1
|
Williams BA, Law A, Hunyadkurti J, Desilets S, Leyton JV, Keating A. Antibody Therapies for Acute Myeloid Leukemia: Unconjugated, Toxin-Conjugated, Radio-Conjugated and Multivalent Formats. J Clin Med 2019; 8:E1261. [PMID: 31434267 PMCID: PMC6723634 DOI: 10.3390/jcm8081261] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
In recent decades, therapy for acute myeloid leukemia (AML) has remained relatively unchanged, with chemotherapy regimens primarily consisting of an induction regimen based on a daunorubicin and cytarabine backbone, followed by consolidation chemotherapy. Patients who are relapsed or refractory can be treated with allogeneic hematopoietic stem-cell transplantation with modest benefits to event-free and overall survival. Other modalities of immunotherapy include antibody therapies, which hold considerable promise and can be categorized into unconjugated classical antibodies, multivalent recombinant antibodies (bi-, tri- and quad-specific), toxin-conjugated antibodies and radio-conjugated antibodies. While unconjugated antibodies can facilitate Natural Killer (NK) cell antibody-dependent cell-mediated cytotoxicity (ADCC), bi- and tri-specific antibodies can engage either NK cells or T-cells to redirect cytotoxicity against AML targets in a highly efficient manner, similarly to classic ADCC. Finally, toxin-conjugated and radio-conjugated antibodies can increase the potency of antibody therapies. Several AML tumour-associated antigens are at the forefront of targeted therapy development, which include CD33, CD123, CD13, CLL-1 and CD38 and which may be present on both AML blasts and leukemic stem cells. This review focused on antibody therapies for AML, including pre-clinical studies of these agents and those that are either entering or have been tested in early phase clinical trials. Antibodies for checkpoint inhibition and microenvironment targeting in AML were excluded from this review.
Collapse
Affiliation(s)
- Brent A Williams
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada.
| | - Arjun Law
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | - Judit Hunyadkurti
- Département de medécine nucléaire et radiobiology, Faculté de medécine et des sciences de la santé, Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | | - Jeffrey V Leyton
- Département de medécine nucléaire et radiobiology, Faculté de medécine et des sciences de la santé, Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
- Institute de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Armand Keating
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
2
|
Osteoactivin (GPNMB) ectodomain protein promotes growth and invasive behavior of human lung cancer cells. Oncotarget 2017; 7:13932-44. [PMID: 26883195 PMCID: PMC4924689 DOI: 10.18632/oncotarget.7323] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/23/2016] [Indexed: 12/21/2022] Open
Abstract
The potential application of GPNMB/OA as a therapeutic target for lung cancer will require a greater understanding of the impact of GPNMB/OA ectodomain (ECD) protein shedding into tumor tissues. Thus, in this work we characterized GPNMB/OA expression and extent of shedding of its ECD protein while evaluating the impact on lung cancer progression using three non-small cell lung cancer (NSCLC) cell lines: A549, SK-MES-1 and calu-6. We observed a direct correlation (R2 = 0.89) between GPNMB/OA expression on NSCLC cells and the extent of GPNMB/OA ECD protein shedding. Meanwhile, siRNA-mediated knockdown of GPNMB/OA in cancer cells significantly reduced GPNMB/OA ECD protein shedding, migration, invasion and adhesion to extracellular matrix materials. Also, exogenous treatment of cancer cells (expressing low GPNMB/OA) with recombinant GPNMB/OA protein (rOA) significantly facilitated cell invasion and migration, but the effects of rOA was negated by inclusion of a selective RGD peptide. Further studies in athymic (nu/nu) mice-bearing calu-6 showed that intratumoral supplementation with rOA effectively facilitated in vivo tumor growth as characterized by a high number of proliferating cells (Ki67 staining) coupled with a low number of apoptotic cells. Taken together, our results accentuate the relevance of GPNMB/OA ECD protein shedding to progression of lung cancer. Thus, strategies that suppress GPNMB/OA expression on lung cancer cells as well as negate shedding of GPNMB/OA ECD protein are worthy of consideration in lung cancer therapeutics.
Collapse
|
3
|
Ahmad A. Epigenetics in Personalized Management of Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 890:111-22. [PMID: 26703801 DOI: 10.1007/978-3-319-24932-2_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In last several years, the focus on the origin and progression of human cancers has shifted from genetic to epigenetic regulation, with particular attention to methylation and acetylation events that have profound effect on the eventual expression of oncogenes and the suppression of tumor suppressors. A few drugs targeting these epigenetic changes have already been approved for treatment, albeit not for lung cancer. With the recent advances in the push towards personalized therapy, questions have been asked about the possible targeting of epigenetic events for personalized lung cancer therapy. Some progress has been made but a lot needs to be done. In this chapter, a succinct review of these topics is provided.
Collapse
Affiliation(s)
- Aamir Ahmad
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|