1
|
Apalowo OE, Adegoye GA, Mbogori T, Kandiah J, Obuotor TM. Nutritional Characteristics, Health Impact, and Applications of Kefir. Foods 2024; 13:1026. [PMID: 38611332 PMCID: PMC11011999 DOI: 10.3390/foods13071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
A global epidemiological shift has been observed in recent decades, characterized by an increase in age-related disorders, notably non-communicable chronic diseases, such as type 2 diabetes mellitus, cardiovascular and neurodegenerative diseases, and cancer. An appreciable causal link between changes in the gut microbiota and the onset of these maladies has been recognized, offering an avenue for effective management. Kefir, a probiotic-enriched fermented food, has gained significance in this setting due to its promising resource for the development of functional or value-added food formulations and its ability to reshape gut microbial composition. This has led to increasing commercial interest worldwide as it presents a natural beverage replete with health-promoting microbes and several bioactive compounds. Given the substantial role of the gut microbiota in human health and the etiology of several diseases, we conducted a comprehensive synthesis covering a total of 33 investigations involving experimental animal models, aimed to elucidate the regulatory influence of bioactive compounds present in kefir on gut microbiota and their potential in promoting optimal health. This review underscores the outstanding nutritional properties of kefir as a central repository of bioactive compounds encompassing micronutrients and amino acids and delineates their regulatory effects at deficient, adequate, and supra-nutritional intakes on the gut microbiota and their broader physiological consequences. Furthermore, an investigation of putative mechanisms that govern the regulatory effects of kefir on the gut microbiota and its connections with various human diseases was discussed, along with potential applications in the food industry.
Collapse
Affiliation(s)
- Oladayo Emmanuel Apalowo
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA; (O.E.A.); (G.A.A.)
| | - Grace Adeola Adegoye
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA; (O.E.A.); (G.A.A.)
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | - Teresia Mbogori
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | - Jayanthi Kandiah
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA;
| | | |
Collapse
|
2
|
Yegin Z, Sudagidan M. A medical and molecular approach to kefir as a therapeutic agent of human microbiota. INT J VITAM NUTR RES 2024; 94:71-80. [PMID: 36068959 DOI: 10.1024/0300-9831/a000765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The imbalanced microbial composition called dysbiosis constitutes a tendency related to different kind of human diseases. To overcome the disadvantages of dysbiosis, the consumption of probiotics is an emerging and promising topic of the last decade. Kefir is a probiotic fermented beverage produced from the fermentation of kefir grains with changing varieties of milk and displays a symbiotic association of bacteria and yeast. The discovery of the concept that fermented foods/beverages such as kefir could modify gut microbiota in humans has widened the borders of precision medicine and now microbiome therapeutics can be considered as a significant part of this field. Kefir seems to have potential to guide and manipulate future replacement/complementary therapies with a variety of beneficial biological/medical properties it has. The aim of this review was a comprehensive recapitulation of probiotic beverage kefir's significant properties mainly focusing of antioxidative, immunomodulatory, apoptotic, antitumor and neuroprotective properties. Apoptotic/antimetastatic effects are regulated at the molecular level by increases in TGF-β1, caspase-3, p53, Bax, Bax:Bcl-2 ratio, p21 and decreases in TGF-α, Bcl-2 and MMP polarization. Neuroprotective effects are revealed upon upregulation of SOD/catalase and anti-inflammatory Treg cells, decreases in repetitive behavior and modulation of apoptotic genes. Besides these significant features that may offer advantages in supplementary cancer therapies, the scope was also extended to recent emerging medical topics and also discussed and evaluated the concept of "psychobiotics". The therapeutic potential of psychobiotic effect is majorly attributed to the increased ratios of Clostridium butyricum, Lactobacillus and Bifidobacterium.
Collapse
Affiliation(s)
- Zeynep Yegin
- Medical Laboratory Techniques Program, Vocational School of Health Services, Sinop University, Turkey
| | - Mert Sudagidan
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Meram, Konya, Turkey
| |
Collapse
|
3
|
Alhssan E, Ercan SŞ, Bozkurt H. Effect of Flaxseed Mucilage and Gum Arabic on Probiotic Survival and Quality of Kefir during Cold Storage. Foods 2023; 12:foods12030662. [PMID: 36766188 PMCID: PMC9914877 DOI: 10.3390/foods12030662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
This study aimed to assess the survival of probiotic cultures in kefir. Kefir is a fermented dairy product, and in this study we incorporated nutritionally rich flaxseed mucilage and gum arabic as a prebiotic, then monitored for improvement in the the viability of Lactobacillus acidophilus and Bifidobacterium lactis. In addition, some physicochemical variables of kefir were investigated. The addition of flaxseed mucilage and gum arabic significantly (p ˂ 0.05) increased the growth of both Lactobacillus acidophilus and Bifidobacterium lactis compared to the control. Samples enriched with flaxseed mucilage and gum arabic had significantly (p ˂ 0.05) reduced pH and increased viscosity. Flaxseed mucilage and gum arabic significantly (p ˂ 0.05) changed the color parameters L*, a*, and b*. However, as the concentration of flaxseed mucilage increased, the L* value decreased. Moreover, adding flaxseed mucilage and gum arabic into kefir increased (p ˂ 0.05) the protein content. These results showed that flaxseed mucilage and gum arabic could be used to increase the survival of probiotic cultures in kefir without changing its physicochemical properties.
Collapse
Affiliation(s)
- Eiman Alhssan
- Institute of Sciences, Department of Biochemistry Science and Technology, University of Gaziantep, 27310 Gaziantep, Turkey
| | - Songül Şahin Ercan
- Department of Food Engineering, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey
| | - Hüseyin Bozkurt
- Department of Food Engineering, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey
- Correspondence:
| |
Collapse
|
4
|
Asadi S, Soleimani N, Babadi ZK, Ebrahimipour GH. Isolation and identification of the bacterium producing antitumor and antimicrobial compounds derived from Iranian swamp frog (Rana ridibunda) skin. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:372-380. [PMID: 34540176 PMCID: PMC8416579 DOI: 10.18502/ijm.v13i3.6400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background and Objectives: Cancer incidence and recurrence, antibiotic resistance, and overuse of antibiotics have become a global concern. The purpose of this study was to identify and isolate bacteria from the skin of the Rana ridibunda, Iranian swamp frog, which has produced antimicrobial compounds, and investigate its cytotoxic activity on the breast (MCF7) and glioblastoma (U87) cancer cell line. Materials and Methods: An antibiotic-producing bacterium was isolated from the frog skin. The bacterium was identified based on 16S rDNA sequencing and biochemical and morphological characteristics. Antimicrobial activity of the culture supernatant was examined by disc diffusion and MIC methods. Cytoplasmic and cell wall extracts of bacteria were prepared by sonication. SDS-PAGE was then used to examine protein contents of them. The cancer cell lines were treated with cytoplasmic and cell wall extracts at different concentrations. The effects of cytotoxicity were assessed by MTT assay at 24 and 48 h intervals. Finally, the results were analyzed by SPSS. Results: The isolated bacterium was identified as a new strain of Bacillus atrophaeus. MIC and disc diffusion methods showed that the Bacillus atrophaeus antimicrobial activity was broad spectrum. MTT assay showed IC50 values 30 μg/ml and 20 μg/ml for U87 and MCF7 cells after 24–48 h exposure, respectively. Conclusion: The cytoplasmic extracts of Bacillus atrophaeus has anticancer potential and can be used as an alternative or complementary candidate in the treatment of cancer. Further in vivo and in vitro mechanistic studies are suggested to confirm the biological activities.
Collapse
Affiliation(s)
- Sepideh Asadi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Khosravi Babadi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Gholam Hossein Ebrahimipour
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
5
|
Batista LL, Malta SM, Guerra Silva HC, Borges LDF, Rocha LO, da Silva JR, Rodrigues TS, Venturini G, Padilha K, da Costa Pereira A, Espindola FS, Ueira-Vieira C. Kefir metabolites in a fly model for Alzheimer's disease. Sci Rep 2021; 11:11262. [PMID: 34045626 PMCID: PMC8160324 DOI: 10.1038/s41598-021-90749-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's Disease (AD) is the most common cause of dementia among elderly individuals worldwide, leading to a strong motor-cognitive decline and consequent emotional distress and codependence. It is traditionally characterized by amyloidogenic pathway formation of senile plaques, and recent studies indicate that dysbiosis is also an important factor in AD's pathology. To overcome dysbiosis, probiotics-as kefir-have shown to be a great therapeutic alternative for Alzheimer's disease. In this present work, we explored kefir as a probiotic and a metabolite source as a modulator of microbiome and amyloidogenic pathway, using a Drosophila melanogaster model for AD (AD-like flies). Kefir microbiota composition was determined through 16S rRNA sequencing, and the metabolome of each fraction (hexane, dichloromethane, ethyl acetate, and n-butanol) was investigated. After treatment, flies had their survival, climbing ability, and vacuolar lesions accessed. Kefir and fraction treated flies improved their climbing ability survival rate and neurodegeneration index. In conclusion, we show that kefir in natura, as well as its fractions may be promising therapeutic source against AD, modulating amyloidogenic related pathways.
Collapse
Affiliation(s)
| | - Serena Mares Malta
- Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | | | - Lays Oliveira Rocha
- Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | | | | | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil
| | | | | | - Carlos Ueira-Vieira
- Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia, Brazil.
| |
Collapse
|
6
|
Kefir and Its Biological Activities. Foods 2021; 10:foods10061210. [PMID: 34071977 PMCID: PMC8226494 DOI: 10.3390/foods10061210] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 02/01/2023] Open
Abstract
Kefir is a fermented beverage with renowned probiotics that coexist in symbiotic association with other microorganisms in kefir grains. This beverage consumption is associated with a wide array of nutraceutical benefits, including anti-inflammatory, anti-oxidative, anti-cancer, anti-microbial, anti-diabetic, anti-hypertensive, and anti-hypercholesterolemic effects. Moreover, kefir can be adapted into different substrates which allow the production of new functional beverages to provide product diversification. Being safe and inexpensive, there is an immense global interest in kefir’s nutritional potential. Due to their promising benefits, kefir and kefir-like products have a great prospect for commercialization. This manuscript reviews the therapeutic aspects of kefir to date, and potential applications of kefir products in the health and food industries, along with the limitations. The literature reviewed here demonstrates that there is a growing demand for kefir as a functional food owing to a number of health-promoting properties.
Collapse
|
7
|
Anticancer Activity of Kefir on Glioblastoma Cancer Cell as a New Treatment. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:8180742. [PMID: 33506004 PMCID: PMC7815417 DOI: 10.1155/2021/8180742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
Kefir drink is one of the most important probiotic products, which is made using kefir microorganisms in fermenting the milk. Numerous investigation have been accomplished in the field of the therapeutic property of probiotic products. In the present study, we assessed the cytotoxic effect of kefir on the rate of growth and increase of glioblastoma cancer cell as the most severe form of brain tumors. In this experimental study, we used a U87 cancer cell line (glioblastoma). The interaction between cancer cells and different concentrations of kefir drink and supernatants at 24 and 48 hours was considered. The cell cytotoxicity of kefir and sedimentation of cell lysate and extract of kefir was assessed using the MTT test after 24 and 48 hours. The result of the MTT test, treatment of the cells with the 48-hour fermented drink, demonstrated the most cell cytotoxicity in comparison with the control group. Results showed that the toxicity effect in all groups was dose-dependent, and by increasing the concentration, cell survival decreased noticeably. The results indicated that the supernatant of fermented kefir drink as a probiotic product has more toxicity and lethality effect on the glioblastoma cancer cell. This product can be utilized as a replacement or a complementary therapy of cancer.
Collapse
|
8
|
Tasdemir SS, Sanlier N. An insight into the anticancer effects of fermented foods: A review. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
9
|
Ready to Use Therapeutical Beverages: Focus on Functional Beverages Containing Probiotics, Prebiotics and Synbiotics. BEVERAGES 2020. [DOI: 10.3390/beverages6020026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The growing global interest in functional foods containing nutrients capable of adding possible beneficial health effects is rapidly increasing both interest and consumer demand. In particular, functionalized beverages for their potential positive effect on health e.g., decreasing cholesterol level, lowering sugar, high fiber content, ability to enhance the immune system, and help digestion, have recently received special attention. Among the different beverages available on the market, probiotic dairy and non-dairy products have attracted much attention because of their affordable cost and their numerous therapeutic activities. Fermented milk and yogurt are currently worth €46 billion, with 77% of the market reported in Europe, North America, and Asia. Consumption of dairy beverages has some limitations due for example to lactose intolerance and allergy to milk proteins, thereby leading consumers to use non-dairy beverages such as fruit, grains, and vegetable juices to add probiotics to diet as well as driving the manufacturers to food matrices-based beverages containing probiotic cultures. The purpose of this review article is to evaluate the therapeutic performance and properties of dairy and non-dairy beverages in terms of probiotic, prebiotic, and synbiotic activities.
Collapse
|
10
|
Tofalo R, Fusco V, Böhnlein C, Kabisch J, Logrieco AF, Habermann D, Cho GS, Benomar N, Abriouel H, Schmidt-Heydt M, Neve H, Bockelmann W, Franz CMAP. The life and times of yeasts in traditional food fermentations. Crit Rev Food Sci Nutr 2019; 60:3103-3132. [PMID: 31656083 DOI: 10.1080/10408398.2019.1677553] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Yeasts are eukaryotic microorganisms which have a long history in the biotechnology of food production, as they have been used since centuries in bread-making or in the production of alcoholic beverages such as wines or beers. Relative to this importance, a lot of research has been devoted to the study of yeasts involved in making these important products. The role of yeasts in other fermentations in association with other microorganisms - mainly lactic acid bacteria - has been relatively less studied, and often it is not clear if yeasts occurring in such fermentations are contaminants with no role in the fermentation, spoilage microorganisms or whether they actually serve a technological or functional purpose. Some knowledge is available for yeasts used as starter cultures in fermented raw sausages or in the production of acid curd cheeses. This review aimed to summarize the current knowledge on the taxonomy, the presence and potential functional or technological roles of yeasts in traditional fermented plant, dairy, fish and meat fermentations.
Collapse
Affiliation(s)
- Rosanna Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Christina Böhnlein
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Diana Habermann
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Markus Schmidt-Heydt
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Wilhelm Bockelmann
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| |
Collapse
|
11
|
Salehi M, Sharifi M, Bagheri M. Knockdown of Long Noncoding RNA Plasmacytoma Variant Translocation 1 with Antisense Locked Nucleic Acid GapmeRs Exerts Tumor-Suppressive Functions in Human Acute Erythroleukemia Cells Through Downregulation of C-MYC Expression. Cancer Biother Radiopharm 2018; 34:371-379. [PMID: 30141968 DOI: 10.1089/cbr.2018.2510] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective: Acute erythroleukemia (AEL) is a subtype of acute myeloid leukemia (AML), with no specific treatment. Up- or downregulation of long noncoding RNAs (lncRNAs) is strongly associated with the formation and progression of many malignancies. Plasmacytoma variant translocation 1 (PVT1) is a significantly upregulated lncRNA in AML. Antisense locked nucleic acid (LNA) GapmeRs oligonucleotides are the novel tools for targeting lncRNAs. The purpose of the current study was to investigate the functional role of PVT1 antisense LNA GapmeRs on AEL cell line (KG-1). Materials and Methods: AEL cells were transfected with PVT1 antisense LNA GapmeRs at three different time points. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was accomplished to evaluate the PVT1 expression by PVT1 antisense LNA GapmeRs. The viability was evaluated by MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide) assay, and the apoptosis and necrosis were assessed by Annexin V/propidium iodide staining assay. The C-MYC expression level, the target gene of PVT1, was also quantified by qRT-PCR. Results: The results indicated that PVT1 inhibition could significantly decrease the viability of AEL cells, due to induction of apoptosis and necrosis, probably through the downregulation of C-MYC. Conclusions: Their findings suggest that the inhibition of lncRNA PVT1 could serve as a novel approach for controlling the proliferation of AEL cells and could open up a path for treatment of AEL.
Collapse
Affiliation(s)
- Mahsa Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Bagheri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Salehi M, Sharifi M. Induction of apoptosis and necrosis in human acute erythroleukemia cells by inhibition of long non-coding RNA PVT1. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2018; 7:89-96. [PMID: 30046623 PMCID: PMC6054779 DOI: 10.22099/mbrc.2018.29081.1316] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent advances in molecular medicine have proposed new therapeutic strategies for cancer. One of the molecular research lines for the diagnosis and treatment of cancer is the use of long non-coding RNAs (LncRNAs) which are a class of non-coding RNA molecules longer than 200 base pairs in length that act as the key regulator of gene expression. Different aspects of cellular activities like cell growth, proliferation, differentiation, apoptosis and migration are regulated by lncRNAs. In various cancers, aberrant expression of lncRNAs has been reported. One of the lncRNAs that showed upregulation in human acute myeloid leukemia (AML) is lncRNA plasmacytoma variant translocation 1 (PVT1). Here, we performed blockage of lncRNA PVT1 in human acute erythroleukemia (AEL) cell line (KG1) using antisense LNA GapmeRs. Then, at different time points (24, 48 and 72 hours) after transfection, qRT‑real‑time PCR and AnnexinV/Propidium Iodide staining assay were performed. The data were processed using the ANOVA test. At all three time points, the ratio of apoptotic cells in the PVT1 antisense LNA GapmeRs treated group was higher than the other groups. The ratio of necrotic cells in the antisense LNA GapmeRs group was also higher than the other groups. These assessments show that inhibition of lncRNA PVT1 could significantly induce apoptosis and necrosis in KG1 cells. Our findings can be used in translational medicine for future investigation in acute erythroleukemia and treatment approach based on antisense therapy.
Collapse
Affiliation(s)
- Mahsa Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Kefir: a powerful probiotics with anticancer properties. Med Oncol 2017; 34:183. [DOI: 10.1007/s12032-017-1044-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/23/2017] [Indexed: 02/01/2023]
|