1
|
Holder PG, Lim SA, Huang CS, Sharma P, Dagdas YS, Bulutoglu B, Sockolosky JT. Engineering interferons and interleukins for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114112. [PMID: 35085624 DOI: 10.1016/j.addr.2022.114112] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Cytokines are a class of potent immunoregulatory proteins that are secreted in response to various stimuli and act locally to regulate many aspects of human physiology and disease. Cytokines play important roles in cancer initiation, progression, and elimination, and thus, there is a long clinical history associated with the use of recombinant cytokines to treat cancer. However, the use of cytokines as therapeutics has been limited by cytokine pleiotropy, complex biology, poor drug-like properties, and severe dose-limiting toxicities. Nevertheless, cytokines are crucial mediators of innate and adaptive antitumor immunity and have the potential to enhance immunotherapeutic approaches to treat cancer. Development of immune checkpoint inhibitors and combination immunotherapies has reinvigorated interest in cytokines as therapeutics, and a variety of engineering approaches are emerging to improve the safety and effectiveness of cytokine immunotherapy. In this review we highlight recent advances in cytokine biology and engineering for cancer immunotherapy.
Collapse
|
2
|
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, Zaharoff DA. Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol 2020; 11:575597. [PMID: 33178203 PMCID: PMC7593768 DOI: 10.3389/fimmu.2020.575597] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Interleukin-12 (IL-12) is a potent, pro-inflammatory type 1 cytokine that has long been studied as a potential immunotherapy for cancer. Unfortunately, IL-12's remarkable antitumor efficacy in preclinical models has yet to be replicated in humans. Early clinical trials in the mid-1990's showed that systemic delivery of IL-12 incurred dose-limiting toxicities. Nevertheless, IL-12's pleiotropic activity, i.e., its ability to engage multiple effector mechanisms and reverse tumor-induced immunosuppression, continues to entice cancer researchers. The development of strategies which maximize IL-12 delivery to the tumor microenvironment while minimizing systemic exposure are of increasing interest. Diverse IL-12 delivery systems, from immunocytokine fusions to polymeric nanoparticles, have demonstrated robust antitumor immunity with reduced adverse events in preclinical studies. Several localized IL-12 delivery approaches have recently reached the clinical stage with several more at the precipice of translation. Taken together, localized delivery systems are supporting an IL-12 renaissance which may finally allow this potent cytokine to fulfill its considerable clinical potential. This review begins with a brief historical account of cytokine monotherapies and describes how IL-12 went from promising new cure to ostracized black sheep following multiple on-study deaths. The bulk of this comprehensive review focuses on developments in diverse localized delivery strategies for IL-12-based cancer immunotherapies. Advantages and limitations of different delivery technologies are highlighted. Finally, perspectives on how IL-12-based immunotherapies may be utilized for widespread clinical application in the very near future are offered.
Collapse
Affiliation(s)
- Khue G Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Maura R Vrabel
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Siena M Mantooth
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Jared J Hopkins
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Ethan S Wagner
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Taylor A Gabaldon
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
3
|
Huang Y, Huang Y, He J, Wang H, Luo Y, Li Y, Liu J, Zhong L, Zhao Y. PEGylated immunoliposome-loaded endoglin single-chain antibody enhances anti-tumor capacity of porcine α1,3GT gene. Biomaterials 2019; 217:119231. [PMID: 31254933 DOI: 10.1016/j.biomaterials.2019.119231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
Abstract
Tumor could not be completely removed due to the absence of immune storm against tumor. The porcine α1,3 galactosyltransferase (α1,3 GT) induce the hyperacute rejection by synthesizing Galα1-3Galβ1-(3)4GlcNAc-R (αGal) on the surface of graft endothelial cells (ECs) during xeno-transplantation. This study aimed to develop anti-endoglin single-chain Fv fragments (ENG-scFv) conjugated PEGylated immunoliposomes (iLPs) to induce immune storm against tumor. Immune fluorescence was performed to detect the binding of ENG-scFv to human ENG, the endosomal/lysosomal escape of ENG-scFv-iLPs/α1,3 GT, and αGal expression in hENG-HEK293 cells. In vitro MTT assay was performed to measure ENG-scFv-iLPs/α1,3 GT cytotoxicity. NOD/SCID mouse born A549 tumor model was used to evaluate the therapeutic potency of ENG-scFv-iLPs/α1,3 GT. ENG-scFv-iLPs enabled efficient targeting delivery of α1,3 GT plasmid to ENG + tumors neovascular endothelial cells (TnECs), promoted endosomal/lysosomal escape due to the pH-sensitive ability, then synthesized carbohydrate epitope αGal on the surface of these cells to achieve the purpose of destroying the tumor. The mechanism of uptake for nanoparticles was energy driven, the clathrin-mediated endocytosis was the main endocytic pathway of the ENG-mAb-iLPs/α1,3 GT and lipid-raft-mediated of the ENG-scFv-iLPs/α1,3 GT, and macropinocytosis was also involved in intracellular entry. The inhibition of tumor angiogenesis and proliferation by ENG-scFv-iLPs/α1,3 GT was closely related to down-regulation of VEGF. Our findings establish an alternative therapeutic paradigm for scFv-conjugated nanoparticles to induce tumor cell apoptosis and inhibit tumor growth early. Such iLPs nanocarrier could efficiently release α1,3 GT to their distinct sites of action, where the endoglin + tumor neovascular endothelial cells (ENG + TnECs) exist, in a site-specific manner. Therefore, we believe that these scFv-targeted core-shell immunocomplexes are an important potential α1,3 GT delivery system for various solid tumor-targeted therapy.
Collapse
Affiliation(s)
- Yingying Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Huiling Wang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yiqun Luo
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yanmei Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Junjie Liu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|