1
|
Qi Y, Rezaeian AH, Wang J, Huang D, Chen H, Inuzuka H, Wei W. Molecular insights and clinical implications for the tumor suppressor role of SCF FBXW7 E3 ubiquitin ligase. Biochim Biophys Acta Rev Cancer 2024; 1879:189140. [PMID: 38909632 PMCID: PMC11390337 DOI: 10.1016/j.bbcan.2024.189140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
FBXW7 is one of the most well-characterized F-box proteins, serving as substrate receptor subunit of SKP1-CUL1-F-box (SCF) E3 ligase complexes. SCFFBXW7 is responsible for the degradation of various oncogenic proteins such as cyclin E, c-MYC, c-JUN, NOTCH, and MCL1. Therefore, FBXW7 functions largely as a major tumor suppressor. In keeping with this notion, FBXW7 gene mutations or downregulations have been found and reported in many types of malignant tumors, such as endometrial, colorectal, lung, and breast cancers, which facilitate the proliferation, invasion, migration, and drug resistance of cancer cells. Therefore, it is critical to review newly identified FBXW7 regulation and tumor suppressor function under physiological and pathological conditions to develop effective strategies for the treatment of FBXW7-altered cancers. Since a growing body of evidence has revealed the tumor-suppressive activity and role of FBXW7, here, we updated FBXW7 upstream and downstream signaling including FBXW7 ubiquitin substrates, the multi-level FBXW7 regulatory mechanisms, and dysregulation of FBXW7 in cancer, and discussed promising cancer therapies targeting FBXW7 regulators and downstream effectors, to provide a comprehensive picture of FBXW7 and facilitate the study in this field.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Zhang C, Pan G, Qin JJ. Role of F-box proteins in human upper gastrointestinal tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189035. [PMID: 38049014 DOI: 10.1016/j.bbcan.2023.189035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Protein ubiquitination and degradation is an essential physiological process in almost all organisms. As the key participants in this process, the E3 ubiquitin ligases have been widely studied and recognized. F-box proteins, a crucial component of E3 ubiquitin ligases that regulates diverse biological functions, including cell differentiation, proliferation, migration, and apoptosis by facilitating the degradation of substrate proteins. Currently, there is an increasing focus on studying the role of F-box proteins in cancer. In this review, we present a comprehensive overview of the significant contributions of F-box proteins to the development of upper gastrointestinal tumors, highlighting their dual roles as both carcinogens and tumor suppressors. We delve into the molecular mechanisms underlying the involvement of F-box proteins in upper gastrointestinal tumors, exploring their interactions with specific substrates and their cross-talks with other key signaling pathways. Furthermore, we discuss the implications of F-box proteins in radiotherapy resistance in the upper gastrointestinal tract, emphasizing their potential as clinical therapeutic and prognostic targets. Overall, this review provides an up-to-date understanding of the intricate involvement of F-box proteins in human upper gastrointestinal tumors, offering valuable insights for the identification of prognostic markers and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Che Zhang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiang-Jiang Qin
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
3
|
Huang T, OuYang XI, Li J, Shi B, Shan Z, Shi Z, Yang Z. Pan-cancer analysis of FBXW family with potential implications in prognosis and immune infiltration. Front Immunol 2022; 13:1084339. [PMID: 36591289 PMCID: PMC9795248 DOI: 10.3389/fimmu.2022.1084339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Background The F-box and WD repeat domain containing (FBXW) family of SCF E3 complexes has 10 members that are responsible for ubiquitination and degradation of substrate proteins involved in cell cycle regulation and tumorigenesis. Among them, FBXW1 (also called b-TrCP1/BTRC) and FBXW7 are the central proteins in this category. However, there is still a lack of elaborate exploration of the contribution of FBXW family members, especially FBXW1 and FBXW7, in various tumor types. Methods In this present study, we preliminarily analyzed the genetic structure characteristics of the FBXW family, and systematically investigated their expression patterns and clinical correlations based on the TCGA pan-cancer data. Survival analysis of FBXWs was also conducted through the Kaplan-Meier method. In addition, we assessed their immune infiltration level through immune-related algorithms like Timer and xCell. Results There were obvious genetic heterogeneity and different clinical traits in FBXW family members. Moreover, we found that FBXW family genes may be useful in predicting prognosis and therapeutic efficacy using survival analysis. In addition, the immune infiltration of FBXW family was also clearly illustrated in this study. The results showed these genes were closely involved in immune components such as immune score, immune subtypes, tumor-infiltrating lymphocytes and immune checkpoints. Notedly, FBXW1 as an oncogene and FBXW7 as a tumor suppressor gene also show opposite relationships on immune cells. Conclusion Our results provided valuable strategies to guide the therapeutic orientation concerning the role of FBXW family genes in cancer.
Collapse
Affiliation(s)
| | - XIaoxiao OuYang
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Jiwei Li
- School of Medicine, Xiamen University, Xiamen, China
| | - Bingbing Shi
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian, China
| | - Zhengda Shan
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Zhiyuan Shi
- School of Medicine, Xiamen University, Xiamen, China,*Correspondence: Zhiyuan Shi, ; Zhangru Yang,
| | - Zhangru Yang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Zhiyuan Shi, ; Zhangru Yang,
| |
Collapse
|
4
|
Astragalus polysaccharides inhibit ovarian cancer cell growth via microRNA-27a/FBXW7 signaling pathway. Biosci Rep 2021; 40:222329. [PMID: 32159214 PMCID: PMC7103584 DOI: 10.1042/bsr20193396] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022] Open
Abstract
Astragalus polysaccharide (APS), a natural antioxidant found in Astragalus membranaceus emerging as a novel anticancer agent, exerts antiproliferative and pro-apoptotic activity in various cancer cell types, but its effect on ovarian cancer (OC) remains unknown. In the present study, we tried to elucidate the role and mechanism of APS in OC cells. Our results showed that APS treatment suppressed the proliferation and induced apoptosis in OC cells. Afterward, the microRNA (miRNA) profiles in APS-treated cells were determined by a microarray assay, and whether APS affected OV-90 cells through regulation of miRNA was determined. Among these aberrant miRNAs, miR-27a was selected for further study as its oncogenic roles in various human cancers. Moreover, we found overexpression of miR-27a reversed the antiproliferation and pro-apoptotic effects of APS on OC cells. F-box and WD-40 domain protein 7 (FBXW7), a classical tumor suppressor, was found directly targeted by miR-27a and its translation was suppressed by miR-27a in OC cells. Finally, it was also observed that knockdown of FBXW7 by si-FBXW7 reversed the tumor suppressive activity of APS in OC cells, which is similar to the effects of miR-27a overexpression. Our findings demonstrate that APS can suppress OC cell growth in vitro via miR-27a/FBXW7 axis, and this observation reveals the therapeutic potential of APS for treatment of OC.
Collapse
|
5
|
Zhou D, Wang X, Liu Z, Huang Z, Nie H, Zhu W, Tan Y, Fan L. The expression characteristics of FBXW7 in human testis suggest its function is different from that in mice. Tissue Cell 2019; 62:101315. [PMID: 32433022 DOI: 10.1016/j.tice.2019.101315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 11/19/2022]
Abstract
F-box and WD domain protein 7 (FBXW7) is reported to bind with c-Myc in mouse spermatogonial stem cells, regulating self-renewal; however, the pattern and stage of expression of FBXW7 in human testes are unclear. In the present study, we examined the expression of human FBXW7 in adult testis, and analyzed fixed sections from adult testes and fetal testes to determine the cell type-specific expression pattern of FBXW7. The results showed that FBXW7α and FBXW7β genes are expressed in the testis; however, only FBXW7α protein could be detected. FBXW7 was not detected in human spermatogonial stem cells. Interestingly, FBXW7 was mainly expressed in the cell nuclei of later stage germ cells and differentiated somatic cells. We also observed high FBXW7 expression in human fetal germ cells, particularly in prespermatogonia. Our results raised the possibility that FBXW7 has different functions in humans and mice. The cell type-specific expression pattern of FBXW7 suggests that it performs regulatory functions during the late stage of human spermatogenesis instead of being involved in the self-renewal of spermatogonial stem cells.
Collapse
Affiliation(s)
- Dai Zhou
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, 410000, China
| | - Xingming Wang
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, 410000, China
| | - Zhizhong Liu
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, 410000, China; Department of Urology, Hunan Cancer Hospital, Changsha, 410000, China
| | - Zenghui Huang
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, 410000, China; Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410000, China
| | - Hongchuan Nie
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, 410000, China; Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410000, China
| | - Wenbing Zhu
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, 410000, China; Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410000, China
| | - Yueqiu Tan
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, 410000, China; Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410000, China
| | - Liqing Fan
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, 410000, China; Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410000, China.
| |
Collapse
|
6
|
FBXW7 in Cancer: What Has Been Unraveled Thus Far? Cancers (Basel) 2019; 11:cancers11020246. [PMID: 30791487 PMCID: PMC6406609 DOI: 10.3390/cancers11020246] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
: The FBXW7 (F-box with 7 tandem WD40) protein encoded by the gene FBXW7 is one of the crucial components of ubiquitin ligase called Skp1-Cullin1-F-box (SCF) complex that aids in the degradation of many oncoproteins via the ubiquitin-proteasome system (UPS) thus regulating cellular growth. FBXW7 is considered as a potent tumor suppressor as most of its target substrates can function as potential growth promoters, including c-Myc, Notch, cyclin E, c-JUN, and KLF5. Its regulators include p53, C/EBP-δ, Numb, microRNAs, Pin 1, Hes-5, BMI1, Ebp2. Mounting evidence has indicated the involvement of aberrant expression of FBXW7 for tumorigenesis. Moreover, numerous studies have also shown its role in cancer cell chemosensitization, thereby demonstrating the importance of FBXW7 in the development of curative cancer therapy. This comprehensive review emphasizes on the targets, functions, regulators and expression of FBXW7 in different cancers and its involvement in sensitizing cancer cells to chemotherapeutic drugs.
Collapse
|
7
|
Yeh CH, Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 2018; 17:115. [PMID: 30086763 PMCID: PMC6081812 DOI: 10.1186/s12943-018-0857-2] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is involved in multiple aspects of cellular processes, such as cell cycle progression, cellular differentiation, and survival (Davis RJ et al., Cancer Cell 26:455-64, 2014; Skaar JR et al., Nat Rev Drug Discov 13:889-903, 2014; Nakayama KI and Nakayama K, Nat Rev Cancer 6:369-81, 2006). F-box and WD repeat domain containing 7 (FBXW7), also known as Sel10, hCDC4 or hAgo, is a member of the F-box protein family, which functions as the substrate recognition component of the SCF E3 ubiquitin ligase. FBXW7 is a critical tumor suppressor and one of the most commonly deregulated ubiquitin-proteasome system proteins in human cancer. FBXW7 controls proteasome-mediated degradation of oncoproteins such as cyclin E, c-Myc, Mcl-1, mTOR, Jun, Notch and AURKA. Consistent with the tumor suppressor role of FBXW7, it is located at chromosome 4q32, a genomic region deleted in more than 30% of all human cancers (Spruck CH et al., Cancer Res 62:4535-9, 2002). Genetic profiles of human cancers based on high-throughput sequencing have revealed that FBXW7 is frequently mutated in human cancers. In addition to genetic mutations, other mechanisms involving microRNA, long non-coding RNA, and specific oncogenic signaling pathways can inactivate FBXW7 functions in cancer cells. In the following sections, we will discuss the regulation of FBXW7, its role in oncogenesis, and the clinical implications and prognostic value of loss of function of FBXW7 in human cancers.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
8
|
He H, Dai J, Xu Z, He W, Wang X, Zhu Y, Wang H. Fbxw7 regulates renal cell carcinoma migration and invasion via suppression of the epithelial-mesenchymal transition. Oncol Lett 2018; 15:3694-3702. [PMID: 29456733 PMCID: PMC5795825 DOI: 10.3892/ol.2018.7744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/07/2017] [Indexed: 12/28/2022] Open
Abstract
F-box and WD repeat domain containing 7 (Fbxw7) is an F-box protein that belongs to the SKP1-CUL1-F-box protein E3 ligase complex and is responsible for transferring the ubiquitin molecule to the substrate, which results in its recognition and subsequent degradation by proteasomes. Furthermore, it can identify a network of signaling proteins that function in cell growth, diversion and apoptosis. In the present study, Fbxw7 was downregulated in renal cell carcinoma (RCC) tissues compared with the adjacent non-tumor tissues and its expression was significantly associated with the tumor-node-metastasis stage, lymph node metastasis and distant metastasis in patients with RCC. Furthermore, multivariate Cox regression analyses indicated that Fbxw7 expression was an independent factor for the prediction of the overall survival of patients with RCC. A functional study demonstrated that downregulation of Fbxw7 facilitated tumor cell migration and invasion via the epithelial-mesenchymal transition (EMT). Therefore, the results of the current study indicted that Fbxw7 is an anti-oncogene that serves a notable function in RCC development by suppressing RCC metastasis and the EMT, indicating the potential therapeutic value of Fbxw7 in inhibiting metastasis in RCC.
Collapse
Affiliation(s)
- Hongchao He
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jun Dai
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhaoping Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Wei He
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiaojing Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yu Zhu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Haofei Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
9
|
Arita H, Nagata M, Yoshida R, Matsuoka Y, Hirosue A, Kawahara K, Sakata J, Nakashima H, Kojima T, Toya R, Murakami R, Hiraki A, Shinohara M, Nakayama H. FBXW7 expression affects the response to chemoradiotherapy and overall survival among patients with oral squamous cell carcinoma: A single-center retrospective study. Tumour Biol 2017; 39:1010428317731771. [PMID: 29072128 DOI: 10.1177/1010428317731771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
FBXW7 (F-box and WD repeat domain containing-7) is a tumor suppressor protein that regulates the degradation of various oncoproteins in several malignancies. However, limited information is available regarding FBXW7 expression in oral squamous cell carcinoma. Therefore, this study aimed to determine the clinical significance of FBXW7 expression in oral squamous cell carcinoma. The FBXW7 expression patterns in oral squamous cell carcinoma and adjacent normal tissues from 15 patients who underwent radical resection were evaluated using quantitative real-time polymerase chain reaction and immunohistochemical staining. In addition, immunohistochemistry was performed using paraffin-embedded sections from biopsy specimens obtained from 110 patients with oral squamous cell carcinoma who underwent surgery after 5 fluorouracil-based chemoradiotherapy. The associations of FBXW7 expression with various clinicopathological features and prognosis were evaluated in these patients. As a results, in the 15 matched samples, the FBXW7 expression was significantly decreased in the oral squamous cell carcinoma tissues compared to that in the adjacent normal tissues. In the clinicopathological analysis, compared to high protein expression, low FBXW7 expression was found to significantly associate with a poor histological response to preoperative chemoradiotherapy. Kaplan-Meier curve analysis revealed that low FBXW7 expression was significantly associated with a poor prognosis, and FBXW7 expression was found to be an independent predictor of overall survival in the multivariate analysis. Our results suggest that FBXW7 may function as a tumor suppressor protein in oral squamous cell carcinoma. In addition, FBXW7 could be a potential biomarker for predicting not only the clinical response to chemoradiotherapy but also overall survival in patients with oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Hidetaka Arita
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masashi Nagata
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoji Yoshida
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichiro Matsuoka
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiyuki Hirosue
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenta Kawahara
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Junki Sakata
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikaru Nakashima
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Taku Kojima
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryo Toya
- 2 Department of Radiation Oncology, Kumamoto University Hospital, Kumamoto, Japan
| | - Ryuji Murakami
- 3 Department of Medical Imaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akimitsu Hiraki
- 4 Section of Oral Oncology, Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, Japan
| | | | - Hideki Nakayama
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Upregulation of FBXW7 Suppresses Renal Cancer Metastasis and Epithelial Mesenchymal Transition. DISEASE MARKERS 2017; 2017:8276939. [PMID: 29097832 PMCID: PMC5643092 DOI: 10.1155/2017/8276939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/02/2017] [Indexed: 02/08/2023]
Abstract
Background and Objective FBXW7, known as a general tumor suppressor, is commonly lowly expressed in metastatic malignancies. We aim to investigate the potential influence of FBXW7 overexpression on renal cell carcinoma (RCC) metastasis. Methods We employed quantitative real-time PCR (qRT-PCR) and Western blotting (WB) to quantify the FBXW7 expression in RCC cell lines. Upregulation of FBXW7 was performed in vitro on RCC cells using the lentivirus covering coding region FBXW7 cDNA sequence, and functional tests were performed to verify FBXW7 overexpression on migration and invasion of RCC cells. Moreover, WB was employed to determine the expressions of MMP-2, MMP-9, and MMP-13, as well as EMT markers in the transfected RCC cells. Results FBXW7 was significantly downregulated in RCC cell lines, dominated by 786-O and ACHN, when compared to normal renal cell line HK-2. Moreover, upregulation of FBXW7 in 786-O and ACHN cell lines significantly inhibited cell migration and invasion, as well as EMT. Present study also showed that FBXW7 was involved in the migration and invasion of RCC cells via regulating the expressions of MMP-2, MMP-9, and MMP-13. Conclusion Our findings demonstrate that upregulation of FBXW7 inhibits RCC metastasis and EMT. FBXW7 is a potential therapeutic target for RCC patients.
Collapse
|
11
|
Xiao G, Gao X, Sun X, Yang C, Zhang B, Sun R, Huang G, Li X, Liu J, Du N, Liu D, Liang R, Ren H, Qin S. miR-367 promotes tumor growth by inhibiting FBXW7 in NSCLC. Oncol Rep 2017; 38:1190-1198. [PMID: 28656290 DOI: 10.3892/or.2017.5755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/12/2017] [Indexed: 11/06/2022] Open
Abstract
miR-367 is one of the most abundant miRNAs in human embryonic stem cells (hESCs) and is mainly involved in maintaining the pluripotency of stem cells. However, its role in cancer development remains poorly understood. In the present study, we explored the function and mechanism of the endogenous miR-367 in non-small cell lung cancer (NSCLC). In the present study, we demonstrated that the level of miR-367 in NSCLC was significantly higher than that in adjacent normal tissues, and its upregulation was positively correlated with tumor size, tumor differentiation and tumor-node-metastasis (TNM) stage. miR-367 was an indicator of a poorer prognosis in NSCLC patients. Furthermore, overexpression of miR-367 significantly inhibited apoptosis and enhanced proliferation by promoting cell cycle transition from G1 to S phase. In contrast, knockdown of miR-367 markedly reversed the cellular events observed with miR-367 overexpression. Moreover, we identified that F-box and WD repeat domain-containing 7 (FBXW7) is a novel target of miR-367. It reverses the oncogenic effects of miR-367 by downregulating its substrates, c-Myc and c-Jun, in NSCLC cells. Finally, studies in vivo revealed that knockdown of miR-367 inhibited the growth of xenografts in the nude mice by increasing the expression of FBXW7. In summary, our findings indicate that miR-367 exerts tumor-promoting effect by negatively regulating FBXW7 in NSCLC, and it could become a potential therapeutic target for NSCLC intervention.
Collapse
Affiliation(s)
- Guodong Xiao
- Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Xiao Gao
- Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Xin Sun
- Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Chengcheng Yang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Boxiang Zhang
- Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Ruiying Sun
- Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Guanghong Huang
- Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Xiang Li
- Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Jian Liu
- Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Ning Du
- Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Dapeng Liu
- Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Rui Liang
- Department of Hepatobiliary Chest Surgery, Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Force, Taiyuan, Shanxi, P.R. China
| | - Hong Ren
- Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Sida Qin
- Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
12
|
Cao W, Wei W, Zhan Z, Xie Y, Xiao Q. MiR-1284 modulates multidrug resistance of gastric cancer cells by targeting EIF4A1. Oncol Rep 2016; 35:2583-91. [PMID: 26936591 DOI: 10.3892/or.2016.4643] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022] Open
Abstract
Routine chemotherapy as an important treatment mode often can not be effective because of multidrug resistance (MDR). MicroRNA (miRNA) modulates the expression of a great number of genes, including MDR. In this study, the expression of miR-1284 was reduced in gastric cancer (GC) tissue specimens with metastasis and in vincristine-resistant (VCR) GC SGC7901 cells (SGC-7901/VCR) compared to that in the controls. Recombinant lentiviral vectors with miR-1284 led to the overexpression of miR-1284 mRNA and reversed the chemoresistance of SGC7901/VCR cells, promoted cell cycle arrested at the G0/G1 phase, accelerated drug-induced apoptosis, and decreased migration and invasiveness of SGC-7901/VCR. In addition, the overexpression of miR-1284 sensitized tumors to chemotherapy in vivo. Our data provide combined evidence that miR-1284 can heighten the expression of MYC and reduce the expression of JUN, MMP12, and EIF4A1 that was the direct target. In conclusion, miR-1284 can function as a new regulator to reduce GC MDR cells by targeting EIF4A1.
Collapse
Affiliation(s)
- Wenlong Cao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Weiyuan Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zexu Zhan
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yubo Xie
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiang Xiao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
13
|
Uddin S, Bhat AA, Krishnankutty R, Mir F, Kulinski M, Mohammad RM. Involvement of F-BOX proteins in progression and development of human malignancies. Semin Cancer Biol 2016; 36:18-32. [PMID: 26410033 DOI: 10.1016/j.semcancer.2015.09.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
The Ubiquitin Proteasome System (UPS) is a core regulator with various protein components (ubiquitin-activating E1 enzymes, ubiquitin-conjugating E2 enzymes, ubiquitin-protein E3 ligases, and the 26S proteasome) which work together in a coordinated fashion to ensure the appropriate and efficient proteolysis of target substrates. E3 ubiquitin ligases are essential components of the UPS machinery, working with E1 and E2 enzymes to bind substrates and assist the transport of ubiquitin molecules onto the target protein. As the UPS controls the degradation of several oncogenes and tumor suppressors, dysregulation of this pathway leads to several human malignancies. A major category of E3 Ub ligases, the SCF (Skp-Cullin-F-box) complex, is composed of four principal components: Skp1, Cul1/Cdc53, Roc1/Rbx1/Hrt1, and an F-box protein (FBP). FBPs are the substrate recognition components of SCF complexes and function as adaptors that bring substrates into physical proximity with the rest of the SCF. Besides acting as a component of SCF complexes, FBPs are involved in DNA replication, transcription, cell differentiation and cell death. This review will highlight the recent literature on three well characterized FBPs SKP2, Fbw7, and beta-TRCP. In particular, we will focus on the involvement of these deregulated FBPs in the progression and development of various human cancers. We will also highlight some novel substrates recently identified for these FBPs.
Collapse
Affiliation(s)
- Shahab Uddin
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ajaz A Bhat
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Roopesh Krishnankutty
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Fayaz Mir
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Michal Kulinski
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M Mohammad
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
14
|
Abstract
Rapidly accumulating data indicate that F-box/WD repeat-containing protein 7 (Fbxw7) is one of the most frequently mutated genes in human cancers and regulates a network of crucial oncoproteins. These studies have generated important new insights into tumorigenesis and may soon enable therapies targeting the Fbxw7 pathway. We searched PubMed, Embase, and ISI Web of Science databases (1973-2015, especially recent 5 years) for articles published in the English language using the key words "Fbxw7," "Fbw7," "hCDC4," and "Sel-10," and we reviewed recent developments in the search for Fbxw7. Fbxw7 coordinates the ubiquitin-dependent proteolysis of several critical cellular regulators, thereby controlling essential processes, such as cell cycle, differentiation, and apoptosis. Fbxw7 contains 3 isoforms (Fbxw7α, Fbxw7β, and Fbxw7γ), and they are differently regulated in subtract recognition. Besides those, Fbxw7 activity is controlled at different levels, resulting in specific and tunable regulation of the abundance and activity of its substrates in a variety of human solid tumor types, including glioma malignancy, nasopharyngeal carcinoma, osteosarcoma, melanoma as well as colorectal, lung, breast, gastric, liver, pancreatic, renal, prostate, endometrial, and esophageal cancers. Fbxw7 is strongly associated with tumorigenesis, and the mechanisms and consequences of Fbxw7 deregulation in cancers may soon enable the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Jun Cao
- From the Zhejiang Cancer Research Institute (JC, Z-QL); and Department of Surgical Oncology, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China (JC, M-HG)
| | | | | |
Collapse
|