1
|
Abstract
The tumor microenvironment (TME) is a well-recognized system that plays an essential role in tumor initiation, development, and progression. Intense intercellular communication between tumor cells and other cells (especially macrophages) occurs in the TME and is mediated by cell-to-cell contact and/or soluble messengers. Emerging evidence indicates that noncoding RNAs (ncRNAs) are critical regulators of the relationship between cells within the TME. In this review, we provide an update on the regulation of ncRNAs (primarily micro RNAs [miRNAs], long ncRNAs [lncRNAs], and circular RNAs [circRNAs]) in the crosstalk between macrophages and tumor cells in hepatocellular carcinoma (HCC). These ncRNAs are derived from macrophages or tumor cells and act as oncogenes or tumor suppressors, contributing to tumor progression not only by regulating the physiological and pathological processes of tumor cells but also by controlling macrophage infiltration, activation, polarization, and function. Herein, we also explore the options available for clinical therapeutic strategies targeting crosstalk-related ncRNAs to treat HCC. A better understanding of the relationship between macrophages and tumor cells mediated by ncRNAs will uncover new diagnostic biomarkers and pharmacological targets in cancer.
Collapse
|
2
|
Bahrami A, Ferns GA. Diagnostic, Prognostic, and Therapeutic Value of miR-148b in Human Cancers. Curr Mol Med 2022; 22:860-869. [PMID: 34961461 DOI: 10.2174/1566524021666211213123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/06/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRs) is a class of conserved, small, noncoding RNA molecules that modulate gene expression post-transcriptionally. miR-148b is a member of miR- 148/152 family generally known to be a tumor suppressor via its effect on different signaling pathways and regulatory genes. Aberrant expression of miR-148b has recently been shown to be responsible for tumorigenesis of several different cancer types. This review discusses the current evidence regarding the involvement of miR-148b expression in human cancers and its potential clinical importance for tumor diagnosis, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, Sussex, UK
| |
Collapse
|
3
|
Dorraki N, Ghale-Noie ZN, Ahmadi NS, Keyvani V, Bahadori RA, Nejad AS, Aschner M, Pourghadamyari H, Mollazadeh S, Mirzaei H. miRNA-148b and its role in various cancers. Epigenomics 2021; 13:1939-1960. [PMID: 34852637 DOI: 10.2217/epi-2021-0155] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
miRNA-148b belongs to the family miR-148/-152, with significant differences in nonseed sequences, which can target diverse mRNA molecules. Reportedly, it may undergo deregulation in lung and ovarian cancers and downregulation in gastric, pancreatic and colon cancers. However, there is a need for further studies to better characterize its mechanism of action and in different types of cancer. In this review, we focus on the aberrant expression of miR-148b in different cancer types and highlight its main target genes and signaling pathways, as well as its pathophysiologic role and relevance to tumorigenesis in several types of cancer.
Collapse
Affiliation(s)
- Najmeh Dorraki
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nooshin Sadegh Ahmadi
- Department of Genetics, Faculty of Medicine, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Vahideh Keyvani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Arash Salmani Nejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Samaneh Mollazadeh
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Han S, Wang Z, Liu J, Wang HMD, Yuan Q. miR-29a-3p-dependent COL3A1 and COL5A1 expression reduction assists sulforaphane to inhibit gastric cancer progression. Biochem Pharmacol 2021; 188:114539. [PMID: 33819468 DOI: 10.1016/j.bcp.2021.114539] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 01/22/2023]
Abstract
The antitumor properties of cruciferous vegetables are mainly due to their high content of isothiocyanates, and sulforaphane (SFA) is the most well-known compound. The aim of this study was to determine the mechanism of SFA inhibiting gastric cancer (GC) progression. After verifying SFA suppressing GC growth in vivo, we utilized the GSE79973 and GSE118916 datasets to identify the GC development signatures that overlap with the RNA-seq analysis in SFA-treated AGS cells. GSEA of the RNA-seq data indicated that SFA regulation of GC progression was related to extracellular matrix and collagens; thus, we identified COL3A1 and COL5A1 as the targets of SFA, which functioned as oncogenes. We found positive correlations between COL3A1 and COL5A1 expression in GC cells, and confirmed that miR-29a-3p is the common regulator of their expression. RNA immunoprecipitation assays based on Ago2, Dicer, and exportin-5 showed that SFA could promote mature miR-29a-3p generation. We also proved that SFA inactivated the Wnt/β-catenin pathway in GC cells in a miR-29a-3p-dependent manner. Overall, SFA boosts miR-29a-3p maturation to downregulate COL3A1 and COL5A1 and inactivate the Wnt/ β -catenin pathway to suppress GC progression.
Collapse
Affiliation(s)
- Sichong Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhe Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jining Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung City 402, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; College of Food and Biological Engineering, Jimei University, Xiamen City 361021 Fujia Province, PR China; Undergraduate Program Study of Biomedical Engineering, Physics Department, Airlangga University, Surabaya City 60115, Indonesia.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
5
|
Shi T, Kobara H, Oura K, Masaki T. Mechanisms Underlying Hepatocellular Carcinoma Progression in Patients with Type 2 Diabetes. J Hepatocell Carcinoma 2021; 8:45-55. [PMID: 33604315 PMCID: PMC7886236 DOI: 10.2147/jhc.s274933] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks third in cancer-related deaths from solid tumors worldwide. The incidence of type 2 diabetes mellitus (T2DM) has increased worldwide in conjunction with the expansion of the Western lifestyle. Furthermore, patients with T2DM have been documented to have an increased risk of HCC, as well as bile tract cancer. Growing evidence shows that T2DM is a strong additive metabolic risk factor for HCC, but how diabetes affects the incidence of HCC requires additional investigation. In this review, we discuss the underlying mechanisms of HCC in patients with T2DM. Topics covered include abnormal glucose and lipid metabolism, hyperinsulinemia, and insulin resistance; the effect of activated platelets; hub gene expression associated with HCC; inflammation and signaling pathways; miRNAs; altered gut microbiota and immunomodulation. The evidence suggests that reducing obesity, diabetes, and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis through efficient measures of prevention may lead to decreased rates of T2DM-related HCC.
Collapse
Affiliation(s)
- Tingting Shi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa, 761-0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa, 761-0793, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa, 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa, 761-0793, Japan
| |
Collapse
|
6
|
Zeng Z, Dong J, Li Y, Dong Z, Liu Z, Huang J, Wang Y, Zhen Y, Lu Y. The expression level and diagnostic value of microRNA-22 in HCC patients. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:683-686. [PMID: 32088997 DOI: 10.1080/21691401.2019.1703723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background: Involvements of microRNA-22 (miR-22) in cancer have attracted much attention, but its role in diagnosis of hepatocellular carcinoma (HCC) is still largely unknown. Therefore, the aim of this study was to investigate the expression level and the prognostic value of miR-22 in HCC patients.Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to evaluate serum level of miR-22 in 108 HCC patients and 67 healthy controls. The relationship between miR-22 expression level and clinicopathologic characteristics was analysed via chi-square test. Receiver operating characteristic (ROC) curve was built to estimate the diagnostic value of serum miR-22 in HCC.Results: miR-22 expression was significantly down-regulated in HCC compared to that in healthy controls (p < .05). And the low miR-22 expression was significantly associated with vein invasion (p = .002), TNM stage (p = .013) and high serum levels of AFP (α-fetoprotein), ALT (alanine aminotransferase), AST (aspartate aminotransferase) and ALP (alkaline phosphatase. miR-22 had a high diagnostic value with area under the curve of 0.866 corresponding with a sensitivity of 89.3% and a specificity of 68.9%, respectively.Conclusion: miR-22 expression was down-regulated in HCC patients. Serum miR-22 might be a novel diagnostic marker in HCC.
Collapse
Affiliation(s)
- Zhen Zeng
- Comprehensive Liver Cancer Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jinghui Dong
- Radiology Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yinyin Li
- Comprehensive Liver Cancer Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zheng Dong
- Comprehensive Liver Cancer Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ze Liu
- Comprehensive Liver Cancer Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiagan Huang
- Comprehensive Liver Cancer Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yonggang Wang
- The Institute of Intensive Care Unit, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yunhuan Zhen
- General Surgery Department, Guizhou Medical University, Guiyang, China
| | - Yinying Lu
- Comprehensive Liver Cancer Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Ziogas IA, Sioutas G, Mylonas KS, Tsoulfas G. Role of MicroRNA in the Diagnosis and Management of Hepatocellular Carcinoma. Microrna 2020; 9:25-40. [PMID: 31218966 DOI: 10.2174/2211536608666190619155406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/11/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Hepatocellular Carcinoma (HCC) is one of the most common malignant tumors in the world and comes third in cancer-induced mortality. The need for improved and more specific diagnostic methods that can detect early-stage disease is immense, as it is amenable to curative modalities, while advanced HCC is associated with low survival rates. microRNA (miRNA) expression is deregulated in HCC and this can be implemented both diagnostically and therapeutically. OBJECTIVE To provide a concise review on the role of miRNA in diagnosis, prognosis, and treatment of HCC. METHODS We conducted a comprehensive review of the PubMed bibliographic database. RESULTS Multiple miRNAs are involved in the pathogenesis of HCC. Measurement of the levels of these miRNAs either in tumor tissue or in the blood constitutes a promising diagnostic, as well as prognostic tool. OncomiRs are miRNAs that promote tumorigenesis, thus inhibiting them by administering antagomiRs is a promising treatment option. Moreover, replacement of the depleted miRNAs is another potential therapeutic approach for HCC. Modification of miRNA levels may also regulate sensitivity to chemotherapeutic agents. CONCLUSION miRNA play a pivotal role in HCC pathogenesis and once the underlying mechanisms are elucidated, they will become part of everyday clinical practice against HCC.
Collapse
Affiliation(s)
- Ioannis A Ziogas
- Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
| | - Georgios Sioutas
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
- Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos S Mylonas
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsoulfas
- 1st Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Wang N, Zeng L, Li Z, Zhen Y, Chen H. Serum miR-663 expression and the diagnostic value in colorectal cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2650-2653. [PMID: 31240955 DOI: 10.1080/21691401.2019.1628036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colorectal cancer (CRC) is one of the most common digestive cancers leading to deaths worldwide. In this study, we aimed to investigate the diagnostic value of miR-663 in CRC. The expression of miR-663 was detected by quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR). The association between miR-663 and clinical parameters of subjects was evaluated by chi-square test. Additionally, ROC (receiver operating characteristic) analysis was performed to evaluate the diagnostic role of miR-663 in CRC. The expression of miR-663 in CRC patients was significantly upregulated compared with benign colorectal disease patients and healthy controls (p < .01). Besides, the expression of miR-663 was significantly associated with tumour differentiation, invasion, lymph node metastasis and TNM stage (p < .05). The cutoff value of miR-663 was 1.31, and the corresponding sensitivity and specificity were 83.1% and 73.8%, respectively. In ROC analysis, the area under the curve (AUC) was 0.806, which indicated that miR-663 could act as an independent diagnostic biomarker for CRC. In conclusion, miR-663 was up-regulated in CRC patients and may be an effective biomarker for CRC diagnosis.
Collapse
Affiliation(s)
- Ning Wang
- a Department of Oncology, the General Hospital of the PLA Rocket Force , Beijing , China
| | - Liyi Zeng
- b Department of Infection Control, Zhuzhou Central Hospital and Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University , Zhuzhou , China
| | - Zhaoxia Li
- a Department of Oncology, the General Hospital of the PLA Rocket Force , Beijing , China
| | - Yanfang Zhen
- a Department of Oncology, the General Hospital of the PLA Rocket Force , Beijing , China
| | - Huoming Chen
- a Department of Oncology, the General Hospital of the PLA Rocket Force , Beijing , China
| |
Collapse
|
9
|
Ke M, Zhang Z, Cong L, Zhao S, Li Y, Wang X, Lv Y, Zhu Y, Dong J. MicroRNA-148b-colony-stimulating factor-1 signaling-induced tumor-associated macrophage infiltration promotes hepatocellular carcinoma metastasis. Biomed Pharmacother 2019; 120:109523. [PMID: 31655310 DOI: 10.1016/j.biopha.2019.109523] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding molecules that exhibit important regulatory roles in various biological or cellular functions, including tumor metastasis. However, the detailed mechanisms of the expression and functions of miRNAs in hepatocellular carcinoma (HCC) have not yet been completely investigated. METHODS In this study, the levels of miR-148b in HCC cells and patient specimens were determined using qPCR assays. MiR-148b-overexpressing HCC cells were used to investigate the effect of miR-148b in vitro and in vivo. The relationship between the expression of miR-148b and colony stimulating factor-1 (CSF1) in HCC patients and the infiltration of macrophages into the tumor microenvironment were assessed by immunohistochemical staining. RESULTS MiR-148b expression was decreased in metastatic HCC cells. A positive association between downregulated miR-148b expression and several clinical parameters, including recurrence, metastasis, and poor prognosis, was observed in patients with HCC. The results of bio-functional experiments indicated that the biological characteristics of HCC cells were not affected by miR-148b deficiency in vitro. However, miR-148b deficiency significantly enhanced the progression and metastasis of HCC in nude mice. By analyzing the gene expression profiles, we demonstrated that CSF1 was regulated by miR-148b and that miR-148b deficiency promoted HCC growth and metastasis through CSF1/CSF1 receptor (CSF1R)-mediated tumor-associated macrophage (TAM) infiltration. These results were supported by the negative relationship between miR-148b and CSF1 expression and TAM infiltration in HCC patients. Moreover, HCC patients with low miR-148b levels and high TAM infiltration were associated with poorer prognosis. CONCLUSION MiR-148b-CSF1 signaling-induced TAM infiltration promotes HCC metastasis. Therefore, miR-148b plays a suppressor role in HCC and might be a potential prognostic factor and therapeutic candidate for HCC.
Collapse
Affiliation(s)
- Mengyun Ke
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China
| | - Zhenhai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| | - Longlong Cong
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China
| | - Shidi Zhao
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China
| | - Yan Li
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China
| | - Ying Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China.
| | - Jian Dong
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
10
|
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A, Tabibzadeh A, Karimzadeh M, Moghoofei M, Marjani A, Yaghoubi S, Keyvani H. microRNAs: Key players in virus-associated hepatocellular carcinoma. J Cell Physiol 2018; 234:12188-12225. [PMID: 30536673 DOI: 10.1002/jcp.27956] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Mohajeri
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Azadeh Moshtzan
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezo Marjani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Shoeleh Yaghoubi
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Keyvani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Duffy J, Padovani F, Brunetti G, Noy P, Certa U, Hegner M. Towards personalised rapid label free miRNA detection for cancer and liver injury diagnostics in cell lysates and blood based samples. NANOSCALE 2018; 10:12797-12804. [PMID: 29947396 DOI: 10.1039/c8nr03604g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Advances in prevention, diagnosis and therapy are coupled to innovation and development of new medical tools, leading to improved patient prognosis. We developed an automatic biosensor platform that could provide a non-invasive, rapid and personalised diagnosis using nanomechanical cantilever sensors. miRNA are involved in gene expression and are extractable biomarkers for multiple diseases. We detected specific expression patterns of miRNA relevant to cancer and adverse drug effects directly in cell lysates or blood based samples using only a few microliters of sample within one hour. Specific miRNA hybridisation to the upper cantilever surface induces physical bending of the sensor which is detected by monitoring the position of a laser that reflects from the sensors surface. Internal reference sensors negate environmental and nonspecific effects. We showed that the sensitivity of label free cantilever nanomechanical sensing of miRNA surpasses that of surface plasmon resonance by more than three orders of magnitude. A cancer associated miRNA expression profile from cell lysates and one associated with hepatocytes derived from necrotic liver tissue in blood-based samples has been successfully detected. Our label free mechanical approach displays the capability to perform in relevant clinical samples while also obtaining comparable results to PCR based techniques. Without the need to individually extend, amplify or label each target allowing multitarget analysis from one sample.
Collapse
Affiliation(s)
- James Duffy
- Centre Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of Physics, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
12
|
Miao C, Zhang J, Zhao K, Liang C, Xu A, Zhu J, Wang Y, Hua Y, Tian Y, Liu S, Zhang C, Qin C, Wang Z. The significance of microRNA-148/152 family as a prognostic factor in multiple human malignancies: a meta-analysis. Oncotarget 2018; 8:43344-43355. [PMID: 28574848 PMCID: PMC5522150 DOI: 10.18632/oncotarget.17949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/07/2017] [Indexed: 01/19/2023] Open
Abstract
Recent studies have demonstrated that microRNA-148/152 family emerges as a attractive biomarker for predicting tumor prognosis and progression. However, outcomes of different studies are controversial. Eligible Literature were searched through online databases: PubMed, EMBASE and Web of Science. A total of 24 eligible studies were ultimately enrolled in this meta-analysis. Results indicated that overexpression of miR-148/152 family was significantly correlated with enhanced overall/cause-specific survival (OS/CSS) (HR=0.63, 95% CI: 0.54-0.74). Stratified analysis indicated that high miR-148a and miR-148b expression predicted favorable OS/CSS (HR=0.76; 95% CI: 0.69-0.90) and (HR=0.49; 95% CI: 0.39-0.61), while miR-152 developed no significant impact (HR=0.40, 95% CI: 0.12-1.29). MiR-148/152 family was distinctly associated with superior OS/CSS in Asian (HR=0.53, 95% CI: 0.44-0.64), but not in Caucasian (HR=0.96, 95% CI: 0.82-1.13). Futhermore, miR-148/152 family expression also predicted longer disease/relapse/progression-free survival (DFS/RFS/PFS) (HR=0.37, 95% CI: 0.16-0.88). A significantly favorable DFS/RFS/PFS was observed in Asian (HR=0.21, 95% CI: 0.06-0.81) than that in Caucasian (HR=0.76, 95% CI: 0.31-1.87). miR-148/152 family overexpression also predicted longer DFS/RFS/PFS in tissues (HR=0.11, 95% CI: 0.01-0.98), but not in plasma/serum (HR=0.67, 95% CI: 0.38-1.18). Our meta-analysis demonstrated that overexpression of miR-148/152 predicted enhanced OS/CSS and DFS/RFS/PFS of cancer patients. MiR-148a/b family may serve as a potential prognostic factor in multiple human malignancies.
Collapse
Affiliation(s)
- Chenkui Miao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Zhang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aiming Xu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jundong Zhu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuhao Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yibo Hua
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Tian
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shouyong Liu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Lai Y, Chen Y, Lin Y, Ye L. Down-regulation of LncRNA CCAT1 enhances radiosensitivity via regulating miR-148b in breast cancer. Cell Biol Int 2017; 42:227-236. [PMID: 29024383 DOI: 10.1002/cbin.10890] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/07/2017] [Indexed: 01/07/2023]
Abstract
LncRNA colon-cancer-associated transcript-1 (CCAT1) was proved to be a potential prognostic biomarker for breast cancer progression. However, the role of CCAT1 in regulating radiosensitivity of breast cancer and its underlying mechanism have not been investigated. The present study showed that CCAT1 was up-regulated and miR-148b was down-regulated in radioresistant breast cancer tissues compared with radiosensitive breast cancer tissues. Radiation treatment triggered a significant increase in CCAT1 and an obvious decrease in miR-148b. CCAT1 down-regulation reduced colony formation rates and caspase3 activity in breast cancer cells under irradiation. Moreover, CCAT1 could negatively regulate miR-148b expression. Furthermore, overexpression of miR-148b suppressed colony survival fraction and caspase3 expression under irradiation in breast cancer cells, which was exacerbated by CCAT1 knockdown. Taken together, this study demonstrated that CCAT1 down-regulation improved radiosensitivity of breast cancer cells via negatively regulating miR-148b expression, providing a crucial clue for lncRNA-miRNA interaction in the mechanism of radiosensitivity of breast cancer.
Collapse
Affiliation(s)
- Yong Lai
- Department of Oncology, The People's Hospital of Jianyang City, No.180 Hospital Road, Sichuan, 641400, China
| | - Yang Chen
- Department of Oncology, The People's Hospital of Jianyang City, No.180 Hospital Road, Sichuan, 641400, China
| | - Yuanhong Lin
- Department of Oncology, The People's Hospital of Jianyang City, No.180 Hospital Road, Sichuan, 641400, China
| | - Ling Ye
- Department of Oncology, The People's Hospital of Jianyang City, No.180 Hospital Road, Sichuan, 641400, China
| |
Collapse
|
14
|
Prognostic value of microRNAs in hepatocellular carcinoma: a meta-analysis. Oncotarget 2017; 8:107237-107257. [PMID: 29291025 PMCID: PMC5739810 DOI: 10.18632/oncotarget.20883] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Background Numerous articles reported that dysregulated expression levels of miRNAs correlated with survival time of HCC patients. However, there has not been a comprehensive meta-analysis to evaluate the accurate prognostic value of miRNAs in HCC. Design Meta-analysis. Materials and Methods Studies, published in English, estimating expression levels of miRNAs with any survival curves in HCC were identified up until 15 April, 2017 by performing online searches in PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews by two independent authors. The pooled hazard ratios (HR) with 95% confidence intervals (CI) were used to estimate the correlation between miRNA expression and overall survival (OS). Results 54 relevant articles about 16 miRNAs, with 6464 patients, were ultimately included. HCC patients with high expression of tissue miR-9 (HR = 2.35, 95% CI = 1.46–3.76), miR-21 (HR = 1.76, 95% CI = 1.29–2.41), miR-34c (HR = 1.64, 95% CI = 1.05–2.57), miR-155 (HR = 2.84, 95% CI = 1.46–5.51), miR-221 (HR = 1.76, 95% CI = 1.02–3.04) or low expression of tissue miR-22 (HR = 2.29, 95% CI = 1.63–3.21), miR-29c (HR = 1.35, 95% CI = 1.10–1.65), miR-34a (HR = 1.84, 95% CI = 1.30–2.59), miR-199a (HR = 2.78, 95% CI = 1.89–4.08), miR-200a (HR = 2.64, 95% CI = 1.86–3.77), miR-203 (HR = 2.20, 95% CI = 1.61–3.00) have significantly poor OS (P < 0.05). Likewise, HCC patients with high expression of blood miR-21 (HR = 1.73, 95% CI = 1.07–2.80), miR-192 (HR = 2.42, 95% CI = 1.15–5.10), miR-224 (HR = 1.56, 95% CI = 1.14–2.12) or low expression of blood miR-148a (HR = 2.26, 95% CI = 1.11–4.59) have significantly short OS (P < 0.05). Conclusions In conclusion, tissue miR-9, miR-21, miR-22, miR-29c, miR-34a, miR-34c, miR-155, miR-199a, miR-200a, miR-203, miR-221 and blood miR-21, miR-148a, miR-192, miR-224 demonstrate significantly prognostic value. Among them, tissue miR-9, miR-22, miR-155, miR-199a, miR-200a, miR-203 and blood miR-148a, miR-192 are potential prognostic candidates for predicting OS in HCC.
Collapse
|
15
|
Duan F, Liu W, Fu X, Feng Y, Dai L, Cui S, Yang Z. Evaluating the prognostic value of miR-148/152 family in cancers: based on a systemic review of observational studies. Oncotarget 2017; 8:77999-78010. [PMID: 29100442 PMCID: PMC5652831 DOI: 10.18632/oncotarget.20830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/27/2017] [Indexed: 12/19/2022] Open
Abstract
Background The prognostic significance of MicroRNA-148/152 (miR-148/152) family expression in various cancers has been investigated by many studies with inconsistent results. To address this issue, we performed a meta-analysis to clarify this relationship. Materials and Methods Eligible studies were recruited by a systematic literature search and assessed the quality of included studies based on Quality In Prognosis Studies (QUIPS) and Newcastle-Ottawa Scale (NOS). Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for overall survival (OS) and disease free survival/progressive free survival/recurrence free survival (DFS/PFS/RFS) were calculated to estimate the effects of miR-148/152 family expression on prognosis. Results A final total of 23 articles (26 studies) were considered in evidence synthesis. A significant association was observed between low miR-148a level and poor OS in patients (HR = 1.59, 95% CI: 1.14 – 2.20, P = 0.00), especially with digestive tract cancer (DTC) (HR = 1.29, 95% CI: 1.03–1.63, P = 0.03), and another significant association was observed between low miR-148b level and poor OS in patients (HR=2.09, 95% CI: 1.70–2.56, P = 0.00), especially with (hepatocellular carcinoma) HCC (HR = 1.97, 95% Cl: 1.52–2.56, P = 0.00) and non-small cell lung cancer (NSCLC) (HR = 2.29, 95% Cl: 1.64–3.18, P = 0.00). The significant correlation between miR-152 and DFS/RFS was found in our research (HR = 3.49, 95% Cl: 1.13–10.08, P = 0.03). Conclusions Our findings suggest that low miR-148/152 family expression is significantly associated with poor prognosis and may be a feasible prognostic biomarker in some cancers, especially in HCC and NSCLC.
Collapse
Affiliation(s)
- Fujiao Duan
- Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China.,College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, Henan, China
| | - Weigang Liu
- Medical Record Statistics Office, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Xiaoli Fu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yajing Feng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,Department of Nosocomial Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Dai
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, Henan, China
| | - Shuli Cui
- College of Professional Study, Northeastern University, Boston, Massachusetts, USA
| | - Zhenxing Yang
- Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Screening and identification of four serum miRNAs as novel potential biomarkers for cured pulmonary tuberculosis. Tuberculosis (Edinb) 2017. [PMID: 29523324 DOI: 10.1016/j.tube.2017.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rapid and efficient methods for the determination of cured pulmonary tuberculosis (TB) are lacking. We screened serum miRNAs using the Solexa sequencing method among untreated TB patients, two-month treated TB patients, cured TB patients, and healthy controls. A total of 100 differentially expressed miRNAs were identified in cured TB patients, including 37 up-regulated (fold change >1.50, P < 0.05) and 63 down-regulated (fold change <0.60, P < 0.05) miRNAs. Gene ontology (GO) enrichment analysis revealed that most of the predicted genes were present in the nucleus with a strong protein binding function. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis strongly suggested alterations in the metabolic pathways. Following quantitative real time chain reaction (qRT-PCR), significantly reduced expression levels of miR-21-5p (0.30, P < 0.001), miR-92a-3p (0.63, P < 0.001), and miR-148b-3p (0.17, P < 0.001) were found in the cured TB patients compared with the untreated TB patients, while significantly increased expression levels of miR-21-5p (2.09, P = 0.001), miR-92a-3p (1.40, P = 0.005), and miR-148b-3p (4.80, P = 0.003) were found in the untreated TB patients compared with the healthy controls. And significantly increased level of miR-125a-5p was found between two-month treated TB patients and untreated TB patients (1.81, P = 0.004). We established a cured TB model with 83.96% accuracy by four miRNAs (miR-21-5p, miR-92a-3p, miR-148b-3p, and miR-125a-5p), and also established a diagnostic model with 70.09% accuracy. Our study provides experimental data for establishing objective indicators of cured TB, and also provides a new experimental basis to understand the pathogenesis and prognosis of TB.
Collapse
|
17
|
Sa L, Li Y, Zhao L, Liu Y, Wang P, Liu L, Li Z, Ma J, Cai H, Xue Y. The Role of HOTAIR/miR-148b-3p/USF1 on Regulating the Permeability of BTB. Front Mol Neurosci 2017; 10:194. [PMID: 28701916 PMCID: PMC5487514 DOI: 10.3389/fnmol.2017.00194] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
Homeobox transcript antisense intergenic RNA (HOTAIR), as a long non-coding RNA (lncRNA), has been considered to play critical roles in the biological properties of various tumors. The purposes of this study were to investigate the role and possible molecular mechanisms of HOTAIR in regulating the permeability of blood tumor barrier (BTB) in vitro. Our present study elucidated that the expressions of HOTAIR and upstream stimulatory factor 1 (USF1) was up-regulated, but miR-148b-3p was down-regulated in glioma microvascular endothelial cells (GECs). Knockdown of HOTAIR could increase the permeability of BTB as well as down-regulated the expressions of tight junction related proteins ZO-1, occludin, claudin-5, but up-regulated miR-148b-3p expressions in GECs. Meanwhile, dual-luciferase reporter assays demonstrated that HOTAIR was a target RNA of miR-148b-3p. Furthermore, overexpression of miR-148b-3p increased the permeability of BTB by down-regulating the expressions of tight junction related proteins and USF1 in GECs, and vice versa. And further result revealed USF1 was a target of miR-148b-3p. Silence of USF1 increased the permeability of BTB duo to their interaction with the promoters of ZO-1, occludin, and claudin-5 in GECs. Taken together, our finding indicated that knockdown of HOTAIR increased BTB permeability via binding to miR-148b-3p, which further reducing tight junction related proteins in GECs by targeting USF1. Thus, HOTAIR will attract more attention since it can serve as a potential target of drug delivery across BTB and may provide novel strategies for glioma treatment.
Collapse
Affiliation(s)
- Libo Sa
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Yan Li
- No. 1 English Department, School of Fundamental Sciences, China Medical UniversityShenyang, China
| | - Lini Zhao
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China.,Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China.,Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China.,Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| |
Collapse
|
18
|
Pei YF, Lei Y, Liu XQ. MiR-29a promotes cell proliferation and EMT in breast cancer by targeting ten eleven translocation 1. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2177-2185. [DOI: 10.1016/j.bbadis.2016.08.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 01/07/2023]
|
19
|
Mou Z, Xu X, Dong M, Xu J. MicroRNA-148b Acts as a Tumor Suppressor in Cervical Cancer by Inducing G1/S-Phase Cell Cycle Arrest and Apoptosis in a Caspase-3-Dependent Manner. Med Sci Monit 2016; 22:2809-15. [PMID: 27505047 PMCID: PMC4982527 DOI: 10.12659/msm.896862] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The purpose of our study was to investigate the role of microRNA (miR)-148b in cervical cancer. MATERIAL AND METHODS The expression of miR-148b was determined in HPV-16-immortalized cervical epithelial cell line CRL-2614 cells and in cervical cancer cell line HeLa cells. The miR-148b mimics or scrambled RNA were then transfected into Hela cells. Forty-eight hours after transfection, the mRNA expression of miR-148b and DNA methyltransferase 1 (DNMT1) were confirmed. Cell proliferation ability (cell viability and colony formation ability), invasion ability, and apoptosis were assessed after transfection with miR-148b mimics or scrambled RNA, as well as the protein expression of cyclin D1 and caspase-3. RESULTS The expression of miR-148b was significantly downregulated in HeLa cells compared with CRL2614 cells (P<0.05), but was statistically upregulated by transfection with miR-148b mimics compared with the cells transfected with scrambled RNA (P<0.05). Also, we found that the expression of DNMT1 was significantly decreased by transfection with miR-148b mimics (P<0.05). Additionally, miR-148b mimics significantly decreased the cell proliferation ability and invasion ability, and statistically induced apoptosis. Furthermore, the expression of cyclin D1 protein was significantly decreased and the expression of caspase-3 protein was significantly increased by miR-148b mimics compared with that in the cells transfected with scrambled RNA (P<0.05). CONCLUSIONS Our results suggest that overexpression of miR-148b protects against cervical cancer by inducing G1/S-phase cell cycle arrest and apoptosis through caspase-3-dependent manner, and overexpression of miR-148b might develop a therapeutic intervention for cervical cancer.
Collapse
Affiliation(s)
- Zongmei Mou
- Department of Gynaecology, People's Hospital of Rizhao, Rizhao, Shandong, China (mainland)
| | - Xiangting Xu
- Department of Gynaecology and Obstetrics, Binzhou City Central Hospital, Binzhou, Shandong, China (mainland)
| | - Mei Dong
- Department of Gynaecology, People's Hospital of Zoucheng, Zoucheng, Shandong, China (mainland)
| | - Jin Xu
- Department of Reproduction and Genetics, Taian City Central Hospital, Taian, Shandong, China (mainland)
| |
Collapse
|
20
|
Chauhan R, Lahiri N. Tissue- and Serum-Associated Biomarkers of Hepatocellular Carcinoma. BIOMARKERS IN CANCER 2016; 8:37-55. [PMID: 27398029 PMCID: PMC4933537 DOI: 10.4137/bic.s34413] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/15/2016] [Accepted: 03/27/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC), one of the leading causes of cancer deaths in the world, is offering a challenge to human beings, with the current modes of treatment being a palliative approach. Lack of proper curative or preventive treatment methods encouraged extensive research around the world with an aim to detect a vaccine or therapeutic target biomolecule that could lead to development of a drug or vaccine against HCC. Biomarkers or biological disease markers have emerged as a potential tool as drug/vaccine targets, as they can accurately diagnose, predict, and even prevent the diseases. Biomarker expression in tissue, serum, plasma, or urine can detect tumor in very early stages of its development and monitor the cancer progression and also the effect of therapeutic interventions. Biomarker discoveries are driven by advanced techniques, such as proteomics, transcriptomics, whole genome sequencing, micro- and micro-RNA arrays, and translational clinics. In this review, an overview of the potential of tissue- and serum-associated HCC biomarkers as diagnostic, prognostic, and therapeutic targets for drug development is presented. In addition, we highlight recently developed micro-RNA, long noncoding RNA biomarkers, and single-nucleotide changes, which may be used independently or as complementary biomarkers. These active investigations going on around the world aimed at conquering HCC might show a bright light in the near future.
Collapse
Affiliation(s)
- Ranjit Chauhan
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.; Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
21
|
Gong L, Wang C, Gao Y, Wang J. Decreased expression of microRNA-148a predicts poor prognosis in ovarian cancer and associates with tumor growth and metastasis. Biomed Pharmacother 2016; 83:58-63. [PMID: 27470550 DOI: 10.1016/j.biopha.2016.05.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE MicroRNA-148a (MiR-148a) had been reported to take part in some cancer progresses, but its clinical significance in ovarian cancer had been rarely reported. The purpose of this study was to evaluate the prognostic value of miR-148a as well as its roles in ovarian cancer progression. METHODS Relative expression of miR-148a in the plasma specimens of ovarian cancer patients was detected by qRT-PCR. Chi-square test was used to analyze the relationship between miR-148a expression and clinical characteristics. The overall survival was analyzed by Kaplan-Meier method and Cox regression analysis was used to evaluate the prognostic value of miR-148a. In addition, the ovarian cancer cell line SKOV-3 was separately transfected with pcDNA3-microRNA-148a over-expression vector and pcDNA3 empty vector to detect the functional roles of miR-148a in ovarian cancer progression. RESULTS Decreased level of plasma miR-148a was observed in ovarian cancer patients compared with healthy controls. The expression level was associated with histopathologic grade, TNM stage and lymph node metastasis (P<0.05 for all). Besides, patients with high level of miR-148a had a longer survival time than those with low level (40.3 months vs 31.6 months, log rank test, P=0.002). Cox regression analysis indicated that miR-148a might be a potential biomarker for ovarian cancer prognosis (HR=1.699, 95%CI=1.175-2.456, P=0.005). Moreover, cell experiments confirmed that miR-148a could inhibit proliferation, migration and invasion of ovarian cancer cells. CONCLUSION MiR-148a may be a potential prognostic factor for ovarian cancer and it can suppress tumor progression.
Collapse
Affiliation(s)
- Li Gong
- Department of Gynecology, People's Hospital of Rizhao, Rizhao 222000, China.
| | - Chongjuan Wang
- Department of Gynecology, People's Hospital of Rizhao, Rizhao 222000, China
| | - Yuan Gao
- Department of Gynecology, People's Hospital of Rizhao, Rizhao 222000, China
| | - Jie Wang
- Department of Gynecology, People's Hospital of Rizhao, Rizhao 222000, China
| |
Collapse
|
22
|
Orso F, Quirico L, Virga F, Penna E, Dettori D, Cimino D, Coppo R, Grassi E, Elia AR, Brusa D, Deaglio S, Brizzi MF, Stadler MB, Provero P, Caselle M, Taverna D. miR-214 and miR-148b Targeting Inhibits Dissemination of Melanoma and Breast Cancer. Cancer Res 2016; 76:5151-62. [PMID: 27328731 DOI: 10.1158/0008-5472.can-15-1322] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/05/2016] [Indexed: 11/16/2022]
Abstract
miR-214 and miR-148b have been proposed to antagonize the effects of each other in enabling or blocking metastasis, respectively. In this study, we provide evidence deepening their role and interrelationship in the process of metastatic dissemination. Depleting miR-214 or elevating miR-148b blocked the dissemination of melanoma or breast cancer cells, an effect that could be accentuated by dual alteration. Mechanistic investigations indicated that dual alteration suppressed passage of malignant cells through the blood vessel endothelium by reducing expression of the cell adhesion molecules ITGA5 and ALCAM. Notably, transendothelial migration in vitro and extravasation in vivo impaired by singly alternating miR-214 or miR-148b could be overridden by overexpression of ITGA5 or ALCAM in the same tumor cells. In clinical specimens of primary breast cancer or metastatic melanoma, we found a positive correlation between miR-214 and ITGA5 or ALCAM along with an inverse correlation of miR-214 and miR-148b in the same specimens. Our findings define an antagonistic relationship of miR-214 and miR-148b in determining the dissemination of cancer cells via tumor-endothelial cell interactions, with possible implications for microRNA-mediated therapeutic interventions aimed at blocking cancer extravasation. Cancer Res; 76(17); 5151-62. ©2016 AACR.
Collapse
Affiliation(s)
- Francesca Orso
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Complex Systems in Molecular Biology and Medicine, University of Torino, Torino, Italy
| | - Lorena Quirico
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federico Virga
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elisa Penna
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Daniela Dettori
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Daniela Cimino
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Complex Systems in Molecular Biology and Medicine, University of Torino, Torino, Italy
| | - Roberto Coppo
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Grassi
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Angela Rita Elia
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Davide Brusa
- Department of Medical Sciences, University of Torino, Torino, Italy. Immunogenetics Unit, Human Genetics Foundation, Torino, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Torino, Torino, Italy. Immunogenetics Unit, Human Genetics Foundation, Torino, Italy
| | | | - Michael B Stadler
- Friederich Miescher Institute and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Paolo Provero
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Michele Caselle
- Center for Complex Systems in Molecular Biology and Medicine, University of Torino, Torino, Italy. Department of Physics University of Torino, Torino, Italy
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Complex Systems in Molecular Biology and Medicine, University of Torino, Torino, Italy.
| |
Collapse
|
23
|
Managing Pancreatic Adenocarcinoma: A Special Focus in MicroRNA Gene Therapy. Int J Mol Sci 2016; 17:ijms17050718. [PMID: 27187371 PMCID: PMC4881540 DOI: 10.3390/ijms17050718] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is an aggressive disease and the fourth most lethal cancer in developed countries. Despite all progress in medicine and in understanding the molecular mechanisms of carcinogenesis, pancreatic cancer still has a poor prognosis, the median survival after diagnosis being around 3 to 6 months and the survival rate of 5 years being less than 4%. For pancreatic ductal adenocarcinoma (PDAC), which represents more than 90% of new pancreatic cancer cases, the prognosis is worse than for the other cancers with a patient mortality of approximately 99%. Therefore, there is a pressing need for developing new and efficient therapeutic strategies for pancreatic cancer. In this regard, microRNAs not only have been seen as potential diagnostic and prognostic molecular markers but also as promising therapeutic agents. In this context, this review provides an examination of the most frequently deregulated microRNAs (miRNAs) in PDAC and their putative molecular targets involved in the signaling pathways of pancreatic
carcinogenesis. Additionally, it is presented a summary of gene therapy clinical trials involving miRNAs and it is illustrated the therapeutic potential associated to these small non-coding RNAs, for PDAC treatment. The facts presented here constitute a strong evidence of the remarkable opportunity associated to the application of microRNA-based therapeutic strategies as a novel approach for cancer therapy.
Collapse
|
24
|
Ziari K, Zarea M, Gity M, Fayyaz AF, Yahaghi E, Darian EK, Hashemian AM. Downregulation of miR-148b as biomarker for early detection of hepatocellular carcinoma and may serve as a prognostic marker. Tumour Biol 2016; 37:5765-8. [PMID: 26206498 DOI: 10.1007/s13277-015-3777-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/07/2015] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) have a large number of various target genes in different cancer types, which may result in many biological functions. Thus, identifying the molecular mechanisms of miRNAs may effect on the complexity of cancer progression via regulation of gene. In the current study, we utilized real-time PCR to quantify the diction of miR-148b in trail hepatocellular carcinoma (HCC) specimen and normal tissues. Furthermore, we evaluated the relationship of miR-148b and clinicopathological features with survival of HCC patients. Therefore, we evaluated the level of miR-148b expression in 101 HCC patients and also in 40 normal control cases. The result suggested lower expression in tumor tissues than normal control tissues (0.96 ± 0.14; 1.84 ± 0.20, P < 0.05). Our findings suggest that the declined expression of miR-148b can considerably be linked to tumor node metastasis (TNM) stage (stages III and IV; P = 0.021) and vein invasion (P = 0.029). Nevertheless, miR-148b expression was not related to sex (P = 0.674), age (P = 0. 523), size of tumor (P = 0.507), liver cirrhosis, and histologic grade (P = 0.734). Survival analysis showed that low expression was remarkably related to overall survival (P = 0.012). Furthermore, multivariate survival test suggested that decline of miR-148b diction was linked to poor survival in HCC patients. Our results suggested that miR-148b is decreased in HCC. Therefore, we concluded that miR-148b may play its role in the prognosis of HCC.
Collapse
Affiliation(s)
- Katayoun Ziari
- Department of Pathology, Be'sat Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Mojtaba Zarea
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India
| | - Masoumeh Gity
- Department of Radiology, Medical Imaging Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Farshid Fayyaz
- Department of Legal Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Emad Yahaghi
- Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Amir Masoud Hashemian
- Department of Emergency Medicine, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Wang R, Ye F, Zhen Q, Song T, Tan G, Chu W, Zhang Y, Lv B, Zhao X, Liu J. MicroRNA-148b is a potential prognostic biomarker and predictor of response to radiotherapy in non-small-cell lung cancer. J Physiol Biochem 2016; 72:337-43. [DOI: 10.1007/s13105-016-0485-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/07/2016] [Indexed: 01/03/2023]
|
26
|
Wang F, Ying H, He B, Pan Y, Sun H, Wang S. Circulating miR-148/152 family as potential biomarkers in hepatocellular carcinoma. Tumour Biol 2016; 37:4945-4953. [PMID: 26531720 DOI: 10.1007/s13277-015-4340-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022] Open
Abstract
Aberrant expressions of the miR-148/152 family (miR-148a, miR-148b, and miR-152) have been documented in many tumor tissues, including hepatocellular carcinoma (HCC). However, the expression pattern and clinical significance of circulating miR-148/152 family in HCC remain elusive. In this study, we conducted quantitative real-time polymerase chain reaction (qRT-PCR) to examine the levels of serum miR-148a, miR-148b, and miR-152 in 76 HCC cases, as well as 62 controls with benign liver diseases and 55 healthy volunteers. Our results showed that serum levels of three microRNAs (miRNAs) were significantly decreased in HCC cases than those in benign and healthy controls (all P < 0.05). Moreover, they showed strong correlations with each other in HCC group (r = 0.6716, 0.5381, and 0.7712; all P < 0.001). Receiver operating characteristic (ROC) analysis revealed that the combination of circulating miR-148/152 family had an increased area under the curve (AUC) = 0.940 (95 % confidence interval (CI), 0.886-0.973) with the sensitivity of 96.1 % and the specificity of 91.9 %, which were significantly higher than those of serum alpha-fetoprotein (AFP) and three miRNAs alone in differentiating HCC from benign liver diseases. In addition, serum miR-148a and miR-148b were significantly associated with tumor size (P = 0.011 and 0.037) and tumor-node-metastasis (TNM) stage (P < 0.001 and P = 0.034), yet serum miR-152 was only correlated with TNM stage (P = 0.009). Also, dynamic monitoring three miRNAs can help us predict recurrence or metastasis in HCC cases after surgical resection. Besides, Kaplan-Meier analyses demonstrated that the decreased serum miR-148a (P < 0.001) and miR-152 (P = 0.012) was closely correlated with shorten overall survival of HCC patients. Additionally, Cox regression model further indicated that serum miR-148a was strongly associated with the prognosis of HCC patients. Our study suggests that downregulated circulating miR-148/152 family can provide positive diagnostic value for HCC. Moreover, serum miR-148a might be as independent prognostic factor for HCC patients.
Collapse
Affiliation(s)
- Feng Wang
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Houqun Ying
- Medical College, Southeast University, Jiangsu, China
| | - Bangshun He
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Yuqin Pan
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Huiling Sun
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Shukui Wang
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China.
| |
Collapse
|
27
|
Van Keuren‐Jensen KR, Malenica I, Courtright AL, Ghaffari LT, Starr AP, Metpally RP, Beecroft TA, Carlson EW, Kiefer JA, Pockros PJ, Rakela J. microRNA changes in liver tissue associated with fibrosis progression in patients with hepatitis C. Liver Int 2016; 36:334-43. [PMID: 26189820 PMCID: PMC5049661 DOI: 10.1111/liv.12919] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/12/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Accumulating evidence indicates that microRNAs play a role in a number of disease processes including the pathogenesis of liver fibrosis in hepatitis C infection. Our goal is to add to the accruing information regarding microRNA deregulation in liver fibrosis to increase our understanding of the underlying mechanisms of pathology and progression. METHODS We used next generation sequencing to profile all detectable microRNAs in liver tissue and serum from patients with hepatitis C, stages F1-F4 of fibrosis. RESULTS We found altered expression of several microRNAs, in particular, miR-182, miR199a-5p, miR-200a-5p and miR-183 were found to be significantly upregulated in tissue from liver biopsies of hepatitis C patients with advanced fibrosis, stage F3 and F4, when compared with liver biopsies from patients with early fibrosis, stages F1 and F2. We also found miR-148-5p, miR-1260b, miR-122-3p and miR-378i among the microRNAs most significantly down-regulated from early to advanced fibrosis of the liver. We also sequenced the serum microRNAs; however, we were not able to detect significant changes in circulating microRNAs associated with fibrosis stage after adjusting for multiple tests. CONCLUSIONS Adding measurements of tissue microRNAs acquired during routine biopsies will continue to increase our knowledge of underlying mechanisms of fibrosis. Our goal is that these data, in combination with studies from other researchers and future long-term studies, could be used to enhance the staging accuracy of liver biopsies and expand the surveillance of patients at increased risk for cancer and progression to advanced fibrosis.
Collapse
Affiliation(s)
| | - Ivana Malenica
- NeurogenomicsTranslational Genomics Research InstitutePhoenixAZUSA
| | | | | | - Alex P. Starr
- NeurogenomicsTranslational Genomics Research InstitutePhoenixAZUSA
| | | | | | | | | | | | - Jorge Rakela
- Gastroenterology and HepatologyMayo ClinicScottsdaleAZUSA
| |
Collapse
|
28
|
MiR-103 regulates hepatocellular carcinoma growth by targeting AKAP12. Int J Biochem Cell Biol 2016; 71:1-11. [DOI: 10.1016/j.biocel.2015.11.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 11/20/2015] [Accepted: 11/26/2015] [Indexed: 01/23/2023]
|
29
|
Nie F, Liu T, Zhong L, Yang X, Liu Y, Xia H, Liu X, Wang X, Liu Z, Zhou L, Mao Z, Zhou Q, Chen T. MicroRNA-148b enhances proliferation and apoptosis in human renal cancer cells via directly targeting MAP3K9. Mol Med Rep 2015; 13:83-90. [PMID: 26573018 PMCID: PMC4686110 DOI: 10.3892/mmr.2015.4555] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 09/22/2015] [Indexed: 02/05/2023] Open
Abstract
Increasing evidence revealed that miRNAs, the vital regulators of gene expression, are involved in various cellular processes, including cell growth, differentiation, apoptosis and progression. In addition, miRNAs act as oncogenes and/or tumor suppressors. The present study aimed to verify the potential roles of miR148b in human renal cancer cells. miR-148b was found to be downregulated in human renal cancel tissues and human renal cancer cell lines. Functional studies demonstrated that plasmid-mediated overexpression of miR-148b promoted cell proliferation, increased the S-phase population of the cell cycle and enhanced apoptosis in the 786-O and OS-RC-2 renal cancer cell lines, while it did not appear to affect the total number of viable cells according to a Cell Counting Kit-8 assay. Subsequently, a luciferase reporter assay verified that miR148b directly targeted mitogen-activated protein kinase (MAPK) kinase kinase 9 (MAP3K9), an upstream activator of MAPK kinase/c-Jun N-terminal kinase (JNK) signaling, suppressing the protein but not the mRNA levels. Furthermore, western blot analysis indicated that overexpression of miR148b in renal cancer cells inhibited MAPK/JNK signaling by decreasing the expression of phosphorylated (p)JNK. In addition, over-expression of MAP3K9 and pJNK was detected in clinical renal cell carcinoma specimens compared with that in their normal adjacent tissues. The present study therefore suggested that miR-148b exerts an oncogenic function by enhancing the proliferation and apoptosis of renal cancer cells by inhibiting the MAPK/JNK pathway.
Collapse
Affiliation(s)
- Fang Nie
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tianming Liu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liang Zhong
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xianggui Yang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yunhong Liu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hongwei Xia
- Department of Medical Oncology and Laboratory of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoqiang Liu
- College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaoyan Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhicheng Liu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Li Zhou
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhaomin Mao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qin Zhou
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tingmei Chen
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
30
|
Chen X, Bo L, Lu W, Zhou G, Chen Q. MicroRNA-148b targets Rho-associated protein kinase 1 to inhibit cell proliferation, migration and invasion in hepatocellular carcinoma. Mol Med Rep 2015; 13:477-82. [PMID: 26530325 DOI: 10.3892/mmr.2015.4500] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 09/25/2015] [Indexed: 11/06/2022] Open
Abstract
microRNA(miR)-148b has been found to be downregulated in various human malignancies, including hepatocellular carcinoma (HCC) as well as gastric, pancreatic, colon and oral cancer. However, the function of miR‑148b in HCC has remained elusive. The present study examined the effects of miR‑148b on the proliferation, migration and invasion of HCC cells in vitro. After transfection of the HepG2 and SMMC‑7721 HCC cell lines with miR‑148b, an MTT assay, a Transwell migration and invasion assay as well as western blot analysis were performed. miR-148b was shown to inhibit cell proliferation, migration and invasion in the two cell lines. Using a luciferase reporter assay, the present study also provided the first evidence that miR‑148b directly targets Rho‑associated protein kinase 1 in HCC. These results suggested that miR-148 may represent a novel molecular marker and a potential molecular therapeutic for inhibiting metastasis of HCC.
Collapse
Affiliation(s)
- Xian Chen
- Department of Infectious Diseases, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Lianhua Bo
- Department of Infectious Diseases, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Wei Lu
- Department of Infectious Diseases, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Guihua Zhou
- Department of Infectious Diseases, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Qi Chen
- Department of Infectious Diseases, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| |
Collapse
|
31
|
Zhang ZQ, Lu SM. Roles of microRNAs in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2015; 23:4844-4851. [DOI: 10.11569/wcjd.v23.i30.4844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules consisting of 22 nucleotides, regulating the expression of target genes at the post-transcriptional or translational level. miRNAs play important roles in several physiological and physiopathological processes such as individual development, cell proliferation, apoptosis, differentiation and tumorigenesis. miRNAs may promote the development of malignant tumors by participating in the regulation of oncogenes and tumor suppressor genes, or they may function as oncogenes or tumor suppressor genes themselves. Studies have indicated that miRNAs are closely associated with hepatocellular carcinoma (HCC) formation and progression. In this review, we summarize the recent knowledge about the roles of miRNAs in the occurrence and development of HCC, as well as the value of miRNAs in the diagnosis and therapy of HCC.
Collapse
|
32
|
Arabkheradmand A, Safari A, Seifoleslami M, Yahaghi E, Gity M. Down-regulated microRNA-124 expression as predictive biomarker and its prognostic significance with clinicopathological features in breast cancer patients. Diagn Pathol 2015; 10:178. [PMID: 26415857 PMCID: PMC4587828 DOI: 10.1186/s13000-015-0391-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/28/2015] [Indexed: 02/03/2023] Open
Abstract
Background MicroRNAs (miRNAs) have been documented as playing important roles in cancer development. In this study, we investigated to clarify the clinicopathological significance and prognostic value of miR-124 in breast cancer. Methods Quantitative Real-time PCR method was used to assess the expression levels of miR-124 in breast cancer patients and the association of miR-124 expression levels with the clinicopathological characteristics in breast cancer patients. Survival and Multivariate Cox proportional hazards model analysis was used to evaluate whether the miR-124 expression level and various clinicopathological characteristics were independent prognostic marker for breast cancer patients. Results We found that the lower expression of miR-124 in breast cancer specimens compared with corresponding adjacent normal breast tissues P < 0.05. Results showed that decreased expression of miR-124 was significantly related to advanced clinical stage (stage III and IV) (P = 0.021) and positive lymph node-metastasis (P = 0.011). Patients with low expression of miR-124 had significantly shorter overall survival (70.2 %) than patients who had cancers with high miR-124 expression (29.8), (logrank test P = 0.021). Moreover, Multivariate Cox proportional hazards model analysis indicated that lowr miR-124 expression was found to be independently linked to poor survival of patients with breast cancer and other factors were not significantly associated with survival of patients. Conclusion Our data suggested that decreased expression of miR-124 has prognostic value in breast cancer and may serve as a prognostic marker for breast cancer, and also downregulation of miR-124 was inversely associated with the lymph node metastasis in breast cancer.
Collapse
Affiliation(s)
- Ali Arabkheradmand
- Department of Surgery, Cancer and Reconstructive Surgeon, Cancer Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aghdas Safari
- Department of Gynecology, Khanevadeh Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Mehri Seifoleslami
- Department of Gynecology, Khanevadeh Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Emad Yahaghi
- Department of Molecular Biology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoumeh Gity
- Department of Radiology, Medical Imaging Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
miR-383 inhibits hepatocellular carcinoma cell proliferation via targeting APRIL. Tumour Biol 2015; 37:2497-507. [DOI: 10.1007/s13277-015-4071-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/13/2015] [Indexed: 01/26/2023] Open
|
34
|
Ghasemkhani N, Shadvar S, Masoudi Y, Talaei AJ, Yahaghi E, Goudarzi PK, Shakiba E. Down-regulated MicroRNA 148b expression as predictive biomarker and its prognostic significance associated with clinicopathological features in non-small-cell lung cancer patients. Diagn Pathol 2015; 10:164. [PMID: 26377406 PMCID: PMC4573280 DOI: 10.1186/s13000-015-0393-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/28/2015] [Indexed: 01/07/2023] Open
Abstract
Background Lung cancer is most common and is the leading cause of cancer-related death in both men and women worldwide. Understanding of the molecular mechanisms underlying non-small cell lung cancer (NSCLC) development and progression are important. In the present study, we investigated the potential role of miR-148b expression analysis as potential lung cancer biomarker with the correlation of circulating miR-148b to clinicopathological features. Methods A total of 104 NSCLC patients were diagnosed and cancer tissues together with adjacent normal tissues were evaluated. Quantitative Real-time PCR method was utilized to evaluate the expression levels of miR-148b. In addition, we investigated to clarify the relationship of miR-148b with clinicopathological features and survival in patients with NSCLC. Results Our findings showed that miR-148b was downregulated in tumor tissues when compared with corresponding adjacent normal lung tissues (0.34 ± 0.13 vs. 1.00 ± 0.57, P < 0.05). Moreover decreased expression of miR-148b was significantly related to TNM stage (P = 0.001) and lymph node-metastasis (P = 0.023). This findings suggested that miR-148b was down-regulated in NSCLC patients and may play a key role as a tumor suppressor gene in NSCLC. Kaplan-Meier survival analysis and log-rank test suggested that low-expression group of patients had significantly shorter overall survival than high-expression group (log-rank test: P = 0.031). Multivariate Cox proportional hazards model analysis indicated that low miR-148b expression was independently linked to poor survival of patients with NSCLC (HR = 3.215, 95 % CI: 1.543-10.621, P = 0.021) and other factors were not significant independent predictor of survival in patients with NSCLC. Conclusion Our findings demonstrated that miR-148b may play a role as independent prognostic factor for patients with NSCLC.
Collapse
Affiliation(s)
- Naeemeh Ghasemkhani
- Brain and Spinal Injury Research Center, Neuroscience institute, Tehran University of Medical Science, Tehran, Iran
| | - Sahar Shadvar
- Brain and Spinal Injury Research Center, Neuroscience institute, Tehran University of Medical Science, Tehran, Iran
| | - Yasamin Masoudi
- Department of Biophysics, Faculty of Life Science, Azad University of Varamin Pishva Branch, Varamin, Iran
| | - Amir Jouya Talaei
- Department of Genetics, Faculty of Life Science, Azad University of Tehran Medical Sciences Branch, Tehran, Iran
| | - Emad Yahaghi
- Department of Molecular Biology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Ebrahim Shakiba
- Department of Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
35
|
Mao B, Wang G. MicroRNAs involved with hepatocellular carcinoma (Review). Oncol Rep 2015; 34:2811-20. [PMID: 26398882 DOI: 10.3892/or.2015.4275] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/13/2015] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies, which accounts for 90% of primary liver cancer. HCC usually presents with poor outcomes due to the high rates of tumor recurrence and widespread metastasis. However, the underlying mechanism of HCC initiation and progression, which significantly hindered the development of valid approaches for early detection and treatment remain to be elucidated. As a group of small non-coding RNAs, microRNAs (miRNAs) have been demonstrated to be involved in many types of diseases especially human malignancies. Numerous miRNAs are deregulated in HCC, which may shed some light on current investigations. Since miRNAs are stable and detected easily, their ectopic expression has been reported in HCC tissues, serum/plasma and cell lines. As previously described, miRNAs serve as tumor suppressors or oncogenes, indicating that miRNAs may be useful as diagnostic, therapeutic and prognostic markers of HCC. In the present review, we assessed the latest data regarding dysregulated miRNAs in HCC and reviewed the reported functions of these miRNAs as they apply to the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Bijing Mao
- Cancer Center, Institute of Surgical Research, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Ge Wang
- Cancer Center, Institute of Surgical Research, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| |
Collapse
|
36
|
He S, Zhang DC, Wei C. MicroRNAs as biomarkers for hepatocellular carcinoma diagnosis and prognosis. Clin Res Hepatol Gastroenterol 2015; 39:426-34. [PMID: 25746139 DOI: 10.1016/j.clinre.2015.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/30/2014] [Accepted: 01/12/2015] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world, and it is the second leading cause of cancer-related deaths. Despite improvements in HCC therapy, the overall survival rate is still very low because of the late detection of the tumors. Thus, early detection of HCC offers the best chance of survival for patients. MicroRNAs (miRNAs) are evolutionarily conserved small noncoding RNAs involved in the regulation of gene expression and protein translation. Many studies have shown that they played a very important role in cancer progresses and outcomes. The aberrant expression of miRNAs is common in various human malignancies and it modulates cancer-associated genomic regions or fragile sites. As for the relationship between miRNAs and HCC, several studies have demonstrated that the aberrant expression of specific miRNAs can be detected in HCC patients' serum and plasma or HCC cells and tissues, and miRNAs have shown great promise as diagnostic and prognostic markers for HCC. In the present review, we discussed the applications of miRNAs as biomarkers for HCC diagnosis and prognosis, and the association between miRNAs polymorphisms and the risk of HCC as well.
Collapse
Affiliation(s)
- Song He
- Maanshan Center for Clinical Laboratory, Maanshan Municipal Hospital Group, 45, Hubei Road, 243000 Maanshan, China.
| | - De-Chun Zhang
- Molecular Medicine & Tumor Research Center, Chongqing Medical University, Chongqing, China
| | - Cheng Wei
- Maanshan Center for Clinical Laboratory, Maanshan Municipal Hospital Group, 45, Hubei Road, 243000 Maanshan, China
| |
Collapse
|
37
|
Anwar SL, Lehmann U. MicroRNAs: Emerging Novel Clinical Biomarkers for Hepatocellular Carcinomas. J Clin Med 2015; 4:1631-50. [PMID: 26295264 PMCID: PMC4555081 DOI: 10.3390/jcm4081631] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022] Open
Abstract
The discovery of small non-coding RNAs known as microRNAs has refined our view of the complexity of gene expression regulation. In hepatocellular carcinoma (HCC), the fifth most frequent cancer and the third leading cause of cancer death worldwide, dysregulation of microRNAs has been implicated in all aspects of hepatocarcinogenesis. In addition, alterations of microRNA expression have also been reported in non-cancerous liver diseases including chronic hepatitis and liver cirrhosis. MicroRNAs have been proposed as clinically useful diagnostic biomarkers to differentiate HCC from different liver pathologies and healthy controls. Unique patterns of microRNA expression have also been implicated as biomarkers for prognosis as well as to predict and monitor therapeutic responses in HCC. Since dysregulation has been detected in various specimens including primary liver cancer tissues, serum, plasma, and urine, microRNAs represent novel non-invasive markers for HCC screening and predicting therapeutic responses. However, despite a significant number of studies, a consensus on which microRNA panels, sample types, and methodologies for microRNA expression analysis have to be used has not yet been established. This review focuses on potential values, benefits, and limitations of microRNAs as new clinical markers for diagnosis, prognosis, prediction, and therapeutic monitoring in HCC.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover D30625, Germany.
| | - Ulrich Lehmann
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover D30625, Germany.
| |
Collapse
|
38
|
Drakaki A, Hatziapostolou M, Polytarchou C, Vorvis C, Poultsides GA, Souglakos J, Georgoulias V, Iliopoulos D. Functional microRNA high throughput screening reveals miR-9 as a central regulator of liver oncogenesis by affecting the PPARA-CDH1 pathway. BMC Cancer 2015. [PMID: 26206264 PMCID: PMC4512159 DOI: 10.1186/s12885-015-1562-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths, reflecting the aggressiveness of this type of cancer and the absence of effective therapeutic regimens. MicroRNAs have been involved in the pathogenesis of different types of cancers, including liver cancer. Our aim was to identify microRNAs that have both functional and clinical relevance in HCC and examine their downstream signaling effectors. Methods MicroRNA and gene expression levels were measured by quantitative real-time PCR in HCC tumors and controls. A TargetScan algorithm was used to identify miR-9 downstream direct targets. Results A high-throughput screen of the human microRNAome revealed 28 microRNAs as regulators of liver cancer cell invasiveness. MiR-9, miR-21 and miR-224 were the top inducers of HCC invasiveness and also their expression was increased in HCC relative to control liver tissues. Integration of the microRNA screen and expression data revealed miR-9 as the top microRNA, having both functional and clinical significance. MiR-9 levels correlated with HCC tumor stage and miR-9 overexpression induced SNU-449 and HepG2 cell growth, invasiveness and their ability to form colonies in soft agar. Bioinformatics and 3′UTR luciferase analyses identified E-cadherin (CDH1) and peroxisome proliferator-activated receptor alpha (PPARA) as direct downstream effectors of miR-9 activity. Inhibition of PPARA suppressed CDH1 mRNA levels, suggesting that miR-9 regulates CDH1 expression directly through binding in its 3′UTR and indirectly through PPARA. On the other hand, miR-9 inhibition of overexpression suppressed HCC tumorigenicity and invasiveness. PPARA and CDH1 mRNA levels were decreased in HCC relative to controls and were inversely correlated with miR-9 levels. Conclusions Taken together, this study revealed the involvement of the miR-9/PPARA/CDH1 signaling pathway in HCC oncogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1562-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Drakaki
- Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA. .,Laboratory of Tumor Biology, Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Crete, Greece.
| | - Maria Hatziapostolou
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, 650 Charles E. Young Dr., CHS 44-133, Los Angeles, CA, 90095-7278, USA.
| | - Christos Polytarchou
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, 650 Charles E. Young Dr., CHS 44-133, Los Angeles, CA, 90095-7278, USA.
| | - Christina Vorvis
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, 650 Charles E. Young Dr., CHS 44-133, Los Angeles, CA, 90095-7278, USA.
| | - George A Poultsides
- Department of Surgery, Stanford School of Medicine, Stanford University, Palo Alto, CA, USA.
| | - John Souglakos
- Laboratory of Tumor Biology, Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Crete, Greece.
| | - Vassilis Georgoulias
- Laboratory of Tumor Biology, Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Crete, Greece.
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, 650 Charles E. Young Dr., CHS 44-133, Los Angeles, CA, 90095-7278, USA.
| |
Collapse
|
39
|
miR-106a* inhibits the proliferation of renal carcinoma cells by targeting IRS-2. Tumour Biol 2015; 36:8389-98. [DOI: 10.1007/s13277-015-3605-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 05/22/2015] [Indexed: 01/31/2023] Open
|
40
|
miRNA-148b suppresses hepatic cancer stem cell by targeting neuropilin-1. Biosci Rep 2015; 35:BSR20150084. [PMID: 25997710 PMCID: PMC4613672 DOI: 10.1042/bsr20150084] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/20/2015] [Indexed: 02/06/2023] Open
Abstract
Our study revealed that miR-148b was specifically down-regulated in hepatic cancer stem cells (HCSCs) and affected cell proliferation and metastasis in vitro and tumorigenicity in vivo by directly targeting to Neuropilin-1(NRP-1), a transmembrane co-receptor involved in metastasis, suggesting that enforced miR-148b expression might be an efficient therapeutic strategy to eradicate HCSCs and reduce metastasis. The existence of cancer stem cells (CSCs) is considered as a direct reason for the failure of clinic treatment in hepatocellular carcinoma (HCC). Growing evidences have demonstrated that miRNAs play an important role in regulation of stem cell proliferation, differentiation and self-renewal and their aberrances cause the formation of CSCs and eventually result in carcinogenesis. We recently identified miRNA-148b as one of the miRNAs specifically down-regulated in side population (SP) cells of PLC/PRF/5 cell line. However, it remains elusive how miRNA-148b regulates CSC properties in HCC. In the present study, we observed that overexpression or knockdown of miR-148b through lentiviral transfection could affect the proportion of SP cells as well as CSC-related gene expression in HCC cell lines. In addition, miR-148b blocking could stimulate cell proliferation, enhance chemosensitivity, as well as increase cell metastasis and angiogenesis in vitro. More importantly, miR-148b could significantly suppress tumorigenicity in vivo. Further studies revealed that Neuropilin-1 (NRP1), a transmembrane co-receptor involved in tumour initiation, metastasis and angiogenesis, might be the direct target of miRNA-148b. Taking together, our findings define that miR-148b might play a critical role in maintenance of SP cells with CSC properties by targeting NRP1 in HCC. It is the potential to develop a new strategy specifically targeting hepatic CSCs (HCSCs) through restoration of miR-148b expression in future therapy.
Collapse
|
41
|
Abstract
Recent studies have suggested that noncoding RNAs (ncRNAs) contribute to the pathogenesis and progression of hepatocellular carcinoma (HCC). These RNA genes may be involved in various pathobiological processes such as cell proliferation, apoptosis, angiogenesis, invasion, and metastasis. Aberrant expression of ncRNA resulting from deregulated epigenetic, transcriptional, or posttranscriptional activity has been described in several studies. ncRNAs are comprised of a highly diverse group of transcripts that include microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) as well as several other types of RNA genes. Understanding the molecular mechanisms by which ncRNA contribute to hepatocarcinogenesis may enable the design of ncRNA-based therapeutics for HCC. In this review, the authors provide a perspective on therapeutic applications based on the emerging evidence of a contributory role of miRNAs and lncRNAs to the pathogenesis and progression of HCC. In addition, ncRNAs that are deregulated in expression in HCC may have utility as potential prognostic or diagnostic markers.
Collapse
Affiliation(s)
- Joseph George
- Research Associate, Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224. Tel 904-956-3257
| | - Tushar Patel
- Professor of Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, 904-953-3257
| |
Collapse
|
42
|
Zhang JG, Shi Y, Hong DF, Song M, Huang D, Wang CY, Zhao G. MiR-148b suppresses cell proliferation and invasion in hepatocellular carcinoma by targeting WNT1/β-catenin pathway. Sci Rep 2015; 5:8087. [PMID: 25627001 PMCID: PMC4310092 DOI: 10.1038/srep08087] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/12/2014] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidences indicate that microRNAs play a vital role in regulating tumor progression. However, the roles of miR-148b in hepatocellular carcinoma (HCC) are still largely unknown. In this study, our data showed that miR-148b was significantly downregulated in 40 pairs of human HCC tissues. Further, the deregulated miR-148b was significantly correlated with larger tumor size, more tumor number, metastasis and worse prognosis in HCC. Overexpression of miR-148b inhibited HCC HepG2 cells proliferation and tumorigenicity. Further, miR-148b induced cells apoptosis by activating caspase- 3 and caspase-9, and induced S phase arrest by regulating cyclinD1 and p21, and also inhibited cell invasion. Data from the dual-luciferase reporter gene assay showed that WNT1 was a direct target of miR-148b, and overexpressed WNT1 inversely correlated with miR-148b levels in HCC tissues. Silencing of WNT1 inhibited the growth of HCC cells, and also induced cells apoptosis and inhibited invasion, which is consistent with the effects of miR-148b overexpression. MiR-148b downregulated expression of WNT1, β-catenin and C-myc, while upregulated E-cadherin expression. We conclude that the frequently downregulated miR-148b can regulate WNT1/β-catenin signalling pathway and function as a tumor suppressor in HCC. These findings suggest that miR-148b may serve as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Jun-gang Zhang
- 1] Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China [2] Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Ying Shi
- Obstetrics and Gynecology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - De-fei Hong
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Mengqi Song
- Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dongsheng Huang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Chun-you Wang
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gang Zhao
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
43
|
Zhang SL, Liu L. microRNA-148a inhibits hepatocellular carcinoma cell invasion by targeting sphingosine-1-phosphate receptor 1. Exp Ther Med 2014; 9:579-584. [PMID: 25574238 PMCID: PMC4280928 DOI: 10.3892/etm.2014.2137] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/18/2014] [Indexed: 12/26/2022] Open
Abstract
microRNA (miR)-148a has been shown to act as an important suppressor in numerous human malignancies and is markedly downregulated in hepatocellular carcinoma; however, the role of miR-148a in the regulation of hepatocellular carcinoma cell invasion, as well as the underlying mechanism, has never been studied. In the present study, the expression level of miR-148a was found to be significantly decreased in hepatocellular carcinoma tissues and HepG2 cells when compared with that in the normal adjacent tissues. Furthermore, a novel target of miR-148a was found, sphingosine-1-phosphate receptor 1 (S1PR1), whose expression was negatively regulated by miR-148a at a post-transcriptional level in hepatocellular carcinoma HepG2 cells. Upregulation of miR-148a by transfection with miR-148a mimics notably suppressed HepG2 cell invasion, similar to the effect of the SIPR1 downregulation induced by SIPR1-specific small interfering RNA, while the restoration of S1PR1 expression reversed the inhibitory effect of miR-148a upregulation on HepG2 cell invasion. Accordingly, the current study suggests that miR-148a plays an inhibitory role in the regulation of hepatocellular carcinoma cell invasion by directly targeting S1PR1.
Collapse
Affiliation(s)
- Shu-Liang Zhang
- Department of Hepatobiliary Surgery, Linzi District People's Hospital, Zibo, Shandong 255400, P.R. China
| | - Ling Liu
- National Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
44
|
MiR-141 targets ZEB2 to suppress HCC progression. Tumour Biol 2014; 35:9993-7. [PMID: 25008569 DOI: 10.1007/s13277-014-2299-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/01/2014] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Increasing evidence suggests that microRNAs (miRNAs) are associated with HCC tumorigenesis. The present study was designed to define the role of miR-141 in HCC. The expression of miR-141 was significantly decreased in four HCC cell lines. Overexpression of miR-141 suppressed both the growth and the motility of HCC cells. Furthermore, we identified zinc finger E-box binding homeobox 2 (ZEB2) as a target of miR-141 and miR-141 functioned as a tumor suppressor via ZEB2 targeting in HCC. These data provide a novel potential therapeutic target for HCC treatment.
Collapse
|