1
|
Rodrigues MT, Michelli APP, Caso GF, de Oliveira PR, Rodrigues-Junior DM, Morale MG, Machado Júnior J, Bortoluci KR, Tamura RE, da Silva TRC, Raminelli C, Chau E, Godin B, Calil-Silveira J, Rubio IGS. Lysicamine Reduces Protein Kinase B (AKT) Activation and Promotes Necrosis in Anaplastic Thyroid Cancer. Pharmaceuticals (Basel) 2023; 16:1687. [PMID: 38139812 PMCID: PMC10748177 DOI: 10.3390/ph16121687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is an aggressive form of thyroid cancer (TC), accounting for 50% of total TC-related deaths. Although therapeutic approaches against TC have improved in recent years, the survival rate remains low, and severe adverse effects are commonly reported. However, unexplored alternatives based on natural compounds, such as lysicamine, an alkaloid found in plants with established cytotoxicity against breast and liver cancers, offer promise. Therefore, this study aimed to explore the antineoplastic effects of lysicamine in papillary TC (BCPAP) and ATC (HTH83 and KTC-2) cells. Lysicamine treatment reduced cell viability, motility, colony formation, and AKT activation while increasing the percentage of necrotic cells. The absence of caspase activity confirmed apoptosis-independent cell death. Necrostatin-1 (NEC-1)-mediated necrosome inhibition reduced lysicamine-induced necrosis in KTC-2, suggesting necroptosis induction via a reactive oxygen species (ROS)-independent mechanism. Additionally, in silico analysis predicted lysicamine target proteins, particularly those related to MAPK and TGF-β signaling. Our study demonstrated lysicamine's potential as an antineoplastic compound in ATC cells with a proposed mechanism related to inhibiting AKT activation and inducing cell death.
Collapse
Affiliation(s)
- Mariana Teixeira Rodrigues
- Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.T.R.); (A.P.P.M.); (G.F.C.); (P.R.d.O.); (J.C.-S.)
- Structural and Functional Biology Post-Graduate Program, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil
- Cancer Molecular Biology Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.G.M.); (R.E.T.)
| | - Ana Paula Picaro Michelli
- Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.T.R.); (A.P.P.M.); (G.F.C.); (P.R.d.O.); (J.C.-S.)
- Cancer Molecular Biology Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.G.M.); (R.E.T.)
| | - Gustavo Felisola Caso
- Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.T.R.); (A.P.P.M.); (G.F.C.); (P.R.d.O.); (J.C.-S.)
- Cancer Molecular Biology Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.G.M.); (R.E.T.)
| | - Paloma Ramos de Oliveira
- Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.T.R.); (A.P.P.M.); (G.F.C.); (P.R.d.O.); (J.C.-S.)
- Cancer Molecular Biology Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.G.M.); (R.E.T.)
| | - Dorival Mendes Rodrigues-Junior
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, 752 36 Uppsala, Sweden;
| | - Mirian Galliote Morale
- Cancer Molecular Biology Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.G.M.); (R.E.T.)
| | - Joel Machado Júnior
- Biological Science Department, Universidade Federal de São Paulo—UNIFESP, Diadema 09920-000, Brazil;
| | - Karina Ramalho Bortoluci
- Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil;
| | - Rodrigo Esaki Tamura
- Cancer Molecular Biology Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.G.M.); (R.E.T.)
- Biological Science Department, Universidade Federal de São Paulo—UNIFESP, Diadema 09920-000, Brazil;
- Biology–Chemistry Post-Graduate Program, Institute of Environmental, Chemical and Pharmaceutical Science, Universidade Federal de São Paulo—UNIFESP, Diadema 09920-000, Brazil
| | - Tamiris Reissa Cipriano da Silva
- Department of Chemistry, Institute of Environmental, Chemical and Pharmaceutical Science, Universidade Federal de São Paulo—UNIFESP, Diadema 09920-000, Brazil; (T.R.C.d.S.); (C.R.)
| | - Cristiano Raminelli
- Department of Chemistry, Institute of Environmental, Chemical and Pharmaceutical Science, Universidade Federal de São Paulo—UNIFESP, Diadema 09920-000, Brazil; (T.R.C.d.S.); (C.R.)
| | - Eric Chau
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (E.C.); (B.G.)
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (E.C.); (B.G.)
- Department of Obstetrics and Gynecology, Weill Cornell Medicine College, New York, NY 10065, USA
| | - Jamile Calil-Silveira
- Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.T.R.); (A.P.P.M.); (G.F.C.); (P.R.d.O.); (J.C.-S.)
- Health Board III, Universidade Nove de Julho, São Paulo 01525-000, Brazil
| | - Ileana G. Sanchez Rubio
- Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.T.R.); (A.P.P.M.); (G.F.C.); (P.R.d.O.); (J.C.-S.)
- Structural and Functional Biology Post-Graduate Program, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil
- Cancer Molecular Biology Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.G.M.); (R.E.T.)
- Biological Science Department, Universidade Federal de São Paulo—UNIFESP, Diadema 09920-000, Brazil;
| |
Collapse
|
2
|
Rubio AJ, Bencomo-Alvarez AE, Young JE, Velazquez VV, Lara JJ, Gonzalez MA, Eiring AM. 26S Proteasome Non-ATPase Regulatory Subunits 1 (PSMD1) and 3 (PSMD3) as Putative Targets for Cancer Prognosis and Therapy. Cells 2021; 10:2390. [PMID: 34572038 PMCID: PMC8472613 DOI: 10.3390/cells10092390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Ever since the ubiquitin proteasome system was characterized, efforts have been made to manipulate its function to abrogate the progression of cancer. As a result, the anti-cancer drugs bortezomib, carfilzomib, and ixazomib targeting the 26S proteasome were developed to treat multiple myeloma, mantle cell lymphoma, and diffuse large B-cell lymphoma, among others. Despite success, adverse side effects and drug resistance are prominent, raising the need for alternative therapeutic options. We recently demonstrated that knockdown of the 19S regulatory components, 26S proteasome non-ATPase subunits 1 (PSMD1) and 3 (PSMD3), resulted in increased apoptosis of chronic myeloid leukemia (CML) cells, but had no effect on normal controls, suggesting they may be good targets for therapy. Therefore, we hypothesized that PSMD1 and PSMD3 are potential targets for anti-cancer therapeutics and that their relevance stretches beyond CML to other types of cancers. In the present study, we analyzed PSMD1 and PSMD3 mRNA and protein expression in cancerous tissue versus normal controls using data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC), comparing expression with overall survival. Altogether, our data suggest that PSMD1 and PSMD3 may be novel putative targets for cancer prognosis and therapy that are worthy of future investigation.
Collapse
Affiliation(s)
- Andres J Rubio
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Alfonso E Bencomo-Alvarez
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - James E Young
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Vanessa V Velazquez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Joshua J Lara
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Mayra A Gonzalez
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Anna M Eiring
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| |
Collapse
|
3
|
Li Q, Chen W, Luo R, Zhang Z, Song M, Chen W, Yang Z, Yang Y, Guo Z, Yang A. Upregulation of OIP5-AS1 Predicts Poor Prognosis and Contributes to Thyroid Cancer Cell Proliferation and Migration. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:279-291. [PMID: 32193154 PMCID: PMC7078457 DOI: 10.1016/j.omtn.2019.11.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/03/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022]
Abstract
As a common malignancy, thyroid cancer mainly occurs in the endocrine system. There have been accumulating studies on therapeutic methods of thyroid cancer, but its internal molecular mechanism is still not fully understood. Long noncoding RNA (lncRNA) OIP5-AS1 was confirmed as an oncogene and related to poor prognosis in various cancers. Nevertheless, its role and underlying mechanism remain unclear in thyroid cancer. Here, we observed a significant upregulation of OIP5-AS1 in thyroid cancer tissues and cells, and upregulated OIP5-AS1 was correlated with poor prognosis in thyroid cancer. Moreover, OIP5-AS1 knockdown resulted in the inhibited cell proliferation and migration, while overexpressed OIP5-AS1 exhibited the reverse function in thyroid cancer. Besides, OIP5-AS1 was found to positively regulate Wnt/β-catenin signaling pathway. Through mechanism exploration, OIP5-AS1 was discovered to activate Wnt/β-catenin signaling pathway via FXR1/YY1/CTNNB1 axis. Finally, rescue assays indicated that the inhibitive role of silenced OIP5-AS1 in thyroid cancer cell growth and Wnt/β-catenin signaling pathway could be rescued by overexpression of CTNNB1 or addition of lithium chloride (LiCl). In conclusion, upregulation of OIP5-AS1 predicted unfavorable prognosis and enhanced thyroid cancer cell growth by activating Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qiuli Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Weichao Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Rongzhen Luo
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhiyi Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ming Song
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wenkuan Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhongyuan Yang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yuanzhong Yang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhuming Guo
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ankui Yang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
4
|
Liu Y, Liang Y, Li M, Liu D, Tang J, Yang W, Tong D, Jin X. Eps15 homology domain 1 promotes the evolution of papillary thyroid cancer by regulating endocytotic recycling of epidermal growth factor receptor. Oncol Lett 2018; 16:4263-4270. [PMID: 30214560 PMCID: PMC6126170 DOI: 10.3892/ol.2018.9200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of thyroid malignancy, and it is often observed to overexpress epidermal growth factor receptor (EGFR). Previous research has indicated that EH domain-containing 1 (EHD1) is associated with EGFR-mediated endocytotic recycling in multiple tumor types. The objective of the present study was to determine the protein expression levels and clinical significance of EHD1, EGFR, caveolin-1 (CAV-1) and RAB11 family interacting protein 3 (RAB11FIP3) in PTC. PTC specimens were analyzed for EHD1, EGFR, CAV-1 and RAB11FIP3 expression via immunohistochemistry and western blotting. The associations between protein expression and clinicopathological features were assessed. EHD1, EGFR, CAV-1 and RAB11FIP3 expression levels were increased in human PTC. Additionally, the expression level of EHD1 protein was significantly associated with tumor size, lymph node metastasis and EGFR expression (P<0.05). CAV-1 was associated with tumor size and EGFR expression (P<0.05). EGFR was only associated with lymph node metastasis (P=0.027) and RAB11FIP3 was not associated with any clinicopathological characteristics. The correlations between EHD1 and EGFR (r=0.564, P<0.05), CAV-1 (r=0.865, P<0.01) and RAB11FIP3 (r=0.504, P<0.05) were statistically significant. Overall, EHD1, CAV-1 and RAB11FIP3, which are key proteins in endocytotic recycling, promote PTC tumorigenesis through the regulation of the transport of EGFR.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yanan Liang
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ming Li
- Institute of Iodine Deficiency Disorders, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Duanyang Liu
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Weiwei Yang
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Dandan Tong
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoming Jin
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
5
|
Bakerywala S, Schwarcz MD, Goldberg MD, Valiquette G, Weiss IA. Nilotinib-Associated Destructive Thyroiditis. Case Rep Endocrinol 2015; 2015:736092. [PMID: 26064704 PMCID: PMC4439480 DOI: 10.1155/2015/736092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 11/17/2022] Open
Abstract
Protein tyrosine kinase inhibitors are currently an important drug class in the treatment of leukemia. They represent targeted cancer therapy and have become the treatment of choice in chronic myeloid leukemia. Tyrosine kinases are enzymes expressed in multiple tissues and are involved in several signaling pathways influencing cellular growth. Below we describe a patient who developed an unusual complication of tyrosine kinase inhibitor therapy: thyrotoxicosis due to destructive thyroiditis. We review the pathophysiology of tyrosine kinase inhibitor-induced thyroid dysfunction particularly with regard to new second-generation tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Suhalia Bakerywala
- Division of Endocrinology, Department of Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA
| | - Monica D. Schwarcz
- Division of Endocrinology, Department of Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA
| | - Michael D. Goldberg
- Division of Endocrinology, Department of Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA
| | - Guy Valiquette
- Division of Endocrinology, Department of Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA
| | - Irene A. Weiss
- Division of Endocrinology, Department of Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|