1
|
Zhang X, Wei X, Shi L, Jiang H, Ma F, Li Y, Li C, Ma Y, Ma Y. The latest research progress: Active components of Traditional Chinese medicine as promising candidates for ovarian cancer therapy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118811. [PMID: 39251149 DOI: 10.1016/j.jep.2024.118811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 09/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ovarian cancer ranks the first in the mortality of gynecological tumors. Because there are no obvious symptoms in the early stage of ovarian cancer, most patients are in the advanced stage of the disease at the time of diagnosis. The incidence of ovarian cancer is increasing year by year, and the incidence of ovarian cancer has a trend of younger age. In recent years. Traditional Chinese medicine (TCM) has a significant impact on improving the quality of life of cancer patients, reducing drug toxicity, preventing metastasis and recurrence, enhancing the efficacy of radiotherapy and chemotherapy, and prolonging survival time, so patients have benefited a lot. AIM OF THE STUDY This review summarizes the mechanisms and molecular pathways through which active ingredients of TCM act in ovarian cancer. It explores the advantages of TCM in treating ovarian cancer. This review provides theoretical support for the use of TCM in the treatment of ovarian cancer, offering new perspectives for its clinical prevention and treatment. MATERIALS AND METHODS This review conducted a literature search on PubMed, Web of Science, Wanfang Database, and China National Knowledge Infrastructure (CNKI) for relevant studies on TCM active ingredients in preventing ovarian cancer. The search terms included "ovarian cancer" combined with "Chinese herbal medicine," "Herbal medicine," "Traditional Chinese medicine," and "Active ingredients of Chinese medicine". Based on existing experimental and clinical research, the paper systematically summarized and analyzed the mechanisms of TCM in treating ovarian cancer. RESULTS Active ingredients of TCM inhibit the occurrence and development of ovarian cancer through inducing tumor cell apoptosis, inhibiting tumor cell proliferation, suppressing tumor cell migration and invasion, inducing tumor cell autophagy, promoting epithelial-mesenchymal transition, and enhancing the efficacy of radiotherapy and chemotherapy drugs. Chinese medicine provides a comprehensive treatment option for ovarian cancer patients, synergizing with radiotherapy and chemotherapy drugs to enhance treatment effectiveness and introduce new hope and possibilities in clinical therapy. CONCLUSIONS Active ingredients of TCM can inhibit the occurrence and development of ovarian cancer, but further clinical research is needed to support their application.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaocen Wei
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Shi
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hehe Jiang
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengjun Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunjing Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yuxia Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Li M, Li J, Tang Q, Zhu Y. Potential antitumor activity of triptolide and its derivatives: Focused on gynecological and breast cancers. Biomed Pharmacother 2024; 180:117581. [PMID: 39427548 DOI: 10.1016/j.biopha.2024.117581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer remains one of the greatest global health concerns. This is especially true for gynecological cancers, which include cervical, ovarian, and endometrial cancers, and breast cancer. Natural products used for cancer treatment offer some unique advantages. Triptolide (TPL) is a biologically active terpenoid extracted from Tripterygium wilfordii, which exhibits anti-inflammatory, immunosuppressive, antitumor, and other pharmacological activities. However, clinical applications of TPL are restricted because of poor water solubility and severe cytotoxicity; to overcome these limitations, various TPL derivatives and drug delivery systems, especially nanocarriers, have been used. Furthermore, various preclinical and clinical studies have demonstrated that TPL and its derivatives exhibit excellent antitumor effects by targeting proteins involved in multiple signaling pathways. Here, we review the progress regarding novel drug delivery systems, antitumor activities, and molecular mechanisms of action of TPL and its derivatives against gynecological and breast cancers. TPL and its derivatives inhibit tumor growth, suppress tumor metastasis, and enhance the drug sensitization of resistant cancers. In addition, TPL and its derivatives exert synergistic antitumor effects against gynecological and breast cancers when combined with existing antitumor drugs, such as carboplatin, cisplatin, and PI3K inhibitors. Moreover, we highlight the clinical potential of TPL analogs against cancer from bench to bedside and their prospects for future applications in gynecologic and breast cancers.
Collapse
Affiliation(s)
- Mengjie Li
- College of Pharmacy, Qinghai University for Nationalities, Xining, China; Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jiamiao Li
- Department of Pharmacy, The Affilliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, China
| | - Qing Tang
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yongxia Zhu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
3
|
Huang YJ, Cao J, Lee CY, Wu YM. Umbilical cord blood plasma-derived exosomes as a novel therapy to reverse liver fibrosis. Stem Cell Res Ther 2021; 12:568. [PMID: 34772443 PMCID: PMC8588641 DOI: 10.1186/s13287-021-02641-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cirrhosis is a chronic liver disease whereby scar tissue replaces healthy liver parenchyma, leading to disruption of the liver architecture and hepatic dysfunction. Currently, there is no effective disease-modifying therapy for liver fibrosis. Recently, our group demonstrated that human umbilical cord blood (UCB) plasma possesses therapeutic effects in a rat model of acute liver failure. Methods In the current study, we tested whether exosomes (Exo) existed in UCB plasma and if they produced any antifibrotic benefits in a liver fibrosis model. Results Our results showed that UCB-Exo improved liver function and increased matrix metalloproteinase/tissue inhibitor of metalloproteinase degradation to reduce the degree of fibrosis. Moreover, UCB-Exo were found to suppress hepatic stellate cell (HSC) activity in vitro. These effects were associated with suppression of transforming growth factor-β/inhibitor of DNA binding 1 signaling. Conclusions These results further support that UCB-Exo have antifibrotic effects in mice with liver fibrosis and activated HSCs and may herald a new cell-free antifibrotic therapy.
Collapse
Affiliation(s)
- Yu-Jen Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jerry Cao
- Department of Surgery, Wollongong Hospital, Loftus Street, Wollongong, NSW, 2500, Australia
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Road, Taipei, Taiwan.
| |
Collapse
|
4
|
Wu J, Zhou T, Wang Y, Jiang Y, Wang Y. Mechanisms and Advances in Anti-Ovarian Cancer with Natural Plants Component. Molecules 2021; 26:molecules26195949. [PMID: 34641493 PMCID: PMC8512305 DOI: 10.3390/molecules26195949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer ranks seventh in the most common malignant tumors among female disease, which seriously threatens female reproductive health. It is characterized by hidden pathogenesis, missed diagnosis, high reoccurrence rate, and poor prognosis. In clinic, the first-line treatment prioritized debulking surgery with paclitaxel-based chemotherapy. The harsh truth is that female patients are prone to relapse due to the dissemination of tumor cells and drug resistance. In these circumstances, the development of new therapy strategies combined with traditional approaches is conductive to improving the quality of treatment. Among numerous drug resources, botanical compounds have unique advantages due to their potentials in multitarget functions, long application history, and wide availability. Previous studies have revealed the therapeutic effects of bioactive plant components in ovarian cancer. These natural ingredients act as part of the initial treatment or an auxiliary option for maintenance therapy, further reducing the tumor and metastatic burden. In this review, we summarized the functions and mechanisms of natural botanical components applied in human ovarian cancer. We focused on the molecular mechanisms of cell apoptosis, autophagy, RNA and DNA lesion, ROS damage, and the multiple-drug resistance. We aim to provide a theoretical reference for in-depth drug research so as to manage ovarian cancer better in clinic.
Collapse
Affiliation(s)
- Jingyuan Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (J.W.); (Y.J.)
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Yinxue Wang
- The Reproductive Medicine Special Hospital of the First Hospital of Lanzhou University, Lanzhou 730000, China;
| | - Yanbiao Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (J.W.); (Y.J.)
| | - Yiqing Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (J.W.); (Y.J.)
- Gansu Key Laboratory of Reproductive Medicine and Embryology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Correspondence:
| |
Collapse
|
5
|
Wu Q, Bao G, Pan Y, Qian X, Gao F. Discovery of potential targets of Triptolide through inverse docking in ovarian cancer cells. PeerJ 2020; 8:e8620. [PMID: 32219016 PMCID: PMC7085293 DOI: 10.7717/peerj.8620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Triptolide (TPL) is proposed as an effective anticancer agent known for its anti-proliferation of a variety of cancer cells including ovarian cancer cells. Although some studies have been conducted, the mechanism by which TPL acts on ovarian cancer remains to be clearly described. Herein, systematic work based on bioinformatics was carried out to discover the potential targets of TPL in SKOV-3 cells. TPL induces the early apoptosis of SKOV-3 cells in a dose- and time-dependent manner with an IC50 = 40 ± 0.89 nM when cells are incubated for 48 h. Moreover, 20 nM TPL significantly promotes early apoptosis at a rate of 40.73%. Using a self-designed inverse molecular docking protocol, we fish the top 19 probable targets of TPL from the target library, which was built on 2,250 proteins extracted from the Protein Data Bank. The 2D-DIGE assay reveals that the expression of eight genes is affected by TPL. The results of western blotting and qRT-PCR assay suggest that 40 nM of TPL up-regulates the level of Annexin A5 (6.34 ± 0.07 fold) and ATP syn thase (4.08 ± 0.08 fold) and down-regulates the level of β-Tubulin (0.11 ± 0.12 fold) and HSP90 (0.21 ± 0.09 fold). More details of TPL affecting on Annexin A5 signaling pathway will be discovered in the future. Our results define some potential targets of TPL, with the hope that this agent could be used as therapy for the preclinical treatment of ovarian cancer.
Collapse
Affiliation(s)
- Qinhang Wu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Gang Bao
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Pan
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoqi Qian
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Furong Gao
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Liu H, Shen M, Zhao D, Ru D, Duan Y, Ding C, Li H. The Effect of Triptolide-Loaded Exosomes on the Proliferation and Apoptosis of Human Ovarian Cancer SKOV3 Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2595801. [PMID: 31240207 PMCID: PMC6556367 DOI: 10.1155/2019/2595801] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/12/2019] [Accepted: 04/23/2019] [Indexed: 01/13/2023]
Abstract
Triptolide has been proven to possess anticancer efficacy; however, its application in the clinical practice was limited by poor water solubility, hepatotoxicity, and nephrotoxicity. In this study, a triptolide-loaded exosomes delivery system (TP-Exos) was constructed and its effects on the proliferation and apoptosis of SKOV3 cells in vitro and in vivo were observed. SKOV3-exosomes (SK-Exos) were collected by ultracentrifugation and ultrafiltration centrifugation. TP-Exos was constructed by sonication and ultrafiltration centrifugation. SK-Exos and TP-Exos were characterized by transmission electron microscopy, western blotting, nanoparticle-tracking analysis, and high-performance liquid chromatography. Cellular uptake of exosomes, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, bromodeoxyuridine (BrdU) cell proliferation assay, and cell apoptosis experiment were used to study the effect of TP-Exos on ovarian cancer in vitro. Tumor-targeting study of exosomes, monitoring the tumor volume of mice, and TdT-mediated dUTP Nick-End labeling (TUNEL) assay were used to evaluate the effect of TP-Exos on ovarian cancer in vivo. The toxicity of TP-Exos in vivo was evaluated by liver and kidney function and histopathology of major organs (heart, liver, spleen, lung, kidney, and ovary). The results revealed that TP-Exos not only have the general characteristics of exosomes but also have high drug encapsulation efficiency. Besides, PKH26 labeled exosomes (PKH26-Exos) could be uptaken by SKOV3 cells, and Dir labeled exosomes (Dir-Exos) could be enriched to the tumor site of tumor bearing mice. Furthermore, the cytotoxic and apoptotic effects on SKOV3 cells of TP-Exos were weaker than those of free TP, and tumor cell proliferation inhibition and tumor growth inhibition were stronger than that of free TP. Moreover, TP-Exos have toxic effect on liver and spleen. In conclusion, the TP-Exos could be a promising strategy for ovarian cancer, but they need to be further optimized to attenuate the damage to liver and spleen.
Collapse
Affiliation(s)
- Huan Liu
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ming Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - De Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Dan Ru
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Chenhuan Ding
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - He Li
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
7
|
Song W, Liu M, Wu J, Zhai H, Chen Y, Peng Z. Preclinical Pharmacokinetics of Triptolide: A Potential Antitumor Drug. Curr Drug Metab 2019; 20:147-154. [DOI: 10.2174/1389200219666180816141506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/20/2018] [Accepted: 08/06/2018] [Indexed: 01/09/2023]
Abstract
Background:Triptolide, a bioactive component in Tripterygium wilfordii extracts, possess strong antiproliferative activity on all 60-National Cancer Institute (NCI) cancer cell lines. However, the widespread use of triptolide in the clinical practice is greatly limited for its multi-organ toxicity and narrow therapeutic window. All the toxic characteristics of triptolide are associated with the pharmacokinetics especially its distribution and accumulation in the target organ.Methods:The literature review was done using PubMed search, SciFinder and Google Scholar databases with specific keywords such as triptolide, pharmacokinetics, drug-drug interaction, transporters, metabolism, modification to collect the related full-length articles and abstracts from 2000 to 2018.Results:Oral triptolide is rapidly and highly absorbed. Grapefruit juice affects oral absorption, increasing the area under the concentration-time curve (AUC) by 153 % and the maximum concentration (Cmax) by 141 %. The AUC and the Cmax are not dose proportional. Triptolide distributes into the liver, heart, spleen, lung and kidney. Biotransformation of triptolide in rats includes hydroxylation, sulfate, glucuronide, N-acetylcysteine (NAC) and Glutathione (GSH) conjugation and combinations of these pathways. Less than 4 % of triptolide was recovered from the feces, bile and urine within 24 h. After repeating dosage, triptolide was eliminated quickly without accumulation in vivo. As a substrate of P-glycoprotein (P-gp) and CYP3A4, triptolide could have clinically significant pharmacokinetic interactions with those proteins substrates/inhibitors.Conclusion:The findings of this review confirm the importance of pharmacokinetic character for understanding the pharmacology and toxicology of triptolide.
Collapse
Affiliation(s)
- Wei Song
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Meilin Liu
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Junjun Wu
- Lab of Structure Biology and Medicinal Chemistry, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Hong Zhai
- Lab of Structure Biology and Medicinal Chemistry, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Yong Chen
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Zhihong Peng
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| |
Collapse
|
8
|
Yanchun M, Yi W, Lu W, Yu Q, Jian Y, Pengzhou K, Ting Y, Hongyi L, Fang W, Xiaolong C, Yongping C. Triptolide prevents proliferation and migration of Esophageal Squamous Cell Cancer via MAPK/ERK signaling pathway. Eur J Pharmacol 2019; 851:43-51. [PMID: 30779917 DOI: 10.1016/j.ejphar.2019.02.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 01/01/2023]
Abstract
Triptolide, the component of traditional Chinese herb, has been used as an inflammatory medicine and reported to be anti-tumor for various cancers recently. However, the effect of triptolide on Esophageal Squamous Cell Cancer (ESCC) has not yet been elucidated. In the study, we found that triptolide significantly inhibited cell proliferation, invasion, migration and survivability of ESCC cells. Moreover, we observed that triptolide induced ESCC cell cycle arrest at the G1/S phase and apoptosis through cyclin D1-CDK4/6 regulation and caspases activation. In addition, we revealed that triptolide regulates cell apoptosis and metastasis by p53 and mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, respectively. Meanwhile, the inhibitory effect of triptolide on ESCC was validated in mouse xenograft model. So, we propose that triptolide may be a candidate drug for ESCC.
Collapse
Affiliation(s)
- Ma Yanchun
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Wang Yi
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Wang Lu
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Qian Yu
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yang Jian
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Kong Pengzhou
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yan Ting
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Li Hongyi
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Wang Fang
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Cheng Xiaolong
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Cui Yongping
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| |
Collapse
|
9
|
Triptolide, a HSP90 middle domain inhibitor, induces apoptosis in triple manner. Oncotarget 2018; 9:22301-22315. [PMID: 29854279 PMCID: PMC5976465 DOI: 10.18632/oncotarget.24737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/24/2018] [Indexed: 11/25/2022] Open
Abstract
Triptolide (TL) is a potent anti-tumor, anti-inflammatory and immunosuppressive natural compound. Mechanistic studies revealed that TL inhibits tumor growth and triggers programmed cell death. Studies further suggested that TL inhibits heat shock response in cancer cells to induce apoptosis. HSP90β is the major component of heat shock response and is overexpressed in different types of cancers. Given almost all identified HSP90β inhibitors are either N or C-terminal inhibitors, small molecules attacking cysteine(s) in the middle domain might represent a new class of inhibitors. In the current study, we showed that TL inhibits HSP90β in triple manner. Characterization suggests that TL inhibits ATPase activity by preventing ATP binding thus blunts the chaperone activity. TL disrupts HSP90β-CDC37 (co-chaperone) complex through middle domain Cys366 of HSP90β and causes kinase client protein degradation. At the cellular level, the TL-mediated decrease in CDK4 protein levels in HeLa cells causes reduced phosphorylation of Rb resulting in cell cycle arrest at the G1 phase. Furthermore, our results demonstrated that TL triggers programmed cell death in an HSP90β-dependent manner as knockdown of HSP90β further sensitized TL-mediated cell cycle arrest and apoptotic effect. Surprisingly, our data showed that TL is the first drug to be reported to induce site-specific phosphorylation of HSP90β to drive apoptosome formation in the early phase of the treatment. In summary, our study established that TL is a novel middle domain HSP90β inhibitor with bi-phasic multi-mechanistic inhibition. The unique regulatory mechanism of TL on HSP90β makes it an effective inhibitor.
Collapse
|
10
|
Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy. Mediators Inflamm 2018; 2018:4159013. [PMID: 29618945 PMCID: PMC5829354 DOI: 10.1155/2018/4159013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
The reactivation of senescence in cancer and the subsequent clearance of senescent cells are suggested as therapeutic intervention in the eradication of cancer. Several natural compounds that activate Nrf2 (nuclear factor erythroid-derived 2-related factor 2) pathway, which is involved in complex cytoprotective responses, have been paradoxically shown to induce cell death or senescence in cancer. Promoting the cytoprotective Nrf2 pathway may be desirable for chemoprevention, but it might be detrimental in later stages and advanced cancers. However, senolytic activity shown by some Nrf2-activating compounds could be used to target senescent cancer cells (particularly in aged immune-depressed organisms) that escape immunosurveillance. We herein describe in vitro and in vivo effects of fifteen Nrf2-interacting natural compounds (tocotrienols, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, silybin, phenethyl isothiocyanate, sulforaphane, triptolide, allicin, berberine, piperlongumine, fisetin, and phloretin) on cellular senescence and discuss their use in adjuvant cancer therapy. In light of available literature, it can be concluded that the meaning and the potential of adjuvant therapy with natural compounds in humans remain unclear, also taking into account the existence of few clinical trials mostly characterized by uncertain results. Further studies are needed to investigate the therapeutic potential of those compounds that display senolytic activity.
Collapse
|
11
|
3'-hydroxy-3,4,5,4'-tetramethoxystilbene, the metabolite of resveratrol analogue DMU-212, inhibits ovarian cancer cell growth in vitro and in a mice xenograft model. Sci Rep 2016; 6:32627. [PMID: 27585955 PMCID: PMC5009320 DOI: 10.1038/srep32627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/11/2016] [Indexed: 12/21/2022] Open
Abstract
In screening studies, the cytotoxic activity of four metabolites of resveratrol analogue 3,4,5,4′-tetramethoxystilbene (DMU-212) against A-2780 and SKOV-3 ovarian cancer cells was investigated. The most active metabolite, 3′-hydroxy-3,4,5,4′-tetramethoxystilbene (DMU-214), was chosen for further studies. The cytotoxicity of DMU-214 was shown to be higher than that of the parent compound, DMU-212, in both cell lines tested. Since DMU-212 was supposed to undergo metabolic activation through its conversion to DMU-214, an attempt was made to elucidate the mechanism of its anti-proliferative activity. We found that in SKOV-3 cells lacking p53, DMU-214 induced receptor-mediated apoptosis. In A-2780 cell line with expression of wild-type p53, DMU-214 modulated the expression pattern of p53-target genes driving intrinsic and extrinsic apoptosis pathways, as well as DNA repair and damage prevention. Regardless of the up-regulation of p48, p53R2, sestrins and Gaad45 genes involved in cancer cell DNA repair, we demonstrated the stronger anti-proliferative and pro-apoptotic effects of DMU-214 in A-2780 cells when compared to those in SKOV-3. Hence we verified DMU-214 activity in the xenograft model using SCID mice injected with A-2780 cells. The strong anti-proliferative activity of DMU-214 in the in vivo model allowed to suggest the tested compound as a potential therapeutic in ovarian cancer treatment.
Collapse
|
12
|
Effects of p21-activated kinase 1 inhibition on 11q13-amplified ovarian cancer cells. Oncogene 2015; 35:2178-85. [PMID: 26257058 PMCID: PMC5125076 DOI: 10.1038/onc.2015.278] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/26/2015] [Accepted: 06/09/2015] [Indexed: 12/14/2022]
Abstract
p21-activated kinases (PAKs) are Cdc42/Rac–activated serine-threonine protein kinases that regulate of several key cancer-relevant signaling pathways, such as the Mek/Erk, PI3K/Akt, and Wnt/b-catenin signaling pathways. Pak1 is frequently overexpressed and/or hyperactivated in different human cancers, including human breast, ovary, prostate, and brain cancer, due to amplification of the PAK1 gene in an 11q13 amplicon. Genetic or pharmacological inactivation of Pak1 has been shown to reduce proliferation of different cancer cells in vitro and reduce tumor progression in vivo. In this work, we examined the roles of Pak1 in cellular and animal models of PAK1-amplified ovarian cancer. We found that inhibition of Pak1 leads to decreased proliferation and migration in PAK1 amplified/overexpressed ovarian cancer cells, and has no effect in cell that lack such amplification/overexpression. Further, we observed that loss of Pak1 function causes 11q13 amplified ovarian cancer cells to arrest in the G2/M phase of the cell cycle. This arrest correlates with activation of p53 and p21Cip and decreased expression of cyclin B1. These findings suggest that small molecule inhibitors of Pak1 may play a therapeutic role in the ~25% of ovarian cancers characterized by PAK1 gene amplification.
Collapse
|
13
|
Mao ZJ, Li GQ, Huang J, 南 华. Role of GSK-3β in triptolide induced apoptosis of pancreatic cancer cells. Shijie Huaren Xiaohua Zazhi 2015; 23:256-260. [DOI: 10.11569/wcjd.v23.i2.256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of glycogen synthase kinase 3β (GSK-3β) in triptolide induced apoptosis of pancreatic cancer cells.
METHODS: Pancreatic cancer AsPC-1 cells were treated with triptolide in the presence or absence of GSK-3β inhibitor LiCl. Cell apoptosis was assessed using flow cytometry. The expression of GSK-3β, p-glycogen synthase kinase-3β (p-GSK-3β) and B-cell lymphoma-2 (Bcl-2) proteins was detected by Western blot.
RESULTS: Treatment with triptolide (TPL) at 6.54 ng/mL and 15.51 ng/mL significantly reduced the growth of AsPC-1 cells, and the rates of reduced growth were 39.64% and 52.19%, respectively. LiCl pretreatment reduced the rates of reduced growth to 27.36% and 41.94%, respectively. LiCl pretreatment significantly reduced the apoptosis rate of AsPC-1 cells. Triptolide treatment significantly increased the level of p-GSK-3β in AsPC-1 cells, but had no significant impact on GSK-3β expression; LiCl pretreatment significantly increased the expression level of p-GSK-3β in AsPC-1 cells, had no significant impact on GSK-3β expression, and significantly reduced the expression of apoptosis-related factors Bcl-2, B-cell lymphoma-xl (Bcl-xl) and myeloid cell leukemia-1 (Mcl-1).
CONCLUSION: The increased level of p-GSK-3βcan inhibit triptolide induced pancreatic cancer cell apoptosis.
Collapse
|
14
|
Meng C, Zhu H, Song H, Wang Z, Huang G, Li D, Ma Z, Ma J, Qin Q, Sun X, Ma J. Targets and molecular mechanisms of triptolide in cancer therapy. Chin J Cancer Res 2014; 26:622-6. [PMID: 25400429 DOI: 10.3978/j.issn.1000-9604.2014.09.01] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/16/2014] [Indexed: 11/14/2022] Open
Abstract
Triptolide (TPL/TL) is a natural drug with novel anticancer effects. Preclinical studies indicated that TPL inhibits cell proliferation, induces cell apoptosis, inhibits tumor metastasis and enhances the effect of other therapeutic methods in various cancer cell lines. Multiple molecules and signaling pathways, such as caspases, heat-shock proteins, NF-κB, and deoxyribonucleic acid (DNA) repair-associated factors, are associated with the anti-cancer effect. TPL also improves chemoradiosensitivity in cancer therapy. Phase I trials indicate the potential clinical value of TPL use. However, further trials with larger sample sizes are needed to confirm these results.
Collapse
Affiliation(s)
- Cuicui Meng
- 1 Bengbu Medical College, Bengbu 233000, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 Department of Radiation Oncology, Lianyungang No. 2 People's Hospital, Lianyungang 222000, China
| | - Hongcheng Zhu
- 1 Bengbu Medical College, Bengbu 233000, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 Department of Radiation Oncology, Lianyungang No. 2 People's Hospital, Lianyungang 222000, China
| | - Hongmei Song
- 1 Bengbu Medical College, Bengbu 233000, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 Department of Radiation Oncology, Lianyungang No. 2 People's Hospital, Lianyungang 222000, China
| | - Zhongming Wang
- 1 Bengbu Medical College, Bengbu 233000, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 Department of Radiation Oncology, Lianyungang No. 2 People's Hospital, Lianyungang 222000, China
| | - Guanhong Huang
- 1 Bengbu Medical College, Bengbu 233000, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 Department of Radiation Oncology, Lianyungang No. 2 People's Hospital, Lianyungang 222000, China
| | - Defan Li
- 1 Bengbu Medical College, Bengbu 233000, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 Department of Radiation Oncology, Lianyungang No. 2 People's Hospital, Lianyungang 222000, China
| | - Zhaoming Ma
- 1 Bengbu Medical College, Bengbu 233000, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 Department of Radiation Oncology, Lianyungang No. 2 People's Hospital, Lianyungang 222000, China
| | - Jianhua Ma
- 1 Bengbu Medical College, Bengbu 233000, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 Department of Radiation Oncology, Lianyungang No. 2 People's Hospital, Lianyungang 222000, China
| | - Qin Qin
- 1 Bengbu Medical College, Bengbu 233000, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 Department of Radiation Oncology, Lianyungang No. 2 People's Hospital, Lianyungang 222000, China
| | - Xinchen Sun
- 1 Bengbu Medical College, Bengbu 233000, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 Department of Radiation Oncology, Lianyungang No. 2 People's Hospital, Lianyungang 222000, China
| | - Jianxin Ma
- 1 Bengbu Medical College, Bengbu 233000, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 Department of Radiation Oncology, Lianyungang No. 2 People's Hospital, Lianyungang 222000, China
| |
Collapse
|