1
|
Frutos-Grilo E, Ana Y, Gonzalez-de Miguel J, Cardona-I-Collado M, Rodriguez-Arce I, Serrano L. Bacterial live therapeutics for human diseases. Mol Syst Biol 2024; 20:1261-1281. [PMID: 39443745 PMCID: PMC11612307 DOI: 10.1038/s44320-024-00067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The genomic revolution has fueled rapid progress in synthetic and systems biology, opening up new possibilities for using live biotherapeutic products (LBP) to treat, attenuate or prevent human diseases. Among LBP, bacteria-based therapies are particularly promising due to their ability to colonize diverse human tissues, modulate the immune system and secrete or deliver complex biological products. These bacterial LBP include engineered pathogenic species designed to target specific diseases, and microbiota species that promote microbial balance and immune system homeostasis, either through local administration or the gut-body axes. This review focuses on recent advancements in preclinical and clinical trials of bacteria-based LBP, highlighting both on-site and long-reaching strategies.
Collapse
Affiliation(s)
- Elisabet Frutos-Grilo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Yamile Ana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Javier Gonzalez-de Miguel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marcel Cardona-I-Collado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Irene Rodriguez-Arce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
2
|
Babakanrad E, Mohammadian T, Esmaeili D, Behzadi P. Designing and cloning of fusion protein CpsA-CpsC-L-ACAN. Med J Armed Forces India 2024; 80:642-650. [PMID: 39990539 PMCID: PMC11842926 DOI: 10.1016/j.mjafi.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/13/2022] [Indexed: 03/31/2023] Open
Abstract
Background Cervical cancer is the fourth most common cause of cancer and the fourth most common cause of cancer deaths in women. Some reports have shown the effect of Streptococcus agalactiae proteins and capsule products against cancer cell lines. Methods This study aimed to design and produce a fusion of recombinant protein (containing the capsules of Streptococcus agalactiaes with a linker and Antti cancer sequences) CpsA-CpsC-L-ACAN in the plasmid pET-22b (+) vector. Construct pET-22b (+) was designed by researchers, optimized with bioinformatics software, and synthesized by a Biometrics company. For the confirmation of recombinant protein, Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting were performed. Antibacterial activity was performed according to protocol CLSI2020. Based on bioinformatics analysis, the recombinant protein had good spatial structure and stability and half-life. Iterative Threading ASSEmbly Refinement (I-TASSER) results predicted a surfing topology with C-score values (-3.60). Results The results of Gastro-Oesophageal Reflux 4 (GOR4) analysis showed a little extended strand (30.63%), a random coil with a percentage (50.18%), and an alpha helix with a percentage (19.19%). The recombinant protein was confirmed by SDS-PAGE and western blotting with Anti-his tag. Conclusion The purpose of peptide fusion design in this article is to help in the development of anti-cervical cancer medicine. Of course, this issue needs to be investigated in animal and human phases. In this article, only bioinformatics investigations and validation of the results in the laboratory have been discussed.
Collapse
Affiliation(s)
- Elmira Babakanrad
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Taher Mohammadian
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Davoud Esmaeili
- Department of Microbiology & Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Zhang X, Pei Z, Ren J, Shi J, Lu W, Shui Y, Ma W, Zhang L, Ding H, Zhang Y, Tian J, Wang Z. PA-MSHA improves prognosis of patients undergoing radical cystectomy: a retrospective cohort study using inverse probability of treatment weighting. Front Immunol 2024; 15:1403302. [PMID: 38983861 PMCID: PMC11231181 DOI: 10.3389/fimmu.2024.1403302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Objective To observe the effect of Pseudomonas aeruginosa mannose-sensitive hemagglutinin (PA-MSHA) on the prognosis and the incidence of lymphatic leakage in patients undergoing radical cystectomy (RC). Method A total of 129 patients who underwent RC in Lanzhou University Second Hospital from 2013 to 2022 were enrolled in this study. They were divided into 43 patients treated with PA-MSHA and 86 patients in the control group. Inverse probability of treatment weighting (IPTW) was applied to reduce potential selection bias. Kaplan-Meier method and Cox regression analysis were used to analyze the effect of PA-MSHA on the survival of patients and the incidence of postoperative lymphatic leakage. Results The PA-MSHA group exhibited improved overall survival (OS) and cancer-specific survival (CSS) rates compared to the control group. The 3-year and 5-year overall survival (OS) rates for the PA-MSHA group were 69.1% and 53.2%, respectively, compared to 55.6% and 45.3% for the control group (Log-rank=3.218, P=0.072). The 3-year and 5-year cancer-specific survival (CSS) rates for the PA-MSHA group were 73.3% and 56.5%, respectively, compared to 58.0% and 47.3% for the control group (Log-rank=3.218, P=0.072). Additionally, the 3-year and 5-year progression-free survival (PFS) rates for the PA-MSHA group were 74.4% and 56.8%, respectively, compared to 57.1% and 52.2% for the control group (Log-rank=2.016, P=0.156). Multivariate Cox regression analysis indicates that lymph node metastasis and distant metastasis are poor prognostic factors for patients, while the use of PA-MSHA can improve patients' OS (HR: 0.547, 95%CI: 0.304-0.983, P=0.044), PFS (HR: 0.469, 95%CI: 0.229-0.959, P=0.038) and CSS (HR: 0.484, 95%CI: 0.257-0.908, P=0.024). The same trend was observed in the cohort After IPTW adjustment. Although there was no significant difference in the incidence of postoperative lymphatic leakage [18.6% (8/35) vs. 15.1% (84.9%), P=0.613] and pelvic drainage volume [470 (440) ml vs. 462.5 (430) ml, P=0.814] between PA-MSHA group and control group, PA-MSHA could shorten the median retention time of drainage tube (7.0 d vs 9.0 d) (P=0.021). Conclusion PA-MSHA may improve radical cystectomy in patients with OS, PFS, and CSS, shorten the pelvic drainage tube retention time.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zixu Pei
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Jinglei Ren
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Jing Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wenjun Lu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Shui
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Wentao Ma
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Luyang Zhang
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hui Ding
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yunxin Zhang
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Junqiang Tian
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhiping Wang
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Constantin M, Chifiriuc MC, Mihaescu G, Corcionivoschi N, Burlibasa L, Bleotu C, Tudorache S, Mitache MM, Filip R, Munteanu SG, Gradisteanu Pircalabioru G. Microbiome and cancer: from mechanistic implications in disease progression and treatment to development of novel antitumoral strategies. Front Immunol 2024; 15:1373504. [PMID: 38715617 PMCID: PMC11074409 DOI: 10.3389/fimmu.2024.1373504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/23/2024] Open
Abstract
Cancer is a very aggressive disease and one of mankind's most important health problems, causing numerous deaths each year. Its etiology is complex, including genetic, gender-related, infectious diseases, dysbiosis, immunological imbalances, lifestyle, including dietary factors, pollution etc. Cancer patients also become immunosuppressed, frequently as side effects of chemotherapy and radiotherapy, and prone to infections, which further promote the proliferation of tumor cells. In recent decades, the role and importance of the microbiota in cancer has become a hot spot in human biology research, bringing together oncology and human microbiology. In addition to their roles in the etiology of different cancers, microorganisms interact with tumor cells and may be involved in modulating their response to treatment and in the toxicity of anti-tumor therapies. In this review, we present an update on the roles of microbiota in cancer with a focus on interference with anticancer treatments and anticancer potential.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology, Bucharest of Romanian Academy, Bucharest, Romania
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
- Romanian Academy of Scientists, Bucharest, Romania
| | | | - Coralia Bleotu
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Sorin Tudorache
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Suceava Emergency County Hospital, Suceava, Romania
| | | | - Gratiela Gradisteanu Pircalabioru
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Romanian Academy of Scientists, Bucharest, Romania
- eBio-Hub Research Centre, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| |
Collapse
|
5
|
Bozic D, Živanović J, Živančević K, Baralić K, Đukić-Ćosić D. Trends in Anti-Tumor Effects of Pseudomonas aeruginosa Mannose-Sensitive-Hemagglutinin (PA-MSHA): An Overview of Positive and Negative Effects. Cancers (Basel) 2024; 16:524. [PMID: 38339275 PMCID: PMC10854591 DOI: 10.3390/cancers16030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer is a leading cause of death worldwide, for which finding the optimal therapy remains an ongoing challenge. Drug resistance, toxic side effects, and a lack of specificity pose significant difficulties in traditional cancer treatments, leading to suboptimal clinical outcomes and high mortality rates among cancer patients. The need for alternative therapies is crucial, especially for those resistant to conventional methods like chemotherapy and radiotherapy or for patients where surgery is not possible. Over the past decade, a novel approach known as bacteria-mediated cancer therapy has emerged, offering potential solutions to the limitations of conventional treatments. An increasing number of in vitro and in vivo studies suggest that the subtype of highly virulent Pseudomonas aeruginosa bacterium called Pseudomonas aeruginosa mannose-sensitive-hemagglutinin (PA-MSHA) can successfully inhibit the progression of various cancer types, such as breast, lung, and bladder cancer, as well as hepatocellular carcinoma. PA-MSHA inhibits the growth and proliferation of tumor cells and induces their apoptosis. Proposed mechanisms of action include cell-cycle arrest and activation of pro-apoptotic pathways regulated by caspase-9 and caspase-3. Moreover, clinical studies have shown that PA-MSHA improved the effectiveness of chemotherapy and promoted the activation of the immune response in cancer patients without causing severe side effects. Reported adverse reactions were fever, skin irritation, and pain, attributed to the overactivation of the immune response. This review aims to summarize the current knowledge obtained from in vitro, in vivo, and clinical studies available at PubMed, Google Scholar, and ClinicalTrials.gov regarding the use of PA-MSHA in cancer treatment in order to further elucidate its pharmacological and toxicological properties.
Collapse
Affiliation(s)
- Dragica Bozic
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
| | - Jovana Živanović
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
| | - Katarina Živančević
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
| | - Danijela Đukić-Ćosić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
- Center for Toxicological Risk Assessment, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
6
|
Zheng X, Fang Y, Zou X, Wang X, Li Z. Therapeutic potential of Pseudomonas aeruginosa-mannose sensitive hemagglutinin (PA-MSHA) in cancer treatment. Microb Pathog 2023; 185:106422. [PMID: 37871855 DOI: 10.1016/j.micpath.2023.106422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacteria and it has been demonstrated that immunization with the outer membrane proteins of the microbe produces most of the relevant human antibodies. The peritrichous P. aeruginosa strain with MSHA fimbriae (PA-MSHA strain) has been found to be effective in the inhibition of growth and proliferation of different types of cancer cells. Furthermore, it has been revealed that PA-MSHA exhibits cytotoxicity because of the presence of MSHA and therefore it possesses anti-carcinogenic ability against different types of human cancer cell lines including, gastric, breast, hepatocarcinoma and nasopharyngeal cells. Studies have revealed that PA-MSHA exhibits therapeutic potential against cancer growth by induction of apoptosis, arrest of cell cycle, activating NF-κB/TLR5 pathway, etc. In China, PA-MSHA injections have been approved for the treatment of malignant tumor patients from very long back. The present review article demonstrates the therapeutic potential of PA-MSHA against various types of human cancers and explains the underlying mechanism.
Collapse
Affiliation(s)
- Xun Zheng
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Yiqiao Fang
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Xiuhe Zou
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Xiaofei Wang
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Zhihui Li
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Sharma S, Sharma H, Gogoi H. Bacterial immunotherapy: is it a weapon in our arsenal in the fight against cancer? Front Immunol 2023; 14:1277677. [PMID: 38090593 PMCID: PMC10711065 DOI: 10.3389/fimmu.2023.1277677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Advances in understanding the genetic basis of cancer have driven alternative treatment approaches. Recent findings have demonstrated the potential of bacteria and it's components to serve as robust theranostic agents for cancer eradication. Compared to traditional cancer therapies like surgery, chemotherapy, radiotherapy, bacteria mediated tumor therapy has exhibited superior cancer suppressing property which is attributed a lot to it's tumor proliferating and accumulating characteristics. Genetically modified bacteria has reduced inherent toxicity and enhanced specificity towards tumor microenvironment. This anti- tumor activity of bacteria is attributed to its toxins and other active components from the cell membrane, cell wall and spores. Furthermore, bacterial genes can be regulated to express and deliver cytokines, antibodies and cancer therapeutics. Although there is less clinical data available, the pre- clinical research clearly indicates the feasibility and potential of bacteria- mediated cancer therapy.
Collapse
Affiliation(s)
- Shubhra Sharma
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
| | - Himani Sharma
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
| | - Himanshu Gogoi
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
- Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| |
Collapse
|
8
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
9
|
Yaghoubi A, Ghazvini K, Hasanian SM, Avan A, Soleimanpour S, Khazaei M. Bacterial Peptides and Bacteriocins as a Promising Therapy for Solid Tumor. Curr Pharm Des 2022; 28:3105-3113. [PMID: 36154595 DOI: 10.2174/1381612828666220921150037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/24/2022] [Indexed: 01/28/2023]
Abstract
The conventional treatment is faced with limitations in treating solid tumors due to their specific pathophysiology. Several novel therapeutics have been introduced in recent decades to treat solid tumors. Among these new methods, tumor therapy using bacterial products like bacteriocins and peptides has been of great interest due to their unique characteristics and advantages of them in comparison to the conventional treatment, including that they can precisely target tumor cells, selective toxicity for tumor cells, low side effect on normal cells, toxicity activity for MDR cancer cells, used as the target delivery vehicles and enhancing drug delivery. Moreover, their small size and low molecular weight have made them easy to synthesize and modify. Furthermore, in recent years, genetic engineering has expanded the therapeutic ability of peptides to treat solid tumors, which results in overcoming the peptide drawbacks. The present review mainly focuses on the new advances in applying bacterial peptides and bacteriocins in treating human solid tumors.
Collapse
Affiliation(s)
- Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hasanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical, Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Babakanrad E, Mohammadian T, Esmaeili D, Behzadi P. Efficacy of the Apoptotic Activity of CpsA-CpsC-L-ACAN Fusion Peptide against HeLa Cell Line. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2022. [DOI: 10.3103/s089141682203003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Pang Z, Gu MD, Tang T. Pseudomonas aeruginosa in Cancer Therapy: Current Knowledge, Challenges and Future Perspectives. Front Oncol 2022; 12:891187. [PMID: 35574361 PMCID: PMC9095937 DOI: 10.3389/fonc.2022.891187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
Drug resistance, undesirable toxicity and lack of selectivity are the major challenges of conventional cancer therapies, which cause poor clinical outcomes and high mortality in many cancer patients. Development of alternative cancer therapeutics are highly required for the patients who are resistant to the conventional cancer therapies, including radiotherapy and chemotherapy. The success of a new cancer therapy depends on its high specificity to cancer cells and low toxicity to normal cells. Utilization of bacteria has emerged as a promising strategy for cancer treatment. Attenuated or genetically modified bacteria were used to inhibit tumor growth, modulate host immunity, or deliver anti-tumor agents. The bacteria-derived immunotoxins were capable of destructing tumors with high specificity. These bacteria-based strategies for cancer treatment have shown potent anti-tumor effects both in vivo and in vitro, and some of them have proceeded to clinical trials. Pseudomonas aeruginosa, a Gram-negative bacterial pathogen, is one of the common bacteria used in development of bacteria-based cancer therapy, particularly known for the Pseudomonas exotoxin A-based immunotoxins, which have shown remarkable anti-tumor efficacy and specificity. This review concisely summarizes the current knowledge regarding the utilization of P. aeruginosa in cancer treatment, and discusses the challenges and future perspectives of the P. aeruginosa-based therapeutic strategies.
Collapse
Affiliation(s)
- Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng-Di Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Tang
- School of Art & Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
12
|
Marzhoseyni Z, Shojaie L, Tabatabaei SA, Movahedpour A, Safari M, Esmaeili D, Mahjoubin-Tehran M, Jalili A, Morshedi K, Khan H, Okhravi R, Hamblin MR, Mirzaei H. Streptococcal bacterial components in cancer therapy. Cancer Gene Ther 2022; 29:141-155. [PMID: 33753868 DOI: 10.1038/s41417-021-00308-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 02/01/2023]
Abstract
The incidence rate of cancer is steadily increasing all around the world, and there is an urgent need to develop novel and more effective treatment strategies. Recently, bacterial therapy has been investigated as a new approach to target cancer, and is becoming a serious option. Streptococcus strains are among the most common and well-studied virulent bacteria that cause a variety of human infections. Everyone has experienced a sore throat during their lifetime, or has been asymptomatically colonized by streptococci. The ability of Streptococcus bacteria to fight cancer was discovered more than 100 years ago, and over the years has undergone clinical trials, but the mechanism is not yet completely understood. Recently, several animal models and human clinical trials have been reported. Streptococcal strains can have an intrinsic anti-tumor activity, or can activate the host immune system to fight the tumor. Bacteria can selectively accumulate and proliferate in the hypoxic regions of solid tumors. Moreover, the bacteria can be genetically engineered to secrete toxins or enzymes that can specifically attack the tumors.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Seyed Alireza Tabatabaei
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Safari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems Biology and Poisonings Institute and Department of Microbiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Jalili
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Ranaa Okhravi
- Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Khatun S, Appidi T, Rengan AK. The role played by bacterial infections in the onset and metastasis of cancer. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100078. [PMID: 34841367 PMCID: PMC8610348 DOI: 10.1016/j.crmicr.2021.100078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 02/09/2023] Open
Abstract
Understanding various responses of cells towards change in their external environment, presence of other species and is important in identifying and correlating the mechanisms leading to malignant transformations and cancer development. Although uncovering and comprehending the association between bacteria and cancer is highly challenging, it promises excellent perspectives and approaches for successful cancer therapy. This review introduces various bacterial species, their virulence factors, and their role in cell transformations leading to cancer (particularly gastric, oral, colon, and breast cancer). Bacterial dysbiosis permutates host cells, causes inflammation, and results in tumorigenesis. This review explored bacterial-mediated host cell transformation causing chronic inflammation, immune receptor hyperactivation/absconding immune recognition, and genomic instability. Bacterial infections downregulate E-cadherin, leading to loosening of epithelial tight junction polarity and triggers metastasis. In addition to understanding the role of bacterial infections in cancer development, we have also reviewed the application of bacteria for cancer therapy. The emergence of bacteriotherapy combined with conventional therapies led to new and effective ways of overcoming challenges associated with available treatments. This review discusses the application of bacterial minicells, microswimmers, and outer cell membrane vesicles (OMV) for drug delivery applications.
Collapse
Affiliation(s)
- Sajmina Khatun
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Tejaswini Appidi
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
14
|
Yaghoubi A, Asgharzadeh F, Movaqar A, Ghazvini K, Hassanian SM, Avan A, Khazaei M, Soleimanpour S. Anticancer activity of Helicobacter pylori ribosomal protein (HPRP) with iRGD in treatment of colon cancer. J Cancer Res Clin Oncol 2021; 147:2851-2865. [PMID: 34117917 DOI: 10.1007/s00432-021-03683-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/05/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE As the conventional therapeutic approaches were not completely successful in the treatment of colon cancer, there is still a need for finding the most efficient therapeutic agents. Here we investigated the anticancer activity of HPRP-A1 that was derived from the N-terminal region of Helicobacter pylori ribosomal protein L1 (RpL1) alone or in combination with tumor-homing peptide iRGD and 5-Fluorouracil (5FU) on colon cancer cell lines (CT26 and HT29) and isograft models of colon cancer. METHOD We assessed the tumor growth inhibitory activity of HPRP-A1 with or without iRGD and 5FU on colon cancer in vitro and in vivo. In the in vitro part, we investigate the effect of HPRP-A1 alone and in combination with iRGD/5FU. RESULTS Our results demonstrated that co-administration of HPRP-A1 with iRGD increased the apoptosis, while these two peptides in combination with 5FU increased the intracellular level of p53 that upregulate the pro-apoptotic gene BAX and downregulate the anti-apoptotic gene BCL2. HPRP-A1 blocks the cell cycle progression in G0/G1. Co-administration of two peptides significantly reduced the size and weight of the tumors, while the group that received 5FU in combination with the peptides increased the necrotic and decrease the fibrotic area significantly in the tumor tissues, which also disrupt the oxidant/antioxidant balance. CONCLUSIONS Our results indicated that HPRP-A1 could be considered an effective agent toward colon cancer in vitro and in vivo with the ability to enhance the effects of conventional chemotherapy agent 5FU.
Collapse
Affiliation(s)
- Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aref Movaqar
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Mughal MJ, Kwok HF. Multidimensional role of bacteria in cancer: Mechanisms insight, diagnostic, preventive and therapeutic potential. Semin Cancer Biol 2021; 86:1026-1044. [PMID: 34119644 DOI: 10.1016/j.semcancer.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
The active role of bacteria in oncogenesis has long been a topic of debate. Although, it was speculated to be a transmissible cause of cancer as early as the 16th-century, yet the idea about the direct involvement of bacteria in cancer development has only been explored in recent decades. More recently, several studies have uncovered the mechanisms behind the carcinogenic potential of bacteria which are inflammation, immune evasion, pro-carcinogenic metabolite production, DNA damage and genomic instability. On the other side, the recent development on the understanding of tumor microenvironment and technological advancements has turned this enemy into an ally. Studies using bacteria for cancer treatment and detection have shown noticeable effects. Therapeutic abilities of bioengineered live bacteria such as high specificity, selective cytotoxicity to cancer cells, responsiveness to external signals and control after ingestion have helped to overcome the challenges faced by conventional cancer therapies and highlighted the bacterial based therapy as an ideal approach for cancer treatment. In this review, we have made an effort to compile substantial evidence to support the multidimensional role of bacteria in cancer. We have discussed the multifaceted role of bacteria in cancer by highlighting the wide impact of bacteria on different cancer types, their mechanisms of actions in inducing carcinogenicity, followed by the diagnostic and therapeutic potential of bacteria in cancers. Moreover, we have also highlighted the existing gaps in the knowledge of the association between bacteria and cancer as well as the limitation and advantage of bacteria-based therapies in cancer. A better understanding of these multidimensional roles of bacteria in cancer can open up the new doorways to develop early detection strategies, prevent cancer, and develop therapeutic tactics to cure this devastating disease.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MOE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
16
|
Soleimanpour S, Hasanian SM, Avan A, Yaghoubi A, Khazaei M. Bacteriotherapy in gastrointestinal cancer. Life Sci 2020; 254:117754. [PMID: 32389833 DOI: 10.1016/j.lfs.2020.117754] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 01/13/2023]
Abstract
The most prevalent gastrointestinal (GI) cancers include colorectal cancer, stomach cancer, and liver cancer, known as the most common causes of cancer-related death in both men and women populations in the world. Traditional therapeutic approaches, including surgery, radiotherapy, and chemotherapy have failed in the effective treatment of cancer. Therefore, there is an urgent need for finding new effective anticancer agents. The available evidence and also the promising results of using bacteria as the anticancer agents on numerous cancer cell lines have attracted the attention of scientists for the therapeutic role of bacteria in the field of cancer therapy. Moreover, several studies on the bacteriotherapy agents have used genetic engineering to overcome the challenges and enhance the efficacy with the least drawbacks. Numerous bacterial species that can specifically target and internalize into the tumor cells are used live, attenuated, or genetically as compared to selectively consider the hypoxic condition of tumor, which results in the tumor suppression. The present study is a comprehensive review of the current literature on the use of bacteria and their substances such as bacteriocins and toxins in the treatment of different types of gastrointestinal cancers.
Collapse
Affiliation(s)
- Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hasanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Bacteria and cancer: Different sides of the same coin. Life Sci 2020; 246:117398. [PMID: 32032647 DOI: 10.1016/j.lfs.2020.117398] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 02/01/2020] [Indexed: 12/14/2022]
Abstract
Conventional cancer therapies such as chemotherapy, radiation therapy, and immunotherapy due to the complexity of cancer have been unsuccessful in the complete eradication of tumor cells. Thus, there is a need for new therapeutic strategies toward cancer. Recently, the therapeutic role of bacteria in different fields of medicine and pharmaceutical research has attracted attention in recent decades. Although several bacteria are notorious as cancer-causing agents, recent research revealed intriguing results suggesting the bacterial potential in cancer therapy. Thus, bacterial cancer therapy is an alternative anticancer approach that has promising results on tumor cells in-vivo. Moreover, with the aid of genetic engineering, some natural or genetically modified bacterial strains can directly target hypoxic regions of tumors and secrete therapeutic molecules leading to cancer cell death. Additionally, stimulation of immune cells by bacteria, bacterial cancer DNA vaccine and antitumor bacterial metabolites are other therapeutic applications of bacteria in cancer therapy. The present study is a comprehensive review of different aspects of bacterial cancer therapy alone and in combination with conventional methods, for improving cancer therapy.
Collapse
|
18
|
Song S, Vuai MS, Zhong M. The role of bacteria in cancer therapy - enemies in the past, but allies at present. Infect Agent Cancer 2018; 13:9. [PMID: 29568324 PMCID: PMC5856380 DOI: 10.1186/s13027-018-0180-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/15/2018] [Indexed: 12/20/2022] Open
Abstract
In recent decades, bacteria’s therapeutic role has aroused attention in medicinal and pharmaceutical research. While bacteria are considered among the primary agents for causing cancer, recent research has shown intriguing results suggesting that bacteria can be effective agents for cancer treatment – they are the perfect vessels for targeted cancer therapy. Several bacterial strains/species have been discovered to possess inherent oncolytic potentials to invade and colonize solid tumors in vivo. The therapeutic strategy of using bacteria for treating cancer is considered to be effective; however, the severe side effects encountered during the treatment resulted in the abandonment of the therapy. State-of-the-art genetic engineering has been recently applied to bacteria therapy and resulted in a greater efficacy with minimum side effects. In addition, the anti-cancer potential of tumor-targeting bacteria through oral administration circumvents the use of the intravenous route and the associated adverse effects. This review aims to provide a comprehensive summary of the latest literature on the role of bacteria in cancer treatment.
Collapse
Affiliation(s)
- Shiyu Song
- 1Department of Medical Microbiology, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044 China
| | - Miza S Vuai
- 1Department of Medical Microbiology, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044 China.,2Department of Natural Science, State University of Zanzibar (SUZA), P.O Box 146, Zanzibar, Tanzania
| | - Mintao Zhong
- 1Department of Medical Microbiology, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044 China
| |
Collapse
|