1
|
Zhu Z, Lian X, Hu J, Wang Z, Zhong Y, Zhao Y, Lu L, Pan Y, Zhou M, Xu J. DPHC from Alpinia officinarum Hance specifically modulates the function of CENPU in the cell cycle and apoptosis to ameliorate hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119598. [PMID: 40058474 DOI: 10.1016/j.jep.2025.119598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alpinia officinarum Hance (A. officinarum), a perennial herb used in the treatment of digestive system cancers, holds significant value for the Li people of Hainan as a traditional Chinese medicine. (R)-5-hydroxy-1,7-diphenyl-3-heptanone (DPHC), a diarylheptanoid component is derived from A. officinarum. Diarylheptanoids have demonstrated anti-proliferative effects on breast cancer cells, neuroblastoma cells, and other tumor cells. However, the pharmacological activity of DPHC in improving hepatocellular carcinoma (HCC) remains undefined. AIM OF THE STUDY To elucidate the anti-HCC effects of DPHC derived from A. officinarum and explore its underlying mechanistic pathways both in vivo and in vitro. MATERIAL AND METHODS The effects of DPHC on HCC cell lines were evaluated in vitro using cell counting kit-8, EdU cell proliferation assays, a wound healing assay, a three-dimensional tumor spheroid model, and flow cytometry. The ability of DPHC to ameliorate HCC was assessed in vivo via a nude mouse subcutaneous xenograft tumor model, serum biochemical marker detection, and hematoxylin-eosin staining. The molecular mechanism of DPHC in HCC was elucidated through a combination of transcriptome sequencing, cell transfection, immunohistochemistry assay, immunofluorescence staining, quantitative reverse transcription-PCR, and western blot analysis. RESULTS DPHC induced significant G0/G1 phase arrest and apoptosis in HepG2 and HCCLM3 cells while also markedly inhibiting tumor growth in nude mice. Mechanically, DPHC directly interacted with centromere-associated protein U (CENPU) to suppress its expression. The reduced expression of CENPU results in decreased interaction with the transcription factor E2F6, thereby affecting the transcriptional activity of the transcription factor E2F1. This subsequently inhibits the expression of downstream cell cycle factors (CCND1, CDK4, and CDK1) and increases apoptosis factors (Caspase 3 and Caspase 9). CONCLUSIONS DPHC from A. officinarum specifically modulates the function of CENPU in the cell cycle and apoptosis to ameliorate HCC. Our study revealed the anti-HCC effect and underlying mechanism of DPHC, offering new insights and potential targets for HCC treatment.
Collapse
Affiliation(s)
- Zhe Zhu
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, China
| | - Xiuxia Lian
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Jicheng Hu
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, China
| | - Zhe Wang
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, China
| | - Yinghong Zhong
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, China
| | - Yuan Zhao
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, China
| | - Lu Lu
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, China
| | - Yipeng Pan
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, China.
| | - Mingyan Zhou
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, China.
| | - Jian Xu
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
2
|
Xu Y, Zhang L, Wang Q, Zheng M. Overexpression of MLF1IP promotes colorectal cancer cell proliferation through BRCA1/AKT/p27 signaling pathway. Cell Signal 2022; 92:110273. [PMID: 35122991 DOI: 10.1016/j.cellsig.2022.110273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/15/2022] [Accepted: 01/28/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE MLF1IP has been correlated with the progression and prognosis of a few tumors. However, the role of MLF1IP in colorectal cancer remains unclear. Here, we examined the expression and function of MLF1IP in colorectal cancer and investigated possible molecular mechanisms. METHODS MLF1IP expressions in colorectal cancer tissues and cell lines were detected by quantitative real-time PCR, western blotting, and immunohistochemistry. In vitro and in vivo assays were performed to explore the function and underlying molecular mechanisms of MLF1IP in colorectal cancer. RESULTS The expression levels of MLF1IP were significantly up-regulated in colorectal cancer tissues and CRC cell lines (P < 0.05). High expression of MLF1IP was significantly associated with TNM stage, T classification, lymph node involvement, distant metastasis, and poor patient survival (all P < 0.05). Overexpressing MLF1IP promoted while silencing MLF1IP inhibited, the proliferation and clonogenicity of colorectal cancer cells and tumorigenicity in NOD/SCID mice (P < 0.05). In addition, we demonstrated that the pro-proliferative effect of MLF1IP on colorectal cancer cells was associated with mediating the G1-to-S phase transition. MLF1IP knockdown enhanced BRCA1 activity concomitantly with p-AKT downregulation and p27 upregulation, while overexpression of MLF1IP has the opposite effect. Moreover, upregulation of BRCA1 can partially abolish the proliferative activity of MLF1IP. CONCLUSIONS These findings suggest that MLF1IP may promote proliferation and tumorigenicity of colorectal cancer cells via BRCA1/AKT/p27 signaling axis, and thereby provides potential targets for colorectal cancer therapy.
Collapse
Affiliation(s)
- Yuting Xu
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Lin Zhang
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Qingling Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Maojin Zheng
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
3
|
Liu H, Li T, Ye X, Lyu J. Identification of Key Biomarkers and Pathways in Small-Cell Lung Cancer Using Biological Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5953386. [PMID: 34712733 PMCID: PMC8548101 DOI: 10.1155/2021/5953386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Small-cell lung cancer (SCLC) is a major cause of carcinoma-related deaths worldwide. The aim of this study was to identify the key biomarkers and pathways in SCLC using biological analysis. METHODS Key genes involved in the development of SCLC were identified by downloading three datasets from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened using the GEO2R online analyzer; for the functional annotation and pathway enrichment analysis of genes, Funrich software was used. Construction of protein-to-protein interaction (PPI) networks was accomplished using the Search Tool for the Retrieval of Interacting Genes (STRING), and network visualization and module identification were performed using Cytoscape. RESULTS A total of 268 DEGs were ultimately obtained. The enriched functions and pathways of the upregulated DEGs included cell cycle, mitotic, and DNA replication, and the downregulated DEGs were enriched in epithelial-to-mesenchymal transition, serotonin degradation, and noradrenaline. Analysis of significant modules demonstrated that the upregulated genes are primarily concentrated in functions related to cell cycle and DNA replication. Kaplan-Meier analysis of hub genes revealed that they may promote the carcinogenesis and progression of SCLC. The result of ONCOMINE demonstrated that these 10 hub genes were significantly overexpressed in SCLC compared with normal samples. CONCLUSION Identification of the molecular functions and signaling pathways of participating DEGs can deepen the current understanding of the molecular mechanisms of SCLC. The knowledge gained from this work may contribute to the development of treatment options and improve the prognosis of SCLC in the future.
Collapse
Affiliation(s)
- Huanqing Liu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Tingting Li
- Department of Pharmacy, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Xunda Ye
- Clinical Medicine Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Dong S, Liang J, Zhai W, Yu Z. Common and distinct features of potentially predictive biomarkers in small cell lung carcinoma and large cell neuroendocrine carcinoma of the lung by systematic and integrated analysis. Mol Genet Genomic Med 2020; 8:e1126. [PMID: 31981472 PMCID: PMC7057089 DOI: 10.1002/mgg3.1126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Large-cell neuroendocrine carcinoma of the lung (LCNEC) and small-cell lung carcinoma (SCLC) are neuroendocrine neoplasms. However, the underlying mechanisms of common and distinct genetic characteristics between LCNEC and SCLC are currently unclear. Herein, protein expression profiles and possible interactions with miRNAs were provided by integrated bioinformatics analysis, in order to explore core genes associated with tumorigenesis and prognosis in SCLC and LCNEC. METHODS GSE1037 gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in LCNEC and SCLC, as compared with normal lung tissues, were selected using the GEO2R online analyzer and Venn diagram software. Gene ontology (GO) analysis was performed using Database for Annotation, Visualization and Integrated Discovery. The biological pathway analysis was performed using the FunRich database. Subsequently, a protein-protein interaction (PPI) network of DEGs was generated using Search Tool for the Retrieval of Interacting Genes and displayed via Cytoscape software. The PPI network was analyzed by the Molecular Complex Detection app from Cytoscape, and 16 upregulated hub genes were selected. The Oncomine database was used to detect expression patterns of hub genes for validation. Furthermore, the biological pathways of these 16 hub genes were re-analyzed, and potential interactions between these genes and miRNAs were explored via FunRich. RESULTS A total of 384 DEGs were identified. A Venn diagram determined 88 common DEGs. The PPI network was constructed with 48 nodes and 221 protein pairs. Among them, 16 hub genes were extracted, 14 of which were upregulated in SCLC samples, as compared with normal lung specimens, and 10 were correlated with the cell cycle pathway. Furthermore, 57 target miRNAs for 8 hub genes were identified, among which 31 miRNAs were correlated with the progression of carcinoma, drug-resistance, radio-sensitivity, or autophagy in lung cancer. CONCLUSION This study provided effective biomarkers and novel therapeutic targets for diagnosis and prognosis of SCLC and LCNEC.
Collapse
Affiliation(s)
- Shenghua Dong
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jun Liang
- Department of Oncology, Peking University International Hospital, Beijing, China
| | - Wenxin Zhai
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhuang Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Wang X, Chen D, Gao J, Long H, Zha H, Zhang A, Shu C, Zhou L, Yang F, Zhu B, Wu W. Centromere protein U expression promotes non-small-cell lung cancer cell proliferation through FOXM1 and predicts poor survival. Cancer Manag Res 2018; 10:6971-6984. [PMID: 30588102 PMCID: PMC6298391 DOI: 10.2147/cmar.s182852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Centromere protein U (CENPU) abnormally exhibits high expression in various types of human tumor tissues and participates in tumor progression; however, its expression pattern and biological function in lung cancer have not yet been elucidated. In the present study, we explored the clinical significance and biological function of CENPU in lung cancer. Materials and methods The Cancer Genome Atlas (TCGA) data analyses, quantitative real-time PCR (RT-PCR), and Western blotting were performed to quantify CENPU and FOXM1 expression in non-small-cell lung cancer (NSCLC) samples. Survival data were obtained from Kaplan–Meier plotter or PROGgene V2 prognostic database. The function of CENPU in lung cancer cell proliferation was determined using 5-ethynyl-2′-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), and cell cycle assays, and the underlying mechanism was determined through bioinformatic analyses and validated by in vitro siRNA or plasmid transfection experiments. Results CENPU was abnormally overexpressed in NSCLC samples compared with matched paired normal tissues. Higher expression of CENPU predicted worse overall survival (OS) and relapse-free survival (RFS) in NSCLC patients. Knockdown of CENPU expression by siRNA significantly inhibited proliferation and delayed cell cycle progression of lung cancer cells. To figure out the mechanism, bioinformatic analyses were performed and the results showed that the transcription factor, FOXM1, positively correlated with CENPU. Further in vitro experiments indicated that FOXM1 was the possible downstream transcription factor of CENPU as the knockdown of CENPU led to lower expression of FOXM1 and the overexpression of FOXM1 significantly reversed the inhibition of proliferation caused by CENPU knockdown. Furthermore, FOXM1 was highly expressed in NSCLC. The knockdown of FOXM1 also attenuated proliferation and induced G1 arrest in lung cancer cells. Conclusion CENPU was highly expressed in NSCLC tissues, wherein it promoted lung cancer cell proliferation via the transcription factor, FOXM1, which could be a potential target for therapeutic strategies.
Collapse
Affiliation(s)
- Xinxin Wang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Diangang Chen
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Jianbao Gao
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Haoran Zha
- Department of Oncology, The General Hospital of the People's Liberation Army Rocket Force, Beijing, China
| | - Anmei Zhang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Chi Shu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Li Zhou
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Fei Yang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China,
| | - Wei Wu
- Department of Cardiothoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, China,
| |
Collapse
|
6
|
Song YJ, Tan J, Gao XH, Wang LX. Integrated analysis reveals key genes with prognostic value in lung adenocarcinoma. Cancer Manag Res 2018; 10:6097-6108. [PMID: 30538558 PMCID: PMC6252781 DOI: 10.2147/cmar.s168636] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Lung cancer is one of the most common malignant tumors. Despite advances in lung cancer therapies, prognosis of non-small-cell lung cancer is still unfavorable. The aim of this study was to identify the prognostic value of key genes in lung tumorigenesis. Methods Differentially expressed genes (DEGs) were screened out by GEO2R from three Gene Expression Omnibus cohorts. Common DEGs were selected for Kyoto Encyclopedia of Genes and Genomes pathway analysis and Gene Ontology enrichment analysis. Protein– protein interaction networks were constructed by the STRING database and visualized by Cytoscape software. Hub genes, filtered from the CytoHubba, were validated using the Gene Expression Profiling Interactive Analysis database, and their genomic alterations were identified by performing the cBioportal. Finally, overall survival analysis of hub genes was performed using Kaplan–Meier Plotter. Results From three datasets, 169 DEGs (70 upregulated and 99 downregulated) were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that upregulated DEGs were significantly enriched in cell cycle, p53 pathway, and extracellular matrix–receptor interactions; the downregulated DEGs were significantly enriched in PPAR pathway and tyrosine metabolism. The protein–protein interaction network consisted of 71 nodes and 305 edges, including 49 upregulated and 22 downregulated genes. The hub genes, including AURKB, BUB1B, KIF2C, HMMR, CENPF, and CENPU, were overexpressed compared with the normal group by Gene Expression Profiling Interactive Analysis analysis, and associated with reduced overall survival in lung cancer patients. In the genomic alterations analysis, two hotspot mutations (S2021C/F and E314K/V) were identified in Pfam protein domains. Conclusion DEGs, including AURKB, BUB1B, KIF2C, HMMR, CENPF, and CENPU, might be potential biomarkers for the prognosis and treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Ying-Jian Song
- Department of Respiratory Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China,
| | - Juan Tan
- Department of Gerontology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Xin-Huai Gao
- Department of Respiratory Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China,
| | - Li-Xin Wang
- Department of Respiratory Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China,
| |
Collapse
|
7
|
Lin SY, Lv YB, Mao GX, Chen XJ, Peng F. The effect of centromere protein U silencing by lentiviral mediated RNA interference on the proliferation and apoptosis of breast cancer. Oncol Lett 2018; 16:6721-6728. [PMID: 30405814 DOI: 10.3892/ol.2018.9477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
Centromere protein U (CENPU) is a novel transcriptional repressor that is associated with different types of cancer. However, its function in breast cancer is poorly understood. In the present study, it was identified that CENPU was highly expressed in breast cancer tissues compared with expression in normal breast tissues (P=0.001). Furthermore, the CENPU mRNA level in tumors was often elevated, compared with the matched adjacent normal breast cancer tissue specimens in the dataset from The Cancer Genome Atlas database (n=106; P<0.001). To understand the function of CENPU in human breast carcinogenesis, its effects on the proliferation, apoptosis and cell cycle progression of MDA-MB-231 cells were examined using the lentiviral-mediated CENPU knockdown approach. The RNA and protein expression levels in the transfected cells were monitored using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The mRNA and protein expression levels of the CENPU gene were significantly lower in the CENPU-shRNA transfected cells than in the control (P<0.01), indicating successful gene expression knockdown. Post-transfection, cell counting and MTT analysis revealed that the proliferation activity was significantly suppressed in CENPU knockdown cells relative to the control (P<0.01). Additionally, fluorescence activated cell sorting analysis revealed that the (G2+S) phase fraction was significantly declined in CENPU knockdown cells relative to the control; while the G1 phase fraction was significantly increased (P<0.01) and the percentage of the apoptotic cells was significantly increased (P<0.01). In conclusion, downregulation of CENPU gene expression may inhibit cell proliferation and cell cycle progression, and increase the apoptosis of the breast cancer cells. These results suggested a possible function of this protein in breast cancer pathogenesis and prognosis.
Collapse
Affiliation(s)
- Shuang-Yan Lin
- Department of Pathology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Yan-Bo Lv
- Department of Pathology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Gen-Xiang Mao
- Department of Geriatrics, Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Xu-Jiao Chen
- Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Fang Peng
- Department of Pathology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
8
|
Wang S, Liu B, Zhang J, Sun W, Dai C, Sun W, Li Q. Centromere protein U is a potential target for gene therapy of human bladder cancer. Oncol Rep 2017; 38:735-744. [PMID: 28677729 PMCID: PMC5562008 DOI: 10.3892/or.2017.5769] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/19/2017] [Indexed: 11/18/2022] Open
Abstract
To investigate the role of centromere protein U (CENPU) in human bladder cancer (BCa), CENPU gene expression was evaluated in human BCa tissues. We used real-time quantitative PCR (qPCR) and found that CENPU gene expression in human BCa tissues was higher compared to that observed in cancer-adjacent normal tissues. High CENPU expression was found to be strongly correlated with tumor size and TNM stage. Kaplan-Meier survival analysis indicated that high CENPU levels were associated with reduced survival. We used a lentivirus to silence endogenous CENPU gene expression in the BCa T24 cell line. CENPU knockdown was confirmed by qPCR. Cellomic imaging and BrdU assays showed that cell proliferation was significantly reduced in the CENPU-silenced cells compared to that noted in the control cells. Flow cytometry revealed that in the CENPU-silenced cells the cell cycle was arrested at the G1 phase relative to that in the control cells. In addition, apoptosis was significantly increased in the CENPU-silenced cells. Giemsa staining showed that CENPU-silenced cells, compared to control cells, displayed a significantly lower number of cell colonies. The genome-wide effect of CENPU knockdown showed that a total of 1,274 differentially expressed genes was found, including 809 downregulated genes and 465 upregulated genes. Network analysis by Ingenuity Pathway Analysis (IPA) resulted in 25 distinct signaling pathways, including the top-ranked network: ‘Cellular compromise, organismal injury and abnormalities, skeletal and muscular disorders’. In-depth IPA analysis revealed that CENPU was associated with the HMGB1 signaling pathway. qPCR and western blot analysis demonstrated that in the HMGB1 signaling pathway, CENPU knockdown downregulated expression levels of ILB, CXCL8, RAC1 and IL1A. In conclusion, our data may provide a potential pathway signature for therapeutic targets with which to treat BCa.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Beibei Liu
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Jiajun Zhang
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Wei Sun
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Changyuan Dai
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Wenyan Sun
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Qingwen Li
- Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| |
Collapse
|