1
|
Akuwudike P, López-Riego M, Marczyk M, Kocibalova Z, Brückner F, Polańska J, Wojcik A, Lundholm L. Short- and long-term effects of radiation exposure at low dose and low dose rate in normal human VH10 fibroblasts. Front Public Health 2023; 11:1297942. [PMID: 38162630 PMCID: PMC10755029 DOI: 10.3389/fpubh.2023.1297942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Experimental studies complement epidemiological data on the biological effects of low doses and dose rates of ionizing radiation and help in determining the dose and dose rate effectiveness factor. Methods Human VH10 skin fibroblasts exposed to 25, 50, and 100 mGy of 137Cs gamma radiation at 1.6, 8, 12 mGy/h, and at a high dose rate of 23.4 Gy/h, were analyzed for radiation-induced short- and long-term effects. Two sample cohorts, i.e., discovery (n = 30) and validation (n = 12), were subjected to RNA sequencing. The pool of the results from those six experiments with shared conditions (1.6 mGy/h; 24 h), together with an earlier time point (0 h), constituted a third cohort (n = 12). Results The 100 mGy-exposed cells at all abovementioned dose rates, harvested at 0/24 h and 21 days after exposure, showed no strong gene expression changes. DMXL2, involved in the regulation of the NOTCH signaling pathway, presented a consistent upregulation among both the discovery and validation cohorts, and was validated by qPCR. Gene set enrichment analysis revealed that the NOTCH pathway was upregulated in the pooled cohort (p = 0.76, normalized enrichment score (NES) = 0.86). Apart from upregulated apical junction and downregulated DNA repair, few pathways were consistently changed across exposed cohorts. Concurringly, cell viability assays, performed 1, 3, and 6 days post irradiation, and colony forming assay, seeded just after exposure, did not reveal any statistically significant early effects on cell growth or survival patterns. Tendencies of increased viability (day 6) and reduced colony size (day 21) were observed at 12 mGy/h and 23.4 Gy/min. Furthermore, no long-term changes were observed in cell growth curves generated up to 70 days after exposure. Discussion In conclusion, low doses of gamma radiation given at low dose rates had no strong cytotoxic effects on radioresistant VH10 cells.
Collapse
Affiliation(s)
- Pamela Akuwudike
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Milagrosa López-Riego
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Michal Marczyk
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, United States
| | - Zuzana Kocibalova
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Fabian Brückner
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Joanna Polańska
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Grandt CL, Brackmann LK, Poplawski A, Schwarz H, Marini F, Hankeln T, Galetzka D, Zahnreich S, Mirsch J, Spix C, Blettner M, Schmidberger H, Marron M. Identification of lncRNAs involved in response to ionizing radiation in fibroblasts of long-term survivors of childhood cancer and cancer-free controls. Front Oncol 2023; 13:1158176. [PMID: 37182169 PMCID: PMC10174438 DOI: 10.3389/fonc.2023.1158176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Long non-coding ribonucleic acids (lncRNAs) are involved in the cellular damage response following exposure to ionizing radiation as applied in radiotherapy. However, the role of lncRNAs in radiation response concerning intrinsic susceptibility to late effects of radiation exposure has not been examined in general or in long-term survivors of childhood cancer with and without potentially radiotherapy-related second primary cancers, in particular. Methods Primary skin fibroblasts (n=52 each) of long-term childhood cancer survivors with a first primary cancer only (N1), at least one second primary neoplasm (N2+), as well as tumor-free controls (N0) from the KiKme case-control study were matched by sex, age, and additionally by year of diagnosis and entity of the first primary cancer. Fibroblasts were exposed to 0.05 and 2 Gray (Gy) X-rays. Differentially expressed lncRNAs were identified with and without interaction terms for donor group and dose. Weighted co-expression networks of lncRNA and mRNA were constructed using WGCNA. Resulting gene sets (modules) were correlated to the radiation doses and analyzed for biological function. Results After irradiation with 0.05Gy, few lncRNAs were differentially expressed (N0: AC004801.4; N1: PCCA-DT, AF129075.3, LINC00691, AL158206.1; N2+: LINC02315). In reaction to 2 Gy, the number of differentially expressed lncRNAs was higher (N0: 152, N1: 169, N2+: 146). After 2 Gy, AL109976.1 and AL158206.1 were prominently upregulated in all donor groups. The co-expression analysis identified two modules containing lncRNAs that were associated with 2 Gy (module1: 102 mRNAs and 4 lncRNAs: AL158206.1, AL109976.1, AC092171.5, TYMSOS, associated with p53-mediated reaction to DNA damage; module2: 390 mRNAs, 7 lncRNAs: AC004943.2, AC012073.1, AC026401.3, AC092718.4, MIR31HG, STXBP5-AS1, TMPO-AS1, associated with cell cycle regulation). Discussion For the first time, we identified the lncRNAs AL158206.1 and AL109976.1 as involved in the radiation response in primary fibroblasts by differential expression analysis. The co-expression analysis revealed a role of these lncRNAs in the DNA damage response and cell cycle regulation post-IR. These transcripts may be targets in cancer therapy against radiosensitivity, as well as provide grounds for the identification of at-risk patients for immediate adverse reactions in healthy tissues. With this work we deliver a broad basis and new leads for the examination of lncRNAs in the radiation response.
Collapse
Affiliation(s)
- Caine Lucas Grandt
- Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
- Faculty of Human and Health Sciences, University of Bremen, Bremen, Germany
- *Correspondence: Caine Lucas Grandt,
| | - Lara Kim Brackmann
- Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heike Schwarz
- Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Claudia Spix
- Division of Childhood Cancer Epidemiology, German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| |
Collapse
|
3
|
Putt KS, Du Y, Fu H, Zhang ZY. High-throughput screening strategies for space-based radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:88-104. [PMID: 36336374 DOI: 10.1016/j.lssr.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
As humanity begins to venture further into space, approaches to better protect astronauts from the hazards found in space need to be developed. One particular hazard of concern is the complex radiation that is ever present in deep space. Currently, it is unlikely enough spacecraft shielding could be launched that would provide adequate protection to astronauts during long-duration missions such as a journey to Mars and back. In an effort to identify other means of protection, prophylactic radioprotective drugs have been proposed as a potential means to reduce the biological damage caused by this radiation. Unfortunately, few radioprotectors have been approved by the FDA for usage and for those that have been developed, they protect normal cells/tissues from acute, high levels of radiation exposure such as that from oncology radiation treatments. To date, essentially no radioprotectors have been developed that specifically counteract the effects of chronic low-dose rate space radiation. This review highlights how high-throughput screening (HTS) methodologies could be implemented to identify such a radioprotective agent. Several potential target, pathway, and phenotypic assays are discussed along with potential challenges towards screening for radioprotectors. Utilizing HTS strategies such as the ones proposed here have the potential to identify new chemical scaffolds that can be developed into efficacious radioprotectors that are specifically designed to protect astronauts during deep space journeys. The overarching goal of this review is to elicit broader interest in applying drug discovery techniques, specifically HTS towards the identification of radiation countermeasures designed to be efficacious towards the biological insults likely to be encountered by astronauts on long duration voyages.
Collapse
Affiliation(s)
- Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907 USA.
| |
Collapse
|
4
|
Gao J, Zong X, Chen N, Lan T, Yu W, Long H, Cui F, Tu Y. Research progress on three different types of noncoding RNAs related to ionizing radiation. RADIATION MEDICINE AND PROTECTION 2021. [DOI: 10.1016/j.radmp.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
5
|
Zhang J, Ding L, Sun G, Ning H, Huang R. Suppression of LINC00460 mediated the sensitization of HCT116 cells to ionizing radiation by inhibiting epithelial-mesenchymal transition. Toxicol Res (Camb) 2020; 9:107-116. [PMID: 32440342 DOI: 10.1093/toxres/tfaa010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Radiation resistance is the most common challenge for improving radiotherapy. The mechanisms underlying the development of radioresistance remain poorly understood. This study aims to explore the role of LINC00460 in ionizing radiation-induced radioresistance as well as the mechanisms by which LINC00460 is regulated by radiation exposure. The expression of LINC00460 was measured. Cell proliferation and colony formation were measured in HCT116 cells after treatment by radiation. The development of epithelial-mesenchymal transition (EMT) was determined with or without knockdown LINC00460 expression using western blot analysis. Transcription activity was determined using a series of LINC00460-promoter luciferase reporter gene vectors. LINC00460 expression was significantly higher in HCT116 cells, relative to other cell types, with LINC00460 expression significantly affecting HCT116 cell proliferation. Suppression of LINC00460 inhibits EMT development in HCT116 cells via regulation of ZEB1 expression. Furthermore, LINC00460 expression was induced by irradiation via the activation of c-jun transcription factor-binding element located on the LINC00460 promoter. LINC00460 was shown to play a crucial role in EMT-associated progression of colorectal cancer, indicating that LINC00460 may be an indicator or new potential therapeutic target for colorectal cancer radiosensitization.
Collapse
Affiliation(s)
- Jiani Zhang
- Gerontology Department of Xiangya Hospital, Central South University, Changsha, Xiangya road 238, Hunan Province 410078, P. R. China
| | - Lixin Ding
- Department of Radiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Taiping road 27, Beijing, 100088, P. R. China
| | - Gaofeng Sun
- Department of Chronic and Non-communicable Diseases Control, City Center for Disease Control and Prevention, Jingyi Road 58, Urumqi, 830026, P. R. China
| | - Huacheng Ning
- Department of Occupational and Environmental Health, Xiangya School of Public Heath, Central South University, Xiangya Road 238, Changsha, Hunan Province 410078, P. R. China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Heath, Central South University, Xiangya Road 238, Changsha, Hunan Province 410078, P. R. China
| |
Collapse
|
6
|
Qi Z, Guo S, Li C, Wang Q, Li Y, Wang Z. Integrative Analysis for the Roles of lncRNAs in the Immune Responses of Mouse PBMC Exposed to Low-Dose Ionizing Radiation. Dose Response 2020; 18:1559325820913800. [PMID: 32269503 PMCID: PMC7093697 DOI: 10.1177/1559325820913800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
It is well accepted that low-dose ionizing radiation (LDIR) modulates a variety
of immune responses that have exhibited the properties of immune hormesis.
Alterations in messenger RNA (mRNA) and long noncoding RNA (lncRNA) expression
were to crucially underlie these LDIR responses. However, lncRNAs in
LDIR-induced immune responses have been rarely reported, and its functions and
molecular mechanisms have not yet been characterized. Here, we used microarray
profiling to determine lncRNA in BALB/c mice exposed to single (0.5 Gy×1) and
chronic (0.05 Gy×10) low-dose γ-rays radiation (Co60). We observed
that a total of 8274 lncRNAs and 7240 mRNAs were altered in single LDIR, while
2077 lncRNAs and 796 mRNAs in chronic LDIR. The biological functions of these
upregulated mRNAs in both 2 groups using Gene Ontology functional and pathway
enrichment analysis were significantly enriched in immune processes and immune
signaling pathways. Subsequently, we screened out the lncRNAs involved in
regulating these immune signaling pathways and examined their potential
functions by lncRNAs-mRNAs coexpression networks. This is the first study to
comprehensively identify lncRNAs in single and chronic LDIR responses and to
demonstrate the involvement of different lncRNA expression patterns in
LDIR-induced immune signaling pathways. Further systematic research on these
lncRNAs will provide new insights into our understanding of LDIR-modulated
immune hormesis responses.
Collapse
Affiliation(s)
- Zhenhua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Sitong Guo
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Changyong Li
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yaqiong Li
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|
7
|
Bataillon M, Lelièvre D, Chapuis A, Thillou F, Autourde JB, Durand S, Boyera N, Rigaudeau AS, Besné I, Pellevoisin C. Characterization of a New Reconstructed Full Thickness Skin Model, T-Skin™, and its Application for Investigations of Anti-Aging Compounds. Int J Mol Sci 2019; 20:E2240. [PMID: 31067675 PMCID: PMC6540298 DOI: 10.3390/ijms20092240] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND We have characterized a new reconstructed full-thickness skin model, T-Skin™, compared to normal human skin (NHS) and evaluated its use in testing anti-aging compounds. METHODS The structure and layer-specific markers were compared with NHS using histological and immunohistological staining. In anti-aging experiments, T-SkinTM was exposed to retinol (10 µM) or vitamin C (200 µM) for 5 days, followed by immunohistological staining evaluation. RESULTS T-Skin™ exhibits a well stratified, differentiated and self-renewing epidermis with a dermal compartment of functional fibroblasts. Epidermal (cytokeratin 10, transglutaminase 1), dermo-epidermal junction (DEJ) (laminin 5, collagen-IV, collagen VII) and dermally-located (fibrillin 1, procollagen I) biomarkers were similar to those in NHS. Treatment of T-Skin™ with retinol decreased the expression of differentiation markers, cytokeratin 10 and transglutaminase 1 and increased the proliferation marker, Ki67, in epidermis basal-layer cells. Vitamin C increased the expression of DEJ components, collagen IV and VII and dermal procollagen 1. CONCLUSIONS T-Skin™ exhibits structural and biomarker location characteristics similar to NHS. Responses of T-Skin™ to retinol and vitamin C treatment were consistent with those of their known anti-aging effects. T-Skin™ is a promising model to investigate responses of epidermal, DEJ and dermal regions to new skin anti-ageing compounds.
Collapse
Affiliation(s)
| | | | | | | | | | - Steven Durand
- EPISKIN SA, 4, rue Alexander Fleming, 69366 Lyon, France.
| | | | | | - Isabelle Besné
- EPISKIN SA, 4, rue Alexander Fleming, 69366 Lyon, France.
| | | |
Collapse
|
8
|
Revenco T, Lapouge G, Moers V, Brohée S, Sotiropoulou PA. Low Dose Radiation Causes Skin Cancer in Mice and Has a Differential Effect on Distinct Epidermal Stem Cells. Stem Cells 2017; 35:1355-1364. [PMID: 28100039 DOI: 10.1002/stem.2571] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/02/2017] [Indexed: 12/22/2022]
Abstract
The carcinogenic effect of ionizing radiation has been evaluated based on limited populations accidently exposed to high dose radiation. In contrast, insufficient data are available on the effect of low dose radiation (LDR), such as radiation deriving from medical investigations and interventions, as well as occupational exposure that concern a large fraction of western populations. Using mouse skin epidermis as a model, we showed that LDR results in DNA damage in sebaceous gland (SG) and bulge epidermal stem cells (SCs). While the first commit apoptosis upon low dose irradiation, the latter survive. Bulge SC survival coincides with higher HIF-1α expression and a metabolic switch upon LDR. Knocking down HIF-1α sensitizes bulge SCs to LDR-induced apoptosis, while upregulation of HIF-1α in the epidermis, including SG SCs, rescues cell death. Most importantly, we show that LDR results in cancer formation with full penetrance in the radiation-sensitive Patched1 heterozygous mice. Overall, our results demonstrate for the first time that LDR can be a potent carcinogen in individuals predisposed to cancer. Stem Cells 2017;35:1355-1364.
Collapse
Affiliation(s)
| | - Gaelle Lapouge
- IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
| | - Virginie Moers
- IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
| | - Sylvain Brohée
- IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
9
|
Global Gene Expression Alterations as a Crucial Constituent of Human Cell Response to Low Doses of Ionizing Radiation Exposure. Int J Mol Sci 2015; 17:ijms17010055. [PMID: 26729107 PMCID: PMC4730300 DOI: 10.3390/ijms17010055] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 12/19/2022] Open
Abstract
Exposure to ionizing radiation (IR) is inevitable to humans in real-life scenarios; the hazards of IR primarily stem from its mutagenic, carcinogenic, and cell killing ability. For many decades, extensive research has been conducted on the human cell responses to IR delivered at a low dose/low dose (LD) rate. These studies have shown that the molecular-, cellular-, and tissue-level responses are different after low doses of IR (LDIR) compared to those observed after a short-term high-dose IR exposure (HDIR). With the advent of high-throughput technologies in the late 1990s, such as DNA microarrays, changes in gene expression have also been found to be ubiquitous after LDIR. Very limited subset of genes has been shown to be consistently up-regulated by LDIR, including CDKN1A. Further research on the biological effects and mechanisms induced by IR in human cells demonstrated that the molecular and cellular processes, including transcriptional alterations, activated by LDIR are often related to protective responses and, sometimes, hormesis. Following LDIR, some distinct responses were observed, these included bystander effects, and adaptive responses. Changes in gene expression, not only at the level of mRNA, but also miRNA, have been found to crucially underlie these effects having implications for radiation protection purposes.
Collapse
|