1
|
Freire MV, Martin M, Segers K, Sepulchre E, Leroi N, Coupier J, Kalantari HR, Wolter P, Collignon J, Polus M, Plomteux O, Josse C, Bours V. Digenic Inheritance of Mutations in Homologous Recombination Genes in Cancer Patients. J Pers Med 2024; 14:584. [PMID: 38929805 PMCID: PMC11204488 DOI: 10.3390/jpm14060584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES BRCA1, BRCA2, ATM, and CHEK2 are known cancer predisposition genes (CPGs), but tumor risk in patients with simultaneous pathogenic variants (PVs) in CPGs remains largely unknown. In this study, we describe six patients from five families with multiple cancers who coinherited a combination of PVs in these genes. METHODS PVs were identified using NGS DNA sequencing and were confirmed by Sanger. RESULTS Families 1, 2, and 3 presented PVs in BRCA2 and ATM, family 4 in BRCA2 and BRCA1, and family 5 in BRCA2 and CHEK2. PVs were identified using NGS DNA sequencing and were confirmed by Sanger. The first family included patients with kidney, prostate, and breast cancer, in addition to pancreatic adenocarcinomas. In the second family, a female had breast cancer, while a male from the third family had prostate, gastric, and pancreatic cancer. The fourth family included a male with pancreatic cancer, and the fifth family a female with breast cancer. CONCLUSIONS The early age of diagnosis and the development of multiple cancers in the reported patients indicate a very high risk of cancer in double-heterozygous patients associated with PVs in HR-related CPGs. Therefore, in families with patients who differ from other family members in terms of phenotype, age of diagnosis, or type of cancer, the cascade testing needs to include the study of other CPGs.
Collapse
Affiliation(s)
- Maria Valeria Freire
- Department of Human Genetics, GIGA Research Center, University of Liège and CHU Liège, Av. Hippocrate 1/11, 4000 Liège, Belgium;
| | - Marie Martin
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | - Karin Segers
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | - Edith Sepulchre
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | - Natacha Leroi
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | - Jérôme Coupier
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | | | - Pascal Wolter
- Onco-Hematology Department, St Nikolaus Hospital, Hufengasse 4/8, 4700 Eupen, Belgium;
| | - Joëlle Collignon
- Department of Medical Oncology, GIGA Research Center, University of Liège and CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (J.C.); (C.J.)
| | - Marc Polus
- Department of Gastroenterology, CHU Liège, Av. Hippocrate 1/11, 4000 Liège, Belgium;
| | - Olivier Plomteux
- Gastro-Enterology Department, CHC, Boulevard Patience et Beaujonc 2, 4000 Liège, Belgium;
| | - Claire Josse
- Department of Medical Oncology, GIGA Research Center, University of Liège and CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (J.C.); (C.J.)
| | - Vincent Bours
- Department of Human Genetics, GIGA Research Center, University of Liège and CHU Liège, Av. Hippocrate 1/11, 4000 Liège, Belgium;
| |
Collapse
|
2
|
Taylor SJ, Hollis RL, Gourley C, Herrington CS, Langdon SP, Arends MJ. RFWD3 modulates response to platinum chemotherapy and promotes cancer associated phenotypes in high grade serous ovarian cancer. Front Oncol 2024; 14:1389472. [PMID: 38711848 PMCID: PMC11071161 DOI: 10.3389/fonc.2024.1389472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND DNA damage repair is frequently dysregulated in high grade serous ovarian cancer (HGSOC), which can lead to changes in chemosensitivity and other phenotypic differences in tumours. RFWD3, a key component of multiple DNA repair and maintenance pathways, was investigated to characterise its impact in HGSOC. METHODS RFWD3 expression and association with clinical features was assessed using in silico analysis in the TCGA HGSOC dataset, and in a further cohort of HGSOC tumours stained for RFWD3 using immunohistochemistry. RFWD3 expression was modulated in cell lines using siRNA and CRISPR/cas9 gene editing, and cells were characterised using cytotoxicity and proliferation assays, flow cytometry, and live cell microscopy. RESULTS Expression of RFWD3 RNA and protein varied in HGSOCs. In cell lines, reduction of RFWD3 expression led to increased sensitivity to interstrand crosslinking (ICL) inducing agents mitomycin C and carboplatin. RFWD3 also demonstrated further functionality outside its role in DNA damage repair, with RFWD3 deficient cells displaying cell cycle dysregulation, reduced cellular proliferation and reduced migration. In tumours, low RFWD3 expression was associated with increased tumour mutational burden, and complete response to platinum chemotherapy. CONCLUSION RFWD3 expression varies in HGSOCs, which can lead to functional effects at both the cellular and tumour levels.
Collapse
Affiliation(s)
- Sarah J. Taylor
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert L. Hollis
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - C. Simon Herrington
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon P. Langdon
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark J. Arends
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Li W, Gao L, Yi X, Shi S, Huang J, Shi L, Zhou X, Wu L, Ying J. Patient Assessment and Therapy Planning Based on Homologous Recombination Repair Deficiency. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:962-975. [PMID: 36791952 PMCID: PMC10928375 DOI: 10.1016/j.gpb.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 12/23/2022] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Defects in genes involved in the DNA damage response cause homologous recombination repair deficiency (HRD). HRD is found in a subgroup of cancer patients for several tumor types, and it has a clinical relevance to cancer prevention and therapies. Accumulating evidence has identified HRD as a biomarker for assessing the therapeutic response of tumor cells to poly(ADP-ribose) polymerase inhibitors and platinum-based chemotherapies. Nevertheless, the biology of HRD is complex, and its applications and the benefits of different HRD biomarker assays are controversial. This is primarily due to inconsistencies in HRD assessments and definitions (gene-level tests, genomic scars, mutational signatures, or a combination of these methods) and difficulties in assessing the contribution of each genomic event. Therefore, we aim to review the biological rationale and clinical evidence of HRD as a biomarker. This review provides a blueprint for the standardization and harmonization of HRD assessments.
Collapse
Affiliation(s)
- Wenbin Li
- Department of Pathology, National Cancer Center / National Clinical Research Center for Cancer / Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Gao
- Geneplus-Shenzhen, Shenzhen 518000, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Yi
- Geneplus-Beijing, Beijing 102206, China
| | | | - Jie Huang
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Lingying Wu
- Department of Gynecologic Oncology, National Cancer Center / National Clinical Research Center for Cancer / Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center / National Clinical Research Center for Cancer / Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
4
|
Mitomycin C in Homologous Recombination Deficient Metastatic Pancreatic Cancer after Disease Progression on Platinum-Based Chemotherapy and Olaparib. Biomedicines 2022; 10:biomedicines10112705. [PMID: 36359225 PMCID: PMC9687686 DOI: 10.3390/biomedicines10112705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
Recent efforts to personalize treatment with platinum-based chemotherapy and PARP inhibitors have produced promising results in homologous recombinant deficient (HRD) metastatic pancreatic cancer (MPC). However, new strategies are necessary to overcome resistance. The below case series documents patients treated at the HonorHealth Research Institute with a diagnosis of HRD MPC who received Mitomycin C (MMC) treatment from January 2013 until July 2018. Five HRD MPC patients treated with MMC were evaluated. All patients received at least one course of treatment. Mean age at MMC treatment initiation was 58 years. There were 3 females and 2 males. All patients had tumors that progressed on platinum-based chemotherapy, four patients had previous exposure to Olaparib. The median PFS was 10.1 months, and the median OS was 12.3 months. Responses were observed only in patients harboring BRCA2 mutations, no response was observed in the PALB2 mutation carrier. MMC in this heavily previously treated PC was safe, with overall manageable grade 2 gastrointestinal toxicities including nausea and vomiting, and G3 hematological toxicities including anemia and thrombocytopenia. Pancreatic cancer patients with HRD may benefit from MMC treatment. Further clinical investigation of MMC in pancreatic cancer is warranted.
Collapse
|
5
|
Imyanitov EN, Iyevleva AG. Molecular tests for prediction of tumor sensitivity to cytotoxic drugs. Cancer Lett 2022; 526:41-52. [PMID: 34808283 DOI: 10.1016/j.canlet.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/15/2022]
Abstract
Chemotherapy constitutes the backbone of cancer treatment. Several predictive assays assist personalized administration of cytotoxic drugs and are recommended for use in a clinical setting. The deficiency of DNA repair by homologous recombination (HRD), which is caused by inactivation of BRCA1/2 genes or other genetic events, is associated with high tumor responsiveness to platinum compounds, bifunctional alkylating agents and topoisomerase II poisons. Low activity of MGMT predicts the efficacy of nitrosoureas and tetrazines. Some clinically established pharmacogenetic tests allow for the adjustment of drug dosage, for example, the analysis of DPYD allelic variants for administration of fluoropyrimidines and UGT1A1 genotyping for the use of irinotecan. While there are promising molecular predictors of tumor sensitivity to pemetrexed, gemcitabine and taxanes, they remain in the investigational stage and require additional validation. Comprehensive molecular analysis of tumors obtained from drug responders and non-responders is likely to reveal new clinically useful predictive markers for cytotoxic therapy.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia; Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 191015, Russia.
| | - Aglaya G Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia
| |
Collapse
|
6
|
Imyanitov EN. Cytotoxic and targeted therapy for BRCA1/2-driven cancers. Hered Cancer Clin Pract 2021; 19:36. [PMID: 34454564 PMCID: PMC8399736 DOI: 10.1186/s13053-021-00193-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Tumors arising in BRCA1/2 germline mutation carriers usually demonstrate somatic loss of the remaining BRCA1/2 allele and increased sensitivity to platinum compounds, anthracyclines, mitomycin C and poly (ADP-ribose) polymerase inhibitors (PARPi). Exposure to conventional platinum-based therapy or PARPi results in the restoration of BRCA1/2 function and development of resistance to systemic therapy, therefore, there is a need for other treatment options. Some studies suggested that the use of specific drug combinations or administration of high-dose chemotherapy may result in pronounced tumor responses. BRCA1/2-driven tumors are characterized by increased immunogenicity; promising efficacy of immune therapy has been demonstrated in a number of preclinical and clinical investigations. There are outstanding issues, which require further consideration. Platinum compounds and PARPi have very similar mode of antitumor action and are likely to render cross-resistance to each other, so their optimal position in cancer treatment schemes may be a subject of additional studies. Sporadic tumors with somatically acquired inactivation of BRCA1/2 or related genes resemble hereditary neoplasms with regard to the spectrum of drug sensitivity; the development of user-friendly BRCAness tests presents a challenge. Many therapeutic decisions are now based on the BRCA1/2 status, so the significant reduction of the turn-around time for predictive laboratory assays is of particular importance.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- N.N. Petrov Institute of Oncology, Pesochny, Saint-Petersburg, 197758, Russia. .,St.-Petersburg Pediatric Medical University, Saint Petersburg, 194100, Russia. .,I.I. Mechnikov North-Western Medical University, St.-Petersburg, 191015, Russia.
| |
Collapse
|
7
|
Macchini M, Centonze F, Peretti U, Orsi G, Militello AM, Valente MM, Cascinu S, Reni M. Treatment opportunities and future perspectives for pancreatic cancer patients with germline BRCA1-2 pathogenic variants. Cancer Treat Rev 2021; 100:102262. [PMID: 34418781 DOI: 10.1016/j.ctrv.2021.102262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
Personalized treatments and predictive biomarkers of pancreatic cancer (PDAC) are still lacking. Recently germline mutations in BRCA 1 and 2 genes, leading to homologous repair deficiency, have emerged as new targets for more specific and effective therapies, exploiting the increased susceptibility to platinum salts and PARP inhibitors. In addition to BRCA, pathogenic variants in PALB2 and in other genes involved in the DNA damage response pathway (DDR) represent potential targets, as well as their respective somatic alterations. This enlarged molecularly-selected population sharing the BRCAness phenotype, is expected to show a higher sensibility to a number of DNA damaging agents and DDR inhibitors. However, the possibility of new therapeutic opportunities for DDR defective PDAC patients has to face the lack of solid evidence about the proper type and timing of targeted-treatments, the potential combination strategies and most importantly, the lack of informations on the functional impact of each specific pathogenic variant on the DDR pathway. This review summarizes the current and near-future options for the clinical management of PDAC patients harboring a DDR deficiency, analyzing the state of the art of the indications of platinum salts and other cytotoxic agents in the advanced and early stage PDAC, the development of PARP inhibitors and the rational for new combinations with immunotherapy and cycle checkpoint inhibitors, as well as the strategy to overcome the development of resistance over treatments.
Collapse
Affiliation(s)
- Marina Macchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Federico Centonze
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Umberto Peretti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Orsi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Maria Militello
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Maddalena Valente
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Michele Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
8
|
Pokataev I, Fedyanin M, Polyanskaya E, Popova A, Agafonova J, Menshikova S, Tryakin A, Rumyantsev A, Tjulandin S. Efficacy of platinum-based chemotherapy and prognosis of patients with pancreatic cancer with homologous recombination deficiency: comparative analysis of published clinical studies. ESMO Open 2020; 5:e000578. [PMID: 33551067 PMCID: PMC7003386 DOI: 10.1136/esmoopen-2019-000578] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/10/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of our study was to determine the effect of homologous recombination deficiency (HRD) on prognosis and efficacy of platinum-based chemotherapy in patients with pancreatic cancer (PC). We performed PubMed and Embase database queries. We included 4 studies into the meta-analysis and 16 studies in the systematic review. Our systematic analysis showed that the average weighted median overall survival (OS) in patients with HRD with advanced PC was 19.8 and 15.6 months in patients without HRD. With platinum-based chemotherapy, the average weighted median OS in patients with HRD was 23.8 and 17.1 months in patients without HRD. Without platinum-based chemotherapy, the average weighted median OS in patients with HRD was 8.3 and 12.0 months in patients without HRD. For resected PC, our meta-analysis demonstrated that HRD status did not affect the prognosis (HR 1.03, 95% CI 0.46 to 2.33), but results were rather heterogeneous (I2=83%, p=0.003). Our systematic analysis showed that the average weighted median OS in patients with HRD was 34.6 and 27.0 months in patients without HRD. With platinum-based chemotherapy, the average weighted median OS in patients with HRD was 46.1 and 36.3 months in patients without HRD. Without platinum-based chemotherapy, the average weighted median OS in patients with HRD was 24.2 and 42.9 months in patients without HRD. Results of our meta-analysis and systematic review support the idea of platinum use in patients with HRD both in resected and metastatic PCs, although a randomised trial is warranted to make a more reliable conclusion. PROSPERO REGISTRATION NUMBER: CRD42019121914.
Collapse
Affiliation(s)
- Ilya Pokataev
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation
| | - Mikhail Fedyanin
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation.
| | - Elizaveta Polyanskaya
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation
| | - Anna Popova
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation
| | - Julia Agafonova
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation
| | - Sophia Menshikova
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation
| | - Alexey Tryakin
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation
| | - Alexey Rumyantsev
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation
| | - Sergei Tjulandin
- Department of Clinical Pharmacology and Chemotherapy, FBGU National Medical Research Center of Oncology named after N N Blokhin, Moskva, Russian Federation
| |
Collapse
|
9
|
Le Page C, Amuzu S, Rahimi K, Gotlieb W, Ragoussis J, Tonin PN. Lessons learned from understanding chemotherapy resistance in epithelial tubo-ovarian carcinoma from BRCA1and BRCA2mutation carriers. Semin Cancer Biol 2020; 77:110-126. [PMID: 32827632 DOI: 10.1016/j.semcancer.2020.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
BRCA1 and BRCA2 are multi-functional proteins and key factors for maintaining genomic stability through their roles in DNA double strand break repair by homologous recombination, rescuing stalled or damaged DNA replication forks, and regulation of cell cycle DNA damage checkpoints. Impairment of any of these critical roles results in genomic instability, a phenotypic hallmark of many cancers including breast and epithelial ovarian carcinomas (EOC). Damaging, usually loss of function germline and somatic variants in BRCA1 and BRCA2, are important drivers of the development, progression, and management of high-grade serous tubo-ovarian carcinoma (HGSOC). However, mutations in these genes render patients particularly sensitive to platinum-based chemotherapy, and to the more innovative targeted therapies with poly-(ADP-ribose) polymerase inhibitors (PARPis) that are targeted to BRCA1/BRCA2 mutation carriers. Here, we reviewed the literature on the responsiveness of BRCA1/2-associated HGSOC to platinum-based chemotherapy and PARPis, and propose mechanisms underlying the frequent development of resistance to these therapeutic agents.
Collapse
Affiliation(s)
- Cécile Le Page
- McGill Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| | - Setor Amuzu
- McGill Genome Centre, and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Kurosh Rahimi
- Department of Pathology du Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Walter Gotlieb
- Laboratory of Gynecologic Oncology, Lady Davis Research Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre, and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Patricia N Tonin
- Departments of Medicine and Human Genetics, McGill University, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
10
|
Gorodnova TV, Sokolenko AP, Kondratiev SV, Kotiv KB, Belyaev AM, Berlev IV, Imyanitov EN. Mitomycin C plus cisplatin for systemic treatment of recurrent BRCA1-associated ovarian cancer. Invest New Drugs 2020; 38:1872-1878. [PMID: 32591974 DOI: 10.1007/s10637-020-00965-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
Background Previous studies on neoadjuvant therapy for BRCA1-driven ovarian cancer (OC) demonstrated higher efficacy of mitomycin C plus cisplatin combination as compared to standard drug schemes. These data call for evaluation of the utility of this regimen for the treatment of recurrent BRCA1-associated OC. Methods The study included 12 BRCA1 germ-line mutation carriers, whose disease relapsed after one (n = 4) or two (n = 8) lines of chemotherapy. The patients received cisplatin 100 mg/m2 and mitomycin C 10 mg/m2, given every four weeks, for 6 (n = 10), 8 (n = 1) or 5 (n = 1) cycles. Retrospective data on conventional treatment of OC relapses in BRCA1 heterozygotes (n = 47) served as a control. Results Grade 3-4 toxicities were observed in 4/12 (33%) cases. There were 6 complete responses (CR), 4 partial responses (PR) and 2 instances of stable disease (SD). Comparison of patients receiving mitomycin C plus cisplatin (n = 4) or conventional therapy (n = 44) at first relapse demonstrated marginal improvement of the progression-free survival (PFS) (16.6 months vs. 10.2 months, P = .067). Use of mitomycin C plus cisplatin (n = 8) for the treatment of second relapse resulted in significant prolongation of PFS as compared to standard regimens (n = 31) (14.8 months vs. 4.8 months, P = .002). Conclusions Mitomycin C plus cisplatin shows promising activity in recurrent BRCA1-driven ovarian cancer.
Collapse
Affiliation(s)
- Tatyana V Gorodnova
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya, 68, Pesochny-2, 197758, St.-Petersburg, Russia
| | - Anna P Sokolenko
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya, 68, Pesochny-2, 197758, St.-Petersburg, Russia. .,St.-Petersburg Pediatric Medical University, 194100, St.-Petersburg, Russia.
| | - Sergey V Kondratiev
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya, 68, Pesochny-2, 197758, St.-Petersburg, Russia
| | - Khristina B Kotiv
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya, 68, Pesochny-2, 197758, St.-Petersburg, Russia
| | - Alexey M Belyaev
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya, 68, Pesochny-2, 197758, St.-Petersburg, Russia
| | - Igor V Berlev
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya, 68, Pesochny-2, 197758, St.-Petersburg, Russia
| | - Evgeny N Imyanitov
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya, 68, Pesochny-2, 197758, St.-Petersburg, Russia.,St.-Petersburg Pediatric Medical University, 194100, St.-Petersburg, Russia.,I.I. Mechnikov North-Western Medical University, 191015, St.-Petersburg, Russia
| |
Collapse
|
11
|
Gabizon A, Shmeeda H, Tahover E, Kornev G, Patil Y, Amitay Y, Ohana P, Sapir E, Zalipsky S. Development of Promitil®, a lipidic prodrug of mitomycin c in PEGylated liposomes: From bench to bedside. Adv Drug Deliv Rev 2020; 154-155:13-26. [PMID: 32777239 DOI: 10.1016/j.addr.2020.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022]
Abstract
Several liposome products have been approved for the treatment of cancer. In all of them, the active agents are encapsulated in the liposome water phase passively or by transmembrane ion gradients. An alternative approach in liposomal drug delivery consists of chemically modifying drugs to form lipophilic prodrugs with strong association to the liposomal bilayer. Based on this approach, we synthesized a mitomycin c-derived lipidic prodrug (MLP) which is entrapped in the bilayer of PEGylated liposomes (PL-MLP, Promitil®), and activated by thiolytic cleavage. PL-MLP is stable in plasma with thiolytic activation of MLP occurring exclusively in tissues and is more effective and less toxic than conventional chemotherapy in various tumor models. PL-MLP has completed phase I clinical development where it has shown a favorable safety profile and a 3-fold reduction in toxicity as compared to free mitomycin c. Clinical and pharmacokinetic studies in patients with advanced colo-rectal carcinoma have indicated a significant rate of disease stabilization (39%) in this chemo-refractory population and significant prolongation of median survival in patients attaining stable disease (13.9 months) versus progressive disease patients (6.35 months). The pharmacokinetics of MLP was typically stealth with long T½ (~1 day), slow clearance and small volume of distribution. Interestingly, a longer T½, and slower clearance were both correlated with disease stabilization and longer survival. This association of pharmacokinetic parameters with patient outcome suggests that arrest of tumor growth is related to the enhanced tumor localization of long-circulating liposomes and highlights the importance of personalized pharmacokinetic evaluation in the clinical use of nanomedicines. Another important area where PL-MLP may have an added value is in chemoradiotherapy, where it has shown a strong radiosensitizing effect in animal models based on a unique mechanism of enhanced prodrug activation and encouraging results in early human testing.
Collapse
|
12
|
Gorodnova TV, Kotiv KB, Ivantsov AO, Mikheyeva ON, Mikhailiuk GI, Lisyanskaya AS, Mikaya NA, Guseynov KD, Bondarev NE, Matveyeva NS, Nekrasova EA, Sidoruk AA, Roman LD, Manikhas GM, Belyaev AM, Sokolenko AP, Berlev IV, Imyanitov EN. Efficacy of Neoadjuvant Therapy With Cisplatin Plus Mitomycin C in BRCA1-Mutated Ovarian Cancer. Int J Gynecol Cancer 2018; 28:1498-1506. [PMID: 30247247 DOI: 10.1097/igc.0000000000001352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Cisplatin and mitomycin C exert high activity towards BRCA1-deficient cells. This study aimed to evaluate the efficacy of a combination of these drugs in hereditary BRCA1-associated ovarian cancer (OC). METHODS Twelve OC patients, who could not be treated by primary debulking surgery owing to extensive tumor spread, were given neoadjuvant cisplatin (100 mg/m) and mitomycin C (10 mg/m) every 4 weeks for 3 (n = 9), 2 (n = 2), or 4 (n = 1) cycles. RESULTS The decrease of tumor burden and complete surgical cytoreduction were achieved in all patients. Pathologic complete response, defined as the absence of tumor cells in surgically removed tissues, was observed in 2 (17%) of 12 cases. Retrospective analysis of 62 OC in BRCA1 mutation carriers subjected to conventional neoadjuvant chemotherapy schemes revealed 36 objective tumor responses (58%) and 37 instances (60%) of complete cytoreductive surgery; however, none of these patients demonstrated pathologic complete response. CONCLUSIONS The combination of cisplatin plus mitomycin C showed promising results in BRCA1-driven OC and therefore deserves further clinical evaluation.
Collapse
|
13
|
Iyevleva AG, Imyanitov EN. Cytotoxic and targeted therapy for hereditary cancers. Hered Cancer Clin Pract 2016; 14:17. [PMID: 27555886 PMCID: PMC4994296 DOI: 10.1186/s13053-016-0057-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
There is a number of drugs demonstrating specific activity towards hereditary cancers. For example, tumors in BRCA1/2 mutation carriers usually arise via somatic inactivation of the remaining BRCA allele, which makes them particularly sensitive to platinum-based drugs, PARP inhibitors (PARPi), mitomycin C, liposomal doxorubicin, etc. There are several molecular assays for BRCA-ness, which permit to reveal BRCA-like phenocopies among sporadic tumors and thus extend clinical indications for the use of BRCA-specific therapies. Retrospective data on high-dose chemotherapy deserve consideration given some unexpected instances of cure from metastatic disease among BRCA1/2-mutated patients. Hereditary non-polyposis colorectal cancer (HNPCC) is characterized by high-level microsatellite instability (MSI-H), increased antigenicity and elevated expression of immunosuppressive molecules. Recent clinical trial demonstrated tumor responses in HNPCC patients treated by the immune checkpoint inhibitor pembrolizumab. There are successful clinical trials on the use of novel targeted agents for the treatment or rare cancer syndromes, e.g. RET inhibitors for hereditary medullary thyroid cancer, mTOR inhibitors for tumors arising in patients with tuberous sclerosis (TSC), and SMO inhibitors for basal-cell nevus syndrome. Germ-line mutation tests will be increasingly used in the future for the choice of the optimal therapy, therefore turnaround time for these laboratory procedures needs to be significantly reduced to ensure proper treatment planning.
Collapse
Affiliation(s)
- Aglaya G Iyevleva
- N.N. Petrov Institute of Oncology, Pesochny-2, St. Petersburg, 197758 Russia ; St. Petersburg Pediatric Medical University, St. Petersburg, 194100 Russia
| | - Evgeny N Imyanitov
- N.N. Petrov Institute of Oncology, Pesochny-2, St. Petersburg, 197758 Russia ; St. Petersburg Pediatric Medical University, St. Petersburg, 194100 Russia ; I.I. Mechnikov North-Western Medical University, St. Petersburg, 191015 Russia ; St. Petersburg State University, St. Petersburg, 199034 Russia
| |
Collapse
|
14
|
Tan DSP, Kaye SB. Chemotherapy for Patients with BRCA1 and BRCA2-Mutated Ovarian Cancer: Same or Different? Am Soc Clin Oncol Educ Book 2016:114-21. [PMID: 25993149 DOI: 10.14694/edbook_am.2015.35.114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retrospective studies have shown an improved prognosis, higher response rates to platinum-containing regimens, and longer treatment-free intervals between relapses in patients with BRCA 1 and BRCA 2 (BRCA1/2)-mutated ovarian cancer (BMOC) compared with patients who are not carriers of this mutation. These features of BMOC are attributed to homologous-recombination repair (HR) deficiency in the absence of BRCA1/2 function, which results in an impaired ability of tumor cells to repair platinum-induced double-strand breaks (DSBs), thereby conferring increased chemosensitivity and increased sensitivity to poly(ADP-ribose) polymerase (PARP) enzyme inhibition and other DNA-damaging chemotherapeutic agents such as pegylated liposomal doxorubicin (PLD). Therefore, the chemotherapeutic approach for patients with BMOC should focus on treatment with platinum-based chemotherapy at first-line and recurrent-disease settings and measures to increase the platinum-free interval following early platinum-resistant relapse (i.e., progression-free survival of less than 6 months from last platinum-based chemotherapy) by using nonplatinum cytotoxic agents, with the aim of reintroducing platinum again at a later date. The role of first-line intraperitoneal platinum-based therapy in the specific context of BMOC also merits further analysis. Other than platinum, alternative DNA-damaging agents (including PLD and trabectedin) also may have a therapeutic role in patients with recurrent BMOC. The recent approval of olaparib for clinical use in Europe and the United States will also affect chemotherapeutic strategies for these patients. Further work to clarify the precise relationship between BRCA1/2 mutation genotype and clinical phenotype is crucial to delineating the optimal therapeutic choices in the future for patients with BMOC.
Collapse
Affiliation(s)
- David S P Tan
- From the National University Cancer Institute, Singapore; National University Hospital, Singapore; The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Stanley B Kaye
- From the National University Cancer Institute, Singapore; National University Hospital, Singapore; The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
15
|
Villalona-Calero MA, Duan W, Zhao W, Shilo K, Schaaf LJ, Thurmond J, Westman JA, Marshall J, Xiaobai L, Ji J, Rose J, Lustberg M, Bekaii-Saab T, Chen A, Timmers C. Veliparib Alone or in Combination with Mitomycin C in Patients with Solid Tumors With Functional Deficiency in Homologous Recombination Repair. J Natl Cancer Inst 2016; 108:djv437. [PMID: 26848151 DOI: 10.1093/jnci/djv437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND BRCA germline mutations are being targeted for development of PARP inhibitors. BRCA genes collaborate with several others in the Fanconi Anemia (FA) pathway. We screened cancer patients' tumors for FA functional defects then aimed to establish the safety/feasibility of administering PARP inhibitors as monotherapy and combined with a DNA-breaking agent. METHODS Patients underwent FA functional screening for the presence (or lack) of tumor FancD2 nuclear foci formation on their archival tumor material, utilizing a newly developed method (Fanconi Anemia triple-stain immunofluorescence [FATSI]), performed in a Clinical Laboratory Improvement Amendments-certified laboratory. FATSI-negative patients were selected for enrollment in a two-arm dose escalation trial of veliparib, or veliparib/mitomycin-C (MMC). RESULTS One hundred eighty-five of 643 (28.7%) screened patients were FATSI-negative. Sixty-one received veliparib or veliparib/MMC through 14 dose levels. Moderate/severe toxicities included fatigue (DLT at veliparib 400mg BID), diarrhea, and thrombocytopenia. Recommended doses are 300mg BID veliparib and veliparib 200mg BID for 21 days following 10mg/m(2) MMC every 28 days. Six antitumor responses occurred, five in the combination arm (3 breast, 1 ovarian, 1 endometrial [uterine], and 1 non-small cell lung cancer). Two patients have received 36 and 60 cycles to date. BRCA germline analysis among 51 patients revealed five deleterious mutations while a targeted FA sequencing gene panel showed missense/nonsense mutations in 29 of 49 FATSI-negative tumor specimens. CONCLUSIONS FATSI screening showed that a substantial number of patients' tumors have FA functional deficiency, which led to germline alterations in several patients' tumors. Veliparib alone or with MMC was safely administered to these patients and produced clinical benefit in some. However, a better understanding of resistance mechanisms in this setting is needed.
Collapse
Affiliation(s)
- Miguel A Villalona-Calero
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Wenrui Duan
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Weiqiang Zhao
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Konstantin Shilo
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Larry J Schaaf
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Jennifer Thurmond
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Judith A Westman
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - John Marshall
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Li Xiaobai
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Jiuping Ji
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Jeffrey Rose
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Maryam Lustberg
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Tanios Bekaii-Saab
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Alice Chen
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Cynthia Timmers
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| |
Collapse
|
16
|
Hohenforst-Schmidt W, Zarogoulidis P, Pitsiou G, Linsmeier B, Tsavlis D, Kioumis I, Papadaki E, Freitag L, Tsiouda T, Turner JF, Browning R, Simoff M, Sachpekidis N, Tsakiridis K, Zaric B, Yarmus L, Baka S, Stratakos G, Rittger H. Drug Eluting Stents for Malignant Airway Obstruction: A Critical Review of the Literature. J Cancer 2016; 7:377-90. [PMID: 26918052 PMCID: PMC4749359 DOI: 10.7150/jca.13611] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/01/2015] [Indexed: 02/07/2023] Open
Abstract
Lung cancer being the most prevalent malignancy in men and the 3(rd) most frequent in women is still associated with dismal prognosis due to advanced disease at the time of diagnosis. Novel targeted therapies are already on the market and several others are under investigation. However non-specific cytotoxic agents still remain the cornerstone of treatment for many patients. Central airways stenosis or obstruction may often complicate and decrease quality of life and survival of these patients. Interventional pulmonology modalities (mainly debulking and stent placement) can alleviate symptoms related to airways stenosis and improve the quality of life of patients. Mitomycin C and sirolimus have been observed to assist a successful stent placement by reducing granuloma tissue formation. Additionally, these drugs enhance the normal tissue ability against cancer cell infiltration. In this mini review we will concentrate on mitomycin C and sirolimus and their use in stent placement.
Collapse
Affiliation(s)
| | - Paul Zarogoulidis
- 2. Pulmonary Department-Oncology Unit, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Pitsiou
- 2. Pulmonary Department-Oncology Unit, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Bernd Linsmeier
- 3. Department of General Surgery, Coburg Clinic, Coburg, Germany
| | - Drosos Tsavlis
- 2. Pulmonary Department-Oncology Unit, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Kioumis
- 2. Pulmonary Department-Oncology Unit, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Papadaki
- 2. Pulmonary Department-Oncology Unit, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lutz Freitag
- 4. Department of Interventional Pneumology, Ruhrlandklinik, University Hospital Essen, University of Essen-Duisburg, Tueschener Weg 40, 45239 Essen, Germany
| | - Theodora Tsiouda
- 2. Pulmonary Department-Oncology Unit, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - J Francis Turner
- 5. Division of Interventional Pulmonology & Medical Oncology, Cancer Treatment Centers of America, Western Regional Medical Center, Goodyear, AZ
| | - Robert Browning
- 6. Pulmonary & Critical Care Medicine, Interventional Pulmonology, National Naval Medical Center, Walter Reed Army Medical Center, Bethesda, U.S.A
| | - Michael Simoff
- 7. Bronchoscopy and Interventional Pulmonology, Pulmonary and Critical Care Medicine, Henry Ford Hospital, Wayne State University, School of Medicine, MI, USA
| | - Nikolaos Sachpekidis
- 8. Cardiothoracic Surgery Department, ``Saint Luke`` Private Hospital, Thessaloniki, Panorama, Greece
| | - Kosmas Tsakiridis
- 8. Cardiothoracic Surgery Department, ``Saint Luke`` Private Hospital, Thessaloniki, Panorama, Greece
| | - Bojan Zaric
- 9. Institute for Pulmonary Diseases of Vojvodina, Clinic for Thoracic Oncology, Faculty of Medicine, University of Novi Sad, Serbia
| | - Lonny Yarmus
- 10. Division of Pulmonary and Critical Care Medicine, Sheikh Zayed Cardiovascular & Critical Care Tower, Baltimore, U.S.A
| | - Sofia Baka
- 11. Oncology Department, ``Interbalkan`` European Medical Center, Thessaloniki, Greece
| | - Grigoris Stratakos
- 12. 1st Respiratory Medicine Department of National University of Athens, "Sotiria" General Hospital Athens, Greece
| | - Harald Rittger
- 1. Medical Clinic I, ''Fuerth'' Hospital, University of Erlangen, Fuerth, Germany
| |
Collapse
|
17
|
Gorodnova TV, Sokolenko AP, Ivantsov AO, Iyevleva AG, Suspitsin EN, Aleksakhina SN, Yanus GA, Togo AV, Maximov SY, Imyanitov EN. High response rates to neoadjuvant platinum-based therapy in ovarian cancer patients carrying germ-line BRCA mutation. Cancer Lett 2015; 369:363-7. [PMID: 26342406 DOI: 10.1016/j.canlet.2015.08.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
Preoperative therapy provides an advantage for clinical drug assessment, as it involves yet untreated patients and facilitates access to the post-treatment biological material. Testing for Slavic founder BRCA mutations was performed for 225 ovarian cancer (OC) patients, who were treated by platinum-based neoadjuvant therapy. 34 BRCA1 and 1 BRCA2 mutation carriers were identified. Complete clinical response was documented in 12/35 (34%) mutation carriers and 8/190 (4%) non-carriers (P = 0.000002). Histopathologic response was observed in 16/35 (46%) women with the germ-line mutation versus 42/169 (25%) patients with the wild-type genotype (P = 0.02). Somatic loss of heterozygosity (LOH) for the remaining wild-type BRCA1 allele was detected only in 7/24 (29%) post-neoadjuvant therapy residual tumor tissues as compared to 9/11 (82%) BRCA1-associated OC, which were not exposed to systemic treatment before the surgery (P = 0.009). Furthermore, comparison of pre- and post-treatment tumor material obtained from the same patients revealed restoration of BRCA1 heterozygosity in 2 out of 3 sample pairs presenting with LOH at diagnosis. The obtained data confirm high sensitivity of BRCA-driven OC to platinating agents and provide evidence for a rapid selection of tumor cell clones without LOH during the course of therapy.
Collapse
Affiliation(s)
- Tatiana V Gorodnova
- Department of Gynecology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia
| | - Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia; Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg 194100, Russia
| | - Alexandr O Ivantsov
- Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg 194100, Russia; Department of Pathology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia
| | - Aglaya G Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia; Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg 194100, Russia
| | - Evgeny N Suspitsin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia; Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg 194100, Russia
| | - Svetlana N Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia
| | - Grigory A Yanus
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia; Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg 194100, Russia
| | - Alexandr V Togo
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia; Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg 194100, Russia
| | - Sergey Ya Maximov
- Department of Gynecology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia; Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg 194100, Russia; Department of Oncology, I.I. Mechnikov North-Western Medical University, St. Petersburg 191015, Russia; Department of Oncology, St. Petersburg State University, St. Petersburg 199034, Russia.
| |
Collapse
|
18
|
Breast cancer sensitivity to neoadjuvant therapy in BRCA1 and CHEK2 mutation carriers and non-carriers. Breast Cancer Res Treat 2014; 148:675-83. [DOI: 10.1007/s10549-014-3206-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/09/2014] [Indexed: 12/23/2022]
|
19
|
Woolery KT, Hoffman MS, Kraft J, Nicosia SV, Kumar A, Kruk PA. Urinary interleukin-1β levels among gynecological patients. J Ovarian Res 2014; 7:104. [PMID: 25403235 PMCID: PMC4247195 DOI: 10.1186/s13048-014-0104-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/26/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Early detection of epithelial ovarian cancer (OC) is necessary to overcome the high mortality rate of late stage diagnosis; and, examining the molecular changes that occur at early disease onset may provide new strategies for OC detection. Since the deregulation of inflammatory mediators can contribute to OC development, the purpose of this pilot study was to determine whether elevated urinary levels of Interleukin-1beta (IL-1 beta) are associated with OC and associated clinical parameters. METHODS Urinary and serum levels of IL-1 beta were analyzed by ELISA from a patient cohort consisting of healthy women (N = 10), women with ovarian benign disease (N = 23), women with OC (N = 32), women with other benign gynecological conditions (N = 22), and women with other gynecological cancers (N = 6). RESULTS Average urinary IL-1 beta levels tended to be elevated in ovarian benign (1.26 pg/ml) and OC (1.57 pg/ml) patient samples compared to healthy individuals (0.36 pg/ml). Among patients with benign disease, urinary IL-1β levels were statistically higher in patients with benign inflammatory gynecologic disease compared to patients with non-inflammatory benign disease. Interestingly, urinary IL-1 beta levels tended to be 3-6x greater in patients with benign ovarian disease or OC as well as with a concomitant family history of ovarian and/or breast cancer compared to similar patients without a family history of ovarian and/or breast cancer. Lastly, there was a pattern of increased urinary IL-1 beta with increasing body mass index (BMI); patients with a normal BMI averaged urinary IL-1 beta levels of 0.92 pg/ml, overweight BMI averaged urinary IL-1 beta levels of 1.72 pg/ml, and obese BMI averaged urinary IL-1 beta levels of 5.26 pg/ml. CONCLUSIONS This pilot study revealed that urinary levels of IL-1 beta are elevated in patients with epithelial OC supporting the thought that inflammation might be associated with cancer progression. Consequently, further studies of urinary IL-1 beta and the identification of an inflammatory profile specific to OC development may be beneficial to reduce the mortality associated with this disease.
Collapse
Affiliation(s)
- Kamisha T Woolery
- Department of Pathology and Cell Biology, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA.
| | - Mitchel S Hoffman
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, 33612, USA.
| | - Joshua Kraft
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, 33612, USA.
| | - Santo V Nicosia
- Department of Pathology and Cell Biology, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA.
| | - Ambuj Kumar
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | - Patricia A Kruk
- Department of Pathology and Cell Biology, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA. .,Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, 33612, USA. .,H. Lee Moffitt Cancer Center, Tampa, FL, 33612, USA.
| |
Collapse
|