-584, miR-218, miR-30b, miR-522, miR486-5P, miR-34c-3p, miR-34b, miR-516b, miR-592). The integrating diagnosis sensitivity (SE) and specificity (SP) were 82.6% and 89.9%, respectively. We also found that 4 target genes (p < 0.05, fold change > 2.0) were significant correlation with the 14 discovered miRNAs, and the classifiers we built from one training set predicted the validation set with higher accuracy (SE = 0.987, SP = 0.824). CONCLUSIONS Our results demonstrate that integrating miRNAs and target genes are valuable for identifying promising biomarkers, and provided a new insight on underlying mechanism of NSCLC. Further, our well-designed validation studies surely warrant the investigation of the role of target genes related to these 14 miRNAs in the prediction and development of NSCLC.
Collapse
Affiliation(s)
- Ling Hu
- Department of Anesthesiology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China.,Department of Internal Medicine and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Junmei Ai
- Department of Internal Medicine and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Hui Long
- Department of Gastroenterology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Weijun Liu
- Department of Orthopedics, Pu Ai Hospital, Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Wang
- Department of Biological Science and Technology, Wuhan Bioengineering Institute, Wuhan, China
| | - Yi Zuo
- Department of Orthopedic, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Internal Medicine and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Qingming Wu
- Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Youping Deng
- Medical College, Wuhan University of Science and Technology, Wuhan, China.,Department of Internal Medicine and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
17
|
Wang M, Sun Z, Huang L. [Advanced Research on MicroRNAs and EGFR-TKIs Secondary Resistance]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 18:758-63. [PMID: 26706953 PMCID: PMC6015185 DOI: 10.3779/j.issn.1009-3419.2015.12.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
肺癌是癌症致死率最高的疾病,关于这个疾病的发生机制已得到部分阐明,其中表皮生长因子受体(epidermal growth factor receptor, EGFR)信号通路研究最为深入,在肺癌的发生中起着至关重要的作用。而有效地抑制EGFR信号通路的药物已用于非小细胞肺癌(non-small cell lung cancer, NSCLC)的靶向治疗中,伴有EGFR基因突变的患者使用EGFR酪氨酸激酶抑制剂(EGFR-tyrosine kinase inhibitors, EGFR-TKIs)治疗后获得不错的临床收益,但大部分患者在使用该药治疗10个月后出现耐药现象。MiRNAs(microRNAs)是一种非编码蛋白的RNA,参与转录后水平基因的表达调控。越来越多的研究发现miRNAs与EGFR-TKIs继发性耐药有关,miRNAs可作为逆转EGFR-TKIs耐药及评估EGFR-TKIs有效性的生物指标。本文就NSCLC中miRNAs与EGFR-TKIs继发性耐药机制之间的相关性研究进展做简要的综述。
Collapse
Affiliation(s)
- Ming Wang
- Bengbu Medical College, Bengbu 233000, China;Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Zhenyu Sun
- Bengbu Medical College, Bengbu 233000, China
| | - Linian Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
18
|
Helland Å. MicroRNA-profiles in lung adenocarcinomas. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1240011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Kho AT, Sharma S, Davis JS, Spina J, Howard D, McEnroy K, Moore K, Sylvia J, Qiu W, Weiss ST, Tantisira KG. Circulating MicroRNAs: Association with Lung Function in Asthma. PLoS One 2016; 11:e0157998. [PMID: 27362794 PMCID: PMC4928864 DOI: 10.1371/journal.pone.0157998] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MicroRNAs are key transcriptional and network regulators previously associated with asthma susceptibility. However, their role in relation to asthma severity has not been delineated. OBJECTIVE We hypothesized that circulating microRNAs could serve as biomarkers of changes in lung function in asthma patients. METHODS We isolated microRNAs from serum samples obtained at randomization for 160 participants of the Childhood Asthma Management Program. Using a TaqMan microRNA array containing 754 microRNA primers, we tested for the presence of known asthma microRNAs, and assessed the association of the individual microRNAs with lung function as measured by FEV1/FVC, FEV1% and FVC%. We further tested the subset of FEV1/FVC microRNAs for sex-specific and lung developmental associations. RESULTS Of the 108 well-detected circulating microRNAs, 74 (68.5%) had previously been linked to asthma susceptibility. We found 22 (20.3%), 4 (3.7%) and 8 (7.4%) microRNAs to be associated with FEV1/FVC, FEV1% and FVC%, respectively. 8 (of 22) FEV1/FVC, 3 (of 4) FEV1% and 1 (of 8) FVC% microRNAs had functionally validated target genes that have been linked via genome wide association studies to asthma and FEV1 change. Among the 22 FEV1/FVC microRNAs, 9 (40.9%) remain associated with FEV1/FVC in boys alone in a sex-stratified analysis (compared with 3 FEV1/FVC microRNAs in girls alone), 7 (31.8%) were associated with fetal lung development, and 3 (13.6%) in both. Ontology analyses revealed enrichment for pathways integral to asthma, including PPAR signaling, G-protein coupled signaling, actin and myosin binding, and respiratory system development. CONCLUSIONS Circulating microRNAs reflect asthma biology and are associated with lung function differences in asthmatics. They may represent biomarkers of asthma severity.
Collapse
Affiliation(s)
- Alvin T. Kho
- Children’s Hospital Informatics Program, Boston Children’s Hospital and Harvard Medical School, Boston MA 02115, United States of America
| | - Sunita Sharma
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | - Joshua S. Davis
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
- Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Joseph Spina
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Dagnie Howard
- Oregon Health & Science University, Portland, OR 97239, United States of America
| | - Kevin McEnroy
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Kip Moore
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Jody Sylvia
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
- Partners Personalized Medicine, Partners HealthCare System, Boston, MA 02115, United States of America
| | - Kelan G. Tantisira
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
20
|
Matikas A, Syrigos KN, Agelaki S. Circulating Biomarkers in Non-Small-Cell Lung Cancer: Current Status and Future Challenges. Clin Lung Cancer 2016; 17:507-516. [PMID: 27373516 DOI: 10.1016/j.cllc.2016.05.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 12/18/2022]
Abstract
Despite recent advances, non-small-cell lung cancer remains a devastating disease and carries a grim prognosis. Major contributing factors include difficulties in diagnosing the disease early in its course during the asymptomatic stage and the poor understanding of the biology underlying disease progression. Liquid biopsies, noninvasive blood tests that detect circulating biomarkers such as circulating tumor cells and tumor-derived nucleic acid fragments, are in a rapidly evolving field of research that could provide answers to both of these unmet needs. Herein, we review the relevant data concerning the diagnostic, predictive, and prognostic significance of 3 distinct but potentially complementary circulating biomarkers in non-small-cell lung cancer: circulating tumor cells, cell-free DNA, and microRNAs.
Collapse
Affiliation(s)
- Alexios Matikas
- Department of Medical Oncology, University General Hospital of Heraklion, Heraklion, Crete, Greece
| | - Konstantinos N Syrigos
- Oncology Unit, 3rd Department of Internal Medicine, Sotiria General Hospital, National & Kapodistrian University, Athens School of Medicine, Athens, Greece
| | - Sofia Agelaki
- Department of Medical Oncology, University General Hospital of Heraklion, Heraklion, Crete, Greece; Laboratory of Translational Oncology, University of Crete, School of Medicine, Heraklion, Crete, Greece.
| |
Collapse
|
21
|
Guo Y, An R, Zhao R, Sun Y, Liu M, Tian L. miR-375 exhibits a more effective tumor-suppressor function in laryngeal squamous carcinoma cells by regulating KLF4 expression compared with simple co-transfection of miR-375 and miR-206. Oncol Rep 2016; 36:952-60. [PMID: 27279635 DOI: 10.3892/or.2016.4852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/26/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are reported to be important regulators of cancer-related processes, and function either as oncogenes or as tumor-suppressor genes. It was found that miR-375 was downregulated in samples of laryngeal squamous cell carcinomas (LSCCs) as compared to the level noted in adjacent non-tumor tissues, and it was inversely correlated with T grade, lymph node metastases and clinical tumor stage. Overexpression of miR-375 led to a decreased protein level of Krüppel-like factor 4 (KLF4) and marked suppression of the proliferation and invasion, and induced apoptosis of LSCC cell line Hep-2 using Cell Counting Kit-8, Transwell chamber and cell cycle assays. In addition, we examined the influence of the upregulation of miR-206 alone and upregulation of both miR-375 and miR-206 on the expression of KLF4 and Hep-2 cell behavior. The results showed that compared with the function of miR-375 in tumor suppression by regulating KLF4, co-transfection of miR-375 and miR-206 exhibited a less effective inhibitory effect not only on tumor cell proliferation and invasion, but also on tumor cell apoptosis. Taken together, miR-375 is possibly a tumor suppressor in LSCC by regulating KLF4. In addition, simple overexpression of several miRNAs did not entail higher efficacy than a single miRNA, similar to co-transfecions of miR-375 and miR-206.
Collapse
Affiliation(s)
- Yan Guo
- Service of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ran An
- Service of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Rui Zhao
- Service of Laryngology, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yanan Sun
- Service of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ming Liu
- Service of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Linli Tian
- Service of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
22
|
Salgia R. Mutation testing for directing upfront targeted therapy and post-progression combination therapy strategies in lung adenocarcinoma. Expert Rev Mol Diagn 2016; 16:737-49. [PMID: 27139190 PMCID: PMC4926789 DOI: 10.1080/14737159.2016.1181545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Advances in the biology of non-small-cell lung cancer, especially adenocarcinoma, reveal multiple molecular subtypes driving oncogenesis. Accordingly, individualized targeted therapeutics are based on mutational diagnostics. Areas covered: Advances in strategies and techniques for individualized treatment, particularly of adenocarcinoma, are described through literature review. Approved therapies are established for some molecular subsets, with new driver mutations emerging that represent increasing proportions of patients. Actionable mutations are denovo oncogenic drivers or acquired resistance mediators, and mutational profiling is important for directing therapy. Patients should be monitored for emerging actionable resistance mutations. Liquid biopsy and associated multiplex diagnostics will be important means to monitor patients during treatment. Expert commentary: Outcomes with targeted agents may be improved by integrating mutation screens during treatment to optimize subsequent therapy. In order for this to be translated into impactful patient benefit, appropriate platforms and strategies need to be optimized and then implemented universally.
Collapse
Affiliation(s)
- Ravi Salgia
- a Department of Medical Oncology and Therapeutics Research , City of Hope , Duarte , CA , USA
| |
Collapse
|
23
|
Markou A, Zavridou M, Lianidou ES. miRNA-21 as a novel therapeutic target in lung cancer. LUNG CANCER-TARGETS AND THERAPY 2016; 7:19-27. [PMID: 28210157 PMCID: PMC5310696 DOI: 10.2147/lctt.s60341] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lung cancer is a leading cause of cancer death, and late diagnosis is one of the most important reasons for the high mortality rate. microRNAs (miRNAs) are key players in gene regulation and therefore in tumorigenesis. As far as lung carcinogenesis is concerned, miRNAs open novel fields in biomarker research, in diagnosis, and in therapy. In this review we focus on miR-21 in lung cancer and especially on how miR-21 is involved 1) as a biomarker in response or resistance to therapy or 2) as a therapeutic target.
Collapse
Affiliation(s)
- Athina Markou
- Analysis of Circulating Tumor Cells, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Martha Zavridou
- Analysis of Circulating Tumor Cells, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Evi S Lianidou
- Analysis of Circulating Tumor Cells, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| |
Collapse
|
24
|
Saldanha G, Elshaw S, Sachs P, Alharbi H, Shah P, Jothi A, Pringle JH. microRNA-10b is a prognostic biomarker for melanoma. Mod Pathol 2016; 29:112-21. [PMID: 26743475 DOI: 10.1038/modpathol.2015.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/16/2015] [Indexed: 01/14/2023]
Abstract
Malignant melanoma is an aggressive form of skin cancer. Recently, drug therapy of advanced disease has been revolutionized by new agents. More therapeutic options, coupled with the desire to extend treatment to the adjuvant setting mean that prognostic biomarkers that can be assayed from formalin-fixed paraffin-embedded clinical would be valuable. microRNAs have potential to fill this need. We analyzed 377 microRNAs in 79 primary melanomas and 32 metastases using a split sample discovery strategy. From a discovery analysis using 40 thick primary melanomas (20 cases with metastasis and 20 controls without metastasis at 5 years), microRNA expression was measured by quantitative RT-PCR (QRT-PCR). MiR-10b emerged as a candidate prognostic microRNA. This was confirmed in an independent validation set of thick primary melanomas (20 cases with metastasis and 19 controls without metastasis at 5 years). In the combined discovery and validation cohorts (n=79), miR-10b expression showed a 3.7-fold increase in expression between cases and controls (P=0.005) and showed a trend of increasing expression between primary melanomas and their matched metastases (P<0.001). In situ hybridization showed expression was in melanoma cells and correlated with expression measured by QRT-PCR (P=0.0005). We used the combined discovery and validation samples to verify the prognostic value of additional candidate microRNAs identified from other studies, and proceeded to analyze miR-200b. We demonstrated that miR-10b and miR-200b showed independent prognostic value (P=0.002 and 0.047, respectively) in multivariable analysis alongside known clinico-pathological prognostic features (eg, Breslow thickness) using a Cox proportional hazards regression model. Furthermore, the addition of these microRNAs to the clinico-pathological features led to an improved regression model with better identification of aggressive thick melanomas. Taken together, these data suggest that miR-10b is a new prognostic microRNA for melanoma and that there could be a place for microRNA analysis in stratifying melanoma for therapy.
Collapse
Affiliation(s)
- Gerald Saldanha
- Department of Cancer Studies, University of Leicester, Leicester, UK
- EMPATH, University Hospitals of Leicester, Leicester, UK
| | - Shona Elshaw
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Parysatis Sachs
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Hisham Alharbi
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Prashant Shah
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Ann Jothi
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - J Howard Pringle
- Department of Cancer Studies, University of Leicester, Leicester, UK
| |
Collapse
|
25
|
Yung BC, Li J, Zhang M, Cheng X, Li H, Yung EM, Kang C, Cosby LE, Liu Y, Teng L, Lee RJ. Lipid Nanoparticles Composed of Quaternary Amine–Tertiary Amine Cationic Lipid Combination (QTsome) for Therapeutic Delivery of AntimiR-21 for Lung Cancer. Mol Pharm 2016; 13:653-62. [DOI: 10.1021/acs.molpharmaceut.5b00878] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lesheng Teng
- College of
Life Sciences, Jilin University, Changchun, China
| | - Robert J. Lee
- College of
Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
26
|
Liu Z, Zhang G, Yu W, Gao N, Peng J. miR-186 inhibits cell proliferation in multiple myeloma by repressing Jagged1. Biochem Biophys Res Commun 2015; 469:692-7. [PMID: 26679605 DOI: 10.1016/j.bbrc.2015.11.136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 01/09/2023]
Abstract
MicroRNAs (miRNAs) are small, noncoding ribonucleic acids that regulate gene expression by targeting mRNAs for translational repression and degradation. Accumulating experimental evidence supports a causal role of miRNAs in hematology tumorigenesis. However, the specific functions of miRNAs in the pathogenesis of multiple myeloma (MM) remain to be established. In this study, we demonstrated that miR-186 is commonly downregulated in MM cell lines and patient MM cells. Ectopic expression of miR-186 significantly inhibited cell growth, both in vitro and in vivo, and induced cell cycle G0/G1 arrest. Furthermore, miR-186 induced downregulation of Jagged1 protein expression by directly targeting its 3'-untranslated region (3'-UTR). Conversely, overexpression of Jagged1 rescued cells from miR-186-induced growth inhibition. Our collective results clearly indicate that miR-186 functions as a tumor suppressor in MM, supporting its potential as a therapeutic target for the disease.
Collapse
Affiliation(s)
- Zengyan Liu
- Department of Hematology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China; Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603, China
| | - Guoqiang Zhang
- Department of Thyroid and Breast Surgery, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603, China
| | - Wenzheng Yu
- Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603, China
| | - Na Gao
- Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China.
| |
Collapse
|
27
|
Nana-Sinkam SP, Croce CM. MicroRNA regulation of tumorigenesis, cancer progression and interpatient heterogeneity: towards clinical use. Genome Biol 2015; 15:445. [PMID: 25315999 PMCID: PMC4709998 DOI: 10.1186/s13059-014-0445-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the past two decades, microRNAs have emerged as crucial mediators of organ development and human disease. Here, we discuss their role as drivers or suppressors of the hallmarks of cancer during tumorigenesis and progression, in defining interpatient heterogeneity and the promise of therapeutic application.
Collapse
|
28
|
Non-invasive approaches to monitor EGFR-TKI treatment in non-small-cell lung cancer. J Hematol Oncol 2015; 8:95. [PMID: 26227959 PMCID: PMC4521383 DOI: 10.1186/s13045-015-0193-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/20/2015] [Indexed: 01/10/2023] Open
Abstract
Tyrosine kinase inhibitors of epidermal growth factor receptor (EGFR-TKIs) are standard treatments for advanced non-small-cell lung cancer (NSCLC) patients harboring activating epidermal growth factor receptor (EGFR) mutations. Nowadays, tumor tissues acquired by surgery or biopsy are the routine materials for EGFR mutation analysis. However, the accessibility of tumor tissues is not always satisfactory in advanced NSCLC. Moreover, a high proportion of NSCLC patients will eventually develop resistance to EGFR-TKIs. Invasive procedures, such as surgery or biopsy, are impractical to be performed repeatedly to assess the evolution of EGFR-TKI resistance. Thus, exploring some convenient and less invasive techniques to monitor EGFR-TKI treatment is urgently needed. Circulating cell-free tumor DNA (ctDNA) has a high degree of specificity to detect EGFR mutations in NSCLC. Besides, ctDNA is capable of monitoring the disease progression during EGFR-TKI treatment. Certain serum microRNAs that correlate with EGFR signaling pathway, such as miR-21 and miR-10b, have been demonstrated to be helpful in evaluating the efficiency of EGFR-TKI therapeutics. A commercialized serum-based proteomic test, named VeriStrat test, has shown an outstanding ability to predict the clinical outcome of NSCLC patients receiving EGFR-TKIs. Analysis of EGFR mutations in circulating tumor cells (CTCs) is feasible, and CTCs represent a promising material to predict EGFR-TKI-treatment efficacy and resistance. These evidences suggested that non-invasive techniques based on serum or plasma samples had a great potential for monitoring EGFR-TKI treatment in NSCLC. In this review, we summarized these non-invasive approaches and considered their possible applications in EGFR-TKI-treatment monitoring.
Collapse
|
29
|
Mao Q, Quan T, Luo B, Guo X, Liu L, Zheng Q. MiR-375 targets KLF4 and impacts the proliferation of colorectal carcinoma. Tumour Biol 2015. [PMID: 26224477 DOI: 10.1007/s13277-015-3809-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
MiR-375 has been identified as oncogenes or tumor suppressor genes which has the potential to the development and growth of cancers. However, the limited information concerning the expression and role of miR-375 in colorectal cancer (CRC) is available. In this work, we provide evidence for a function of miR-375 in the inhibition of CRC proliferation. Here, we showed that miR-375, down-modulated in human colorectal cancer tissues compared with normal human colon tissues, including several colorectal cancer cell lines. Subsequently, using the luciferase reporter assays, we found that the KLF4 untranslated region (3'UTR) carries the direct binding site of miR-375. In terms of function in vitro, CCK-8 assay, colony formation assay, and cell cycle assay demonstrated that the overexpression of miR-375 suppressed CRC cell proliferation. Inhibition of KLF4 performed similar effects with miR-375 overexpression on CRC cells, and overexpression of KLF4 could significantly reverse the tumor suppressive effects of miR-375 on CRC cells. Furthermore, we found overexpressed miR-375 effectively repressed tumor growth via KLF4 in xenograft animal experiment. Taken together, these results illustrated that miR-375 depresses proliferation of CRC through regulating 3'UTR of KLF4 mRNA, which might be a promising therapeutic target for treating colorectal cancers.
Collapse
Affiliation(s)
- Qiqi Mao
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| | - Tao Quan
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Bin Luo
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Xuefeng Guo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Lei Liu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Qinghui Zheng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
30
|
Han F, He J, Li F, Yang J, Wei J, Cho WC, Liu X. Emerging Roles of MicroRNAs in EGFR-Targeted Therapies for Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:672759. [PMID: 26273639 PMCID: PMC4529918 DOI: 10.1155/2015/672759] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/20/2015] [Indexed: 01/20/2023]
Abstract
Lung cancer is a leading cause of cancer mortality worldwide. Several molecular pathways underlying mechanisms of this disease have been partly elucidated, among which the epidermal growth factor receptor (EGFR) pathway is one of the well-known signaling cascades that plays a critical role in tumorigenesis. Dysregulation of the EGFR signaling is frequently found in lung cancer. The strategies to effectively inhibit EGFR signaling pathway have been mounted for developing anticancer therapeutic agents. However, most anti-EGFR-targeted agents fail to repress cancer progression because of developing drug-resistance. Therefore, studies of the mechanisms underpinning the resistance toward anti-EGFR agents may provide important findings for lung cancer treatment using anti-EGFR therapies. Recently, increasing numbers of miRNAs are correlated with the drug resistance of lung cancer cells to anti-EGFR agents, indicating that miRNAs may serve as novel targets and/or promising predictive biomarkers for anti-EGFR therapy. In this paper, we summarize the emerging role of miRNAs as regulators to modulate the EGFR signaling and the resistance of lung cancer cells to anti-EGFR therapy. We also highlight the evidence supporting the use of miRNAs as biomarkers for response to anti-EGFR agents and as novel therapeutic targets to circumvent the resistance of lung cancer cells to EGFR inhibitors.
Collapse
Affiliation(s)
- Fei Han
- Human Stem Cell Institute of the General Hospital, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jinxi He
- Department of Thoracic Surgery of the General Hospital, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Feng Li
- Center of Laboratory Medicine of the General Hospital, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jiali Yang
- Center of Laboratory Medicine of the General Hospital, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jun Wei
- Human Stem Cell Institute of the General Hospital, Ningxia Medical University, Yinchuan, Ningxia 750004, China
- Center of Laboratory Medicine of the General Hospital, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Xiaoming Liu
- Human Stem Cell Institute of the General Hospital, Ningxia Medical University, Yinchuan, Ningxia 750004, China
- Center of Laboratory Medicine of the General Hospital, Ningxia Medical University, Yinchuan, Ningxia 750004, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| |
Collapse
|
31
|
Pak MG, Lee CH, Lee WJ, Shin DH, Roh MS. Unique microRNAs in lung adenocarcinoma groups according to major TKI sensitive EGFR mutation status. Diagn Pathol 2015; 10:99. [PMID: 26170125 PMCID: PMC4501046 DOI: 10.1186/s13000-015-0339-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/27/2015] [Indexed: 11/29/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer mortality, despite development of therapeutic strategies. Altered expression of microRNAs(miRNAs) in human malignancies have been well recognized as diagnostic and prognostic indicators, including lung cancer. This study aims to delineate the clinicopathologic significance of three unique miRNAs in adenocarcinoma according to major sensitive EGFR mutation status. Methods One-hundred and three formalin-fixed paraffin-embedded (FFPE) tissues were collected from lung adenocarcinoma patients who underwent surgery and epidermal growth factor receptor (EGFR) mutation study. The samples were divided into three groups which include EGFR mutation in exons 19 and 21 and wild type. Some representative cases from each group were profiled using commercial miRNA microarray plates. Three significant miRNAs were selected and they were validated by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), using collective cases of FFPE samples. Results We identified three microRNAs (miR-34c, miR-183, and miR-210) which showed significantly altered expression in all groups of lung adenocarcinoma by microarray study. Compared to normal control lung tissue, down-regulation of miR-34c and up-regulation of miR-183 and miR-210 were identified in caner groups (p < 0.05 for each). We validated the expression of three miRNAs by qRT-PCR. Expression levels of miR-34c, miR-183, and miR-210 were significantly different between normal control group and cancer groups (p = 0.034, <0.000, and 0.036, respectively). Moreover, expression level of miR-183 was significantly higher in EGFR mutation groups than wild type group (p = 0.028). Higher expression levels of three miRNAs were positively related to poor tumor differentiation. Increased expression of miR-183 was positively associated with lymphovascular invasion (p = 0.037). Aberrant expression of miR-210 was independently associated with T stage (p = 0.019), and TNM stage (p = 0.007). However, there was noted a limited statistical significance. In EGFR exon 19 mutation group, miR-34c high expression group showed poor overall survival than low expression one by univariate Kaplan-Meier method. (p = 0.035). Conclusions Here, we show that miR-34c may act as a potential tumor suppressor gene and miR-183 and miR-210 have a potential oncogenic role in pulmonary adenocarcinoma. This study also suggests different miRNA expression between EGFR mutation group and wild type group. Consequently, further studies of the biology of miRNAs may lead to diagnostic and prognostic biomarkers in pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Min Gyoung Pak
- Department of Pathology, Dong-A University Hospital, Busan, Republic of Korea.
| | - Chang-Hun Lee
- Department of Pathology and Medical Research Institute, Pusan National Univeristy Hospital, 1-10 Ami-dong, Seo-gu, Busan, 602-739, Republic of Korea.
| | - Woo-Jeong Lee
- Department of Pathology and Medical Research Institute, Pusan National Univeristy Hospital, 1-10 Ami-dong, Seo-gu, Busan, 602-739, Republic of Korea.
| | - Dong-Hoon Shin
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
| | - Mee-Sook Roh
- Department of Pathology, Dong-A University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
32
|
Sisic L, Vallböhmer D, Stoecklein NH, Blank S, Schmidt T, Driemel C, Möhlendick B, Knoefel WT, Odenthal M, Ott K. Serum microRNA profiles as prognostic or predictive markers in the multimodality treatment of patients with gastric cancer. Oncol Lett 2015; 10:869-874. [PMID: 26622585 DOI: 10.3892/ol.2015.3341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 02/27/2015] [Indexed: 12/22/2022] Open
Abstract
Despite the implementation of multimodality treatment strategies, the persistently poor prognosis of gastric cancer patients is predominantly caused by the lack of predictive markers for response assessment in the neoadjuvant setting, preventing individualized therapy. Therefore, the identification of novel predictive and prognostic markers for application in the multimodality treatment of gastric cancer patients is required. The aim of the present study was to characterize the serum microRNA (miRNA/miR) profile of gastric cancer patients undergoing multimodality therapy to identify possible prognostic and predictive markers. The study consisted of 32 patients with gastric cancer who had undergone either primary surgical resection (n=14) or neoadjuvant therapy followed by surgical resection (n=18). Histopathological regression was defined as a major histopathological response when the resected specimens contained <10% vital residual tumor cells. Intratumoral miRNA was isolated from pre-operative or post-neoadjuvant blood serum samples. Initially, microarray analyses were performed in six of the patients that received neoadjuvant treatment (three responders versus three non-responders), to assess the amplification profile of dysregulated miRNAs. Based on these findings, possible predictive or prognostic markers were validated in all study patients by performing single reverse transcription-polymerase chain reaction (RT-PCR) analysis. Depending on the extent of the histopathological regression, a differential miRNA expression profile was identified in the microarray analyses. Based on the amplification profile, miR-21, miR-29a and miR-221 were selected for additional validation. However, the single RT-PCR measurements of the three selected miRNAs did not exhibit any prognostic or predictive value in the patients treated with primary resection or neoadjuvant therapy and resection. Thus, the current pilot study failed to identify a prognostic or predictive value in selected miRNAs using single RT-PCR measurements, however, the microarray results revealed a differential microRNA expression profile depending on the histopathological regression. The findings of the present study may have been affected by the small sample size.
Collapse
Affiliation(s)
- Leila Sisic
- Department of General, Visceral, Pediatric and Vascular Surgery, University of Heidelberg, Heidelberg D-69115, Germany
| | - Daniel Vallböhmer
- Department of General, Visceral and Pediatric Surgery, University of Düsseldorf, Düsseldorf D-40225, Germany
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, University of Düsseldorf, Düsseldorf D-40225, Germany
| | - Susanne Blank
- Department of General, Visceral, Pediatric and Vascular Surgery, University of Heidelberg, Heidelberg D-69115, Germany
| | - Thomas Schmidt
- Department of General, Visceral, Pediatric and Vascular Surgery, University of Heidelberg, Heidelberg D-69115, Germany
| | - Christiane Driemel
- Department of General, Visceral and Pediatric Surgery, University of Düsseldorf, Düsseldorf D-40225, Germany
| | - Birte Möhlendick
- Department of General, Visceral and Pediatric Surgery, University of Düsseldorf, Düsseldorf D-40225, Germany
| | - Wolfram T Knoefel
- Department of General, Visceral and Pediatric Surgery, University of Düsseldorf, Düsseldorf D-40225, Germany
| | | | - Katja Ott
- Department of General, Visceral, Pediatric and Vascular Surgery, University of Heidelberg, Heidelberg D-69115, Germany
| |
Collapse
|
33
|
Yang YL, Xu LP, Zhuo FL, Wang TY. Prognostic value of microRNA-10b overexpression in peripheral blood mononuclear cells of nonsmall-cell lung cancer patients. Tumour Biol 2015; 36:7069-75. [PMID: 25869877 DOI: 10.1007/s13277-015-3366-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/19/2015] [Indexed: 12/14/2022] Open
Abstract
We examined microRNA (miRNA)-10b expression in peripheral blood mononuclear cells (PBMCs) of nonsmall-cell lung cancer (NSCLC) patients for its clinical value. A group of 74 patients confirmed with NSCLC were recruited as case group and 52 healthy volunteers as control group. PBMCs were isolated from all subjects, and miRNA-10b expression level in these cells was measured by reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR). The correlation between miRNA-10b expression levels and the clinical and pathological characteristics of NSCLC was obtained. The miRNA-10b expression level in NSCLS patients is markedly higher than control subjects (P < 0.01). Analysis of receiver operating characteristic (ROC) curve estimated the peak diagnostic sensitivity of miRNA-10b at 86.5 % and specificity at 76.9 %. NSCLC patients were divided into high expression group (64 patients) and low expression group (10 patients). Further analysis showed that miRNA-10b expression levels in PBMCs correlated with lymph node metastasis, distant metastasis, and TNM classification (all P < 0.05). The 5-year survival rate in high expression group was significantly lower than low expression group (P = 0.017). Multivariate analysis by Cox regression model showed that high miRNA-10b expression, age >60 years, lymph node and distant metastases, and stage III-IV carcinoma were risk factors for poor prognosis in NSCLC patients (all P < 0.05). MiRNA-10b expression levels in PBMCs can distinguish NSCLC patients from cancer-free subjects with a high sensitivity and specificity, suggesting that miRNA-10b expression in PBMCs is a valuable diagnostic and prognostic marker in NSCLC.
Collapse
Affiliation(s)
- Yun-Long Yang
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Road, Xicheng District, Beijing, 100050, People's Republic of China
| | - Lu-Ping Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Beihua University, Jilin, 132011, People's Republic of China
| | - Feng-Lin Zhuo
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Road, Xicheng District, Beijing, 100050, People's Republic of China
| | - Tian-You Wang
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Road, Xicheng District, Beijing, 100050, People's Republic of China.
| |
Collapse
|
34
|
Barger JF, Nana-Sinkam SP. MicroRNA as tools and therapeutics in lung cancer. Respir Med 2015; 109:803-12. [PMID: 25910758 DOI: 10.1016/j.rmed.2015.02.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 01/01/2023]
Abstract
Lung cancer is the number one cause of cancer related deaths. The lack of specific and accurate tools for early diagnosis and minimal targeted therapeutics both contribute to poor outcomes. The recent discovery of microRNAs (miRNAs) revealed a novel mechanism for post-transcriptional regulation in cancer and has created new opportunities for the development of diagnostics, prognostics and targeted therapeutics. In lung cancer, miRNA expression profiles distinguish histological subtypes, predict chemotherapeutic response and are associated with prognosis, metastasis and survival. Furthermore, miRNAs circulate in body fluids and hence may serve as important biomarkers for early diagnosis or stratify patients for personalized therapeutic strategies. Here, we provide an overview of the miRNAs implicated in lung cancer, with an emphasis on their clinical utility.
Collapse
Affiliation(s)
- Jennifer F Barger
- The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Dept. Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - S Patrick Nana-Sinkam
- The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Dept. Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
35
|
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. microRNAs (miRNAs) have been established as players with a relevant role in lung cancer development, epithelial-mesenchymal transition and response to therapy. Additionally, in the last decade, miRNAs, measured in resected tumor samples or in fine-needle aspirate samples have emerged as compelling biomarkers for tumor diagnosis, prognosis, and prediction of response to treatment, due to the ease of their detection and in their extreme specificity. Moreover, miRNAs present in sputum, in plasma, in serum or in whole-blood have increasingly been explored in the last 5 years as less invasive biomarkers for the early detection of cancers.
Collapse
|
36
|
Woodard GA, Jablons DM. The Latest in Surgical Management of Stage IIIA Non-Small Cell Lung Cancer: Video-Assisted Thoracic Surgery and Tumor Molecular Profiling. Am Soc Clin Oncol Educ Book 2015:e435-e441. [PMID: 25993207 DOI: 10.14694/edbook_am.2015.35.e435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Stage IIIA non-small cell lung cancer (NSCLC) remains a treatment challenge and requires a multidisciplinary care team to optimize survival outcomes. Thoracic surgeons play an important role in selecting operative candidates and assisting with pathologic mediastinal staging via cervical mediastinoscopy, endobronchial ultrasound, or esophageal ultrasound with fine needle aspiration. The majority of patients with stage IIIA disease will receive induction therapy followed by repeat staging before undergoing lobectomy or pneumonectomy; occasionally, a patient with an incidentally found, single-station microscopic IIIA tumor will undergo resection as the primary initial therapy. Multiple large clinical trials, including SWOG-8805, EORTC-8941, INT-0139, and ANITA, have shown 5-year overall survival rates of up to 30% to 40% using triple-modality treatments, and the best outcomes repeatedly are seen among patients who respond to induction treatment or who have tumors amenable to lobectomy instead of pneumonectomy. The need for a pneumonectomy is not a reason to deny patients an operation, because current operative mortality and morbidity rates are acceptably low at 5% and 30%, respectively. In select patients with stage IIIA disease, video-assisted thoracic surgery and open resections have been shown to have comparable rates of local recurrence and long-term survival. New developments in genetic profiling and personalized medicine are exciting areas of research, and early data suggest that molecular profiling of stage IIIA NSCLC tumors can accurately stratify patients by risk within this stage and predict survival outcomes. Future advances in treating stage IIIA disease will involve developing better systemic therapies and customizing treatment plans on the basis of an individual tumor's genetic profile.
Collapse
Affiliation(s)
- Gavitt A Woodard
- From the Department of Surgery, University of California, San Francisco, CA
| | - David M Jablons
- From the Department of Surgery, University of California, San Francisco, CA
| |
Collapse
|
37
|
The association between abnormal microRNA-10b expression and cancer risk: a meta-analysis. Sci Rep 2014; 4:7498. [PMID: 25510966 PMCID: PMC4267202 DOI: 10.1038/srep07498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022] Open
Abstract
Several studies have investigated the association between abnormal microRNA-10b expression and the risk of various developing cancers, but the results are inconsistent. We searched all publications addressing the level of microRNA-10b expression in cancer cases and noncancerous controls (Accessed: August 2014). Thirty-six studies on 14 types of cancer were included. Among them, 25 studies were subjected to the meta-analysis with a vote-counting strategy, 13 studies were estimated using odds ratio (OR) and diagnostic accuracy, and 2 studies were assessed by both methods. It was found that vestibular schwannomas ranked first among the reported cancer types with up-regulated microRNA-10b expression; melanoma ranked first among the reported cancer types with down-regulated microRNA-10b expression; while breast cancer and hepatocellular cancer presented inconsistent microRNA-10b regulation. Of 13 included studies calculated for OR and diagnostic accuracy, it was shown that high-expression of microRNA-10b could be significantly associated with cancer risk (OR = 32.80, 95% CI: 11.90–90.37, P<0.0001), and the area under the summary receiver operating characteristic (SROC) curve for microRNA-10b high-expression in the diagnosis of cancer is 0.81, which suggested that high-expression of microRNA-10b can predict worse outcomes in some types of cancer and the regular monitoring of miR-10b expression might be useful in the clinical practice.
Collapse
|
38
|
Vescovo VD, Grasso M, Barbareschi M, Denti MA. MicroRNAs as lung cancer biomarkers. World J Clin Oncol 2014; 5:604-620. [PMID: 25302165 PMCID: PMC4129526 DOI: 10.5306/wjco.v5.i4.604] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/28/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Its high mortality is due to the poor prognosis of the disease caused by a late disease presentation, tumor heterogeneities within histological subtypes, and the relatively limited understanding of tumor biology. Importantly, lung cancer histological subgroups respond differently to some chemotherapeutic substances and side effects of some therapies appear to vary between subgroups. Biomarkers able to stratify for the subtype of lung cancer, prognosticate the course of disease, or predict the response to treatment are in high demand. In the last decade, microRNAs (miRNAs), measured in resected tumor samples or in fine needle aspirate samples have emerged as biomarkers for tumor diagnosis, prognosis and prediction of response to treatment, due to the ease of their detection and in their extreme specificity. Moreover, miRNAs present in sputum, in plasma, in serum or in whole blood have increasingly been explored in the last five years as less invasive biomarkers for the early detection of cancers. In this review we cover the increasing amounts of data that have accumulated in the last ten years on the use of miRNAs as lung cancer biomarkers.
Collapse
|
39
|
Yan G, Yao R, Tang D, Qiu T, Shen Y, Jiao W, Ge N, Xuan Y, Wang Y. Prognostic significance of microRNA expression in completely resected lung adenocarcinoma and the associated response to erlotinib. Med Oncol 2014; 31:203. [PMID: 25192889 DOI: 10.1007/s12032-014-0203-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 08/22/2014] [Indexed: 01/29/2023]
Abstract
The mechanism of action of oncogenic or tumor suppressor microRNAs is not well understood. We examined the microRNA expression profile in completely resected lung adenocarcinoma and examined the associated response to erlotinib. The lung adenocarcinoma tissue and adjacent normal lung parenchyma of 226 stage IIB and IIIA patients who underwent complete resection were obtained for two separate retrospective cohorts. In cohort 1 (119 patients; 80 with epidermal growth factor receptor (EGFR) mutations and 39 without), miRNA microarrays were used to identify EGFR-related miRNAs and their association with survival. In cohort 2 (107 patients with EGFR mutations), the miRNAs and their association with survival and response to erlotinib were analyzed by qRT-PCR. Cox proportional hazards regression was used to evaluate the effect of treatment on survival. As a result, erlotinib is associated with a significant improvement in overall survival (P=0.0075, cohort 1; P=0.0372, cohort 2) and disease progression (P=0.6929, cohort 1; P=0.3347, cohort 2) in patients with reduced miRNA-21 expression. Additionally, miRNA-145 is strongly associated with overall survival (P=0.0008, cohort 1; P=0.0131, cohort 2) and progression-free survival (P=0.0198, cohort 1; P=0.0269, cohort 2). Understanding the response rate to erlotinib relative to miRNA-21 (77.3 vs. 41.7%, P<0.01) and miRNA-145 (74.1 vs. 42.6%, P<0.01) expression is critical. The miRNA expression profiles differed significantly between patients with and without EGFR mutations. In conclusion, lung adenocarcinoma patients with reduced miRNA-21 expression exhibit longer overall survival and a poor response rate to erlotinib. Increased miRNA-145 levels can predict overall survival, progression-free survival and excellent response rate to erlotinib.
Collapse
Affiliation(s)
- Guanzhong Yan
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
MiR-152 suppresses the proliferation and invasion of NSCLC cells by inhibiting FGF2. Exp Mol Med 2014; 46:e112. [PMID: 25190353 PMCID: PMC4150934 DOI: 10.1038/emm.2014.51] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) regulate the proliferation and metastasis of cancer cells. Here, we showed that miR-152 was downregulated in non-small-cell lung cancer (NSCLC) tissues and cell lines. Overexpression of miR-152 suppressed cell proliferation and colony formation and also limited migration and invasion. Fibroblast growth factor 2 (FGF2) was confirmed as a direct target of miR-152. FGF2 knockdown suppressed cell proliferation, colony formation, migration and invasion, whereas FGF2 overexpression partially reversed the suppressive effect of miR-152. Furthermore, the presence of miR-152 was inversely correlated with FGF2 in NSCLC tissues. Overall, this study demonstrated that miR-152 suppressed the proliferation and invasion of NSCLC cells by downregulating FGF2. These findings provide novel insights with potential therapeutic applications for the treatment of NSCLC.
Collapse
|
41
|
Bjaanaes MM, Halvorsen AR, Solberg S, Jørgensen L, Dragani TA, Galvan A, Colombo F, Anderlini M, Pastorino U, Kure E, Børresen-Dale AL, Brustugun OT, Helland A. Unique microRNA-profiles in EGFR-mutated lung adenocarcinomas. Int J Cancer 2014; 135:1812-21. [PMID: 24599520 PMCID: PMC4235315 DOI: 10.1002/ijc.28828] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/27/2014] [Accepted: 02/20/2014] [Indexed: 12/21/2022]
Abstract
The findings of mutations and the development of targeted therapies have improved lung cancer management. Still, the prognosis remains poor, and we need to know more about the genetic and epigenetic alterations in lung cancer. MicroRNAs are involved in crucial biological processes like carcinogenesis by regulating gene expression at the post-transcriptional level. In this project, we have studied the microRNA expression of lung adenocarcinomas and corresponding normal lung tissue and correlated the expression with clinical data and EGFR- and KRAS-mutational status. Agilent microarrays have been used, examining microRNA expression in 154 surgically resected lung adenocarcinomas and 20 corresponding normal lung tissue samples. Findings were confirmed by RT-qPCR in the same cohort and in an independent cohort of 103 lung cancer patients. EGFR and KRAS mutation analyses were also performed. 129 microRNAs were significantly differentially expressed in lung adenocarcinomas compared with normal lung tissue, and 17 microRNAs were differentially expressed between EGFR-mutated and EGFR wildtype tumors. We identified microRNAs associated with time to progression. We have identified several aberrantly expressed microRNAs that discriminate lung adenocarcinomas from normal lung tissue, and hence may be potential biomarkers for early detection. We have found microRNAs that are differentially expressed between EGFR-mutated and EGFR wildtype lung adenocarcinomas, suggesting that microRNAs can be used as molecular biomarkers in classification. We hypothesize that microRNA expression can be used as biomarkers for clinical course.
Collapse
Affiliation(s)
- Maria Moksnes Bjaanaes
- Department of Genetics Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|