1
|
Somanath PR, Chernoff J, Cummings BS, Prasad SM, Homan HD. Targeting P21-Activated Kinase-1 for Metastatic Prostate Cancer. Cancers (Basel) 2023; 15:2236. [PMID: 37190165 PMCID: PMC10137274 DOI: 10.3390/cancers15082236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023] Open
Abstract
Metastatic prostate cancer (mPCa) has limited therapeutic options and a high mortality rate. The p21-activated kinase (PAK) family of proteins is important in cell survival, proliferation, and motility in physiology, and pathologies such as infectious, inflammatory, vascular, and neurological diseases as well as cancers. Group-I PAKs (PAK1, PAK2, and PAK3) are involved in the regulation of actin dynamics and thus are integral for cell morphology, adhesion to the extracellular matrix, and cell motility. They also play prominent roles in cell survival and proliferation. These properties make group-I PAKs a potentially important target for cancer therapy. In contrast to normal prostate and prostatic epithelial cells, group-I PAKs are highly expressed in mPCA and PCa tissue. Importantly, the expression of group-I PAKs is proportional to the Gleason score of the patients. While several compounds have been identified that target group-I PAKs and these are active in cells and mice, and while some inhibitors have entered human trials, as of yet, none have been FDA-approved. Probable reasons for this lack of translation include issues related to selectivity, specificity, stability, and efficacy resulting in side effects and/or lack of efficacy. In the current review, we describe the pathophysiology and current treatment guidelines of PCa, present group-I PAKs as a potential druggable target to treat mPCa patients, and discuss the various ATP-competitive and allosteric inhibitors of PAKs. We also discuss the development and testing of a nanotechnology-based therapeutic formulation of group-I PAK inhibitors and its significant potential advantages as a novel, selective, stable, and efficacious mPCa therapeutic over other PCa therapeutics in the pipeline.
Collapse
Affiliation(s)
- Payaningal R. Somanath
- Department of Clinical & Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- MetasTx LLC, Basking Ridge, NJ 07920, USA
| | - Jonathan Chernoff
- MetasTx LLC, Basking Ridge, NJ 07920, USA
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Brian S. Cummings
- MetasTx LLC, Basking Ridge, NJ 07920, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Sandip M. Prasad
- Morristown Medical Center, Atlantic Health System, Morristown, NJ 07960, USA
| | | |
Collapse
|
2
|
Liu WW, Hu J, Wang R, Han Q, Liu Y, Wang S. Cytoplasmic P120ctn Promotes Gefitinib Resistance in Lung Cancer Cells by Activating PAK1 and ERK Pathway. Appl Immunohistochem Mol Morphol 2021; 29:750-758. [PMID: 34412070 DOI: 10.1097/pai.0000000000000965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Our previous studies indicated that cytoplasmic p120ctn mediated epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKI) resistance in lung cancer. In the present study, we aim to further explore the underlying molecular mechanisms. Immunohistochemistry detected PAK1, Cdc42, and Rac1 expression in lung cancer with cytoplasmic p120ctn. Immunoblotting, protein activity analysis, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide evaluated p120ctn location, PAK1, Cdc42/Rac1, and extracellular signal-regulated kinase (ERK) activity in response to TKI treatment in HCC827 and PC9 cell lines, as well as the cell sensitivity to Gefitinib. Most non-small cell lung cancer patients with cytoplasmic p120ctn showed enhanced PAK1 and Cdc42/Rac1. When Gefitinib resistance was induced, cytoplasmic p120ctn is accompanied with increasing PAK1 and Cdc42/Rac1. Cytoplasmic p120ctn activated ERK via PAK1, while PAK1 downregulation attenuated ERK activation by cytoplasmic p120ctn. After Cdc42/Rac1 inhibition, cytoplasmic p120ctn could not activate PAK1. Cytoplasmic p120ctn activates PAK1 via Cdc42/Rac1 activation, constitutively activates ERK in the EGFR downstream signaling, and promotes EGFR-TKI resistance in lung cancer cells. The current study will aid to screen the subpopulation patients who would benefit from therapy with first-generation EGFR-TKIs.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Anesthesiology Department, the First Hospital of China Medical University
| | - Jing Hu
- Sujia Tuo Town Community Health Service Center, Beijing
| | | | | | | | - Si Wang
- Medical Microbiology and Human Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang
| |
Collapse
|
4
|
Dasgupta A, Sierra L, Tsang SV, Kurenbekova L, Patel T, Rajapakse K, Shuck RL, Rainusso N, Landesman Y, Unger T, Coarfa C, Yustein JT. Targeting PAK4 Inhibits Ras-Mediated Signaling and Multiple Oncogenic Pathways in High-Risk Rhabdomyosarcoma. Cancer Res 2021; 81:199-212. [PMID: 33168646 PMCID: PMC7878415 DOI: 10.1158/0008-5472.can-20-0854] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most prevalent pediatric soft-tissue sarcoma. Multimodal treatment, including surgery and traditional chemotherapy with radiotherapy, has contributed to improvements in overall survival rates. However, patients with recurrent or metastatic disease have 5-year survival rates of less than 30%. One reason for the lack of therapeutic advancement is identification and targeting of critical signaling nodes. p21-activated kinases (PAK) are a family of serine/threonine kinases downstream of multiple critical tumorigenic receptor tyrosine kinase receptors and oncogenic regulators, including IGFR and RAS signaling, that significantly contribute to aggressive malignant phenotypes. Here, we report that RMS cell lines and tumors exhibit enhanced PAK4 expression levels and activity, which are further activated by growth factors involved in RMS development. Molecular perturbation of PAK4 in multiple RMS models in vitro and in vivo resulted in inhibition of RMS development and progression. Fusion-positive and -negative RMS models were sensitive to two PAK4 small-molecule inhibitors, PF-3758309 and KPT-9274, which elicited significant antitumor and antimetastatic potential in several primary and metastatic in vivo models, including a relapsed RMS patient-derived xenograft model. Transcriptomic analysis of PAK4-targeted tumors revealed inhibition of the RAS-GTPase, Hedgehog, and Notch pathways, along with evidence of activation of antitumor immune response signatures. This PAK4-targeting gene signature showed prognostic significance for patients with sarcoma. Overall, our results show for the first time that PAK4 is a novel and viable therapeutic target for the treatment of high-risk RMS. SIGNIFICANCE: These data demonstrate a novel oncogenic role for PAK4 in rhabdomyosarcoma and show that targeting PAK4 activity is a promising viable therapeutic option for advanced rhabdomyosarcoma.
Collapse
Affiliation(s)
- Atreyi Dasgupta
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Laura Sierra
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Susan V Tsang
- Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, Texas
| | - Lyazat Kurenbekova
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Tajhal Patel
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Kimal Rajapakse
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas
| | - Ryan L Shuck
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Nino Rainusso
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | | | | | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas
| | - Jason T Yustein
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas.
- Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
5
|
Dammann K, Khare V, Coleman C, Berdel H, Gasche C. p-21 Activated Kinase as a Molecular Target for Chemoprevention in Diabetes. Geriatrics (Basel) 2018; 3:geriatrics3040073. [PMID: 31011108 PMCID: PMC6371191 DOI: 10.3390/geriatrics3040073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022] Open
Abstract
Hypothesis: Anti-diabetic drugs modulate p-21 activated kinase (PAK) signaling. Introduction: Type 2 diabetes mellitus (T2DM) is a chronic inflammatory disease associated with increased cancer risk. PAK signaling is implicated in cellular homeostasis when regulated, and cancer when unrestrained. Recent reports provided a role for PAK signaling in glucose homeostasis, but the role of PAKs in the pathogenesis of T2DM is unknown. Here, we performed a mini-meta-analysis to explore if anti-diabetic drugs modify PAK signaling pathways, and provide insight regarding modulation of these pathways, to potentially reduce diabetes-associated cancer risk. Methods: PAK interacting partners in T2DM were identified using the online STRING database. Correlation studies were performed via systematic literature review to understand the effect of anti-diabetic drugs on PAK signaling. A mini-meta-analysis correlated multiple clinical studies and revealed the overall clinical response rate and percentage of adverse events in piogliazone (n = 53) and metformin (n = 91) treated patients with PAK-associated diseases. Results: A total of 30 PAK interacting partners were identified (10: reduced beta-cell mass; 10: beta-cell dysfunction; 10: obesity-insulin resistance), which were highly associated with Wnt, and G-protein signaling. The anti-diabetic drug metformin activated signaling pathways upstream; whereas pioglitazone inhibited pathways downstream of PAK. Overall, clinical response upon pioglitazone treatment was 53%. Seventy-nine percent of pioglitazone and 75% of metformin treated patients had adverse events. Pioglitazone reduced molecular-PAK biomarkers of proliferation (Ki67 and CyclinD1), and metformin had the opposite effect. Conclusions: PAK signaling in T2DM likely involves Wnt and G-protein signaling, which may be altered by the anti-diabetic drugs metformin and pioglitazone. Apart from the therapeutic limitations of adverse events, pioglitazone may be promising in chemoprevention. However long-term multi-centered studies, which initiate pioglitazone treatment early will be required to fully assess the full potential of these drugs.
Collapse
Affiliation(s)
- Kyle Dammann
- Department of Clinical Medicine, Medical University of the Americas, Devens, MA 01434, USA.
| | - Vineeta Khare
- Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria.
| | - Clyde Coleman
- Department of Surgery, University of Kentucky HealthCare, Lexington, KY 40536, USA.
| | - Henrik Berdel
- Department of Acute Care and Trauma Surgery, University of Kentucky HealthCare, Lexington, KY 40536, USA.
| | - Christoph Gasche
- Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
6
|
Raja R, Sahasrabuddhe NA, Radhakrishnan A, Syed N, Solanki HS, Puttamallesh VN, Balaji SA, Nanjappa V, Datta KK, Babu N, Renuse S, Patil AH, Izumchenko E, Prasad TSK, Chang X, Rangarajan A, Sidransky D, Pandey A, Gowda H, Chatterjee A. Chronic exposure to cigarette smoke leads to activation of p21 (RAC1)-activated kinase 6 (PAK6) in non-small cell lung cancer cells. Oncotarget 2018; 7:61229-61245. [PMID: 27542207 PMCID: PMC5308647 DOI: 10.18632/oncotarget.11310] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022] Open
Abstract
Epidemiological data clearly establishes cigarette smoking as one of the major cause for lung cancer worldwide. Recently, targeted therapy has become one of the most preferred modes of treatment for cancer. Though certain targeted therapies such as anti-EGFR are in clinical practice, they have shown limited success in lung cancer patients who are smokers. This demands discovery of alternative drug targets through systematic investigation of cigarette smoke-induced signaling mechanisms. To study the signaling events activated in response to cigarette smoke, we carried out SILAC-based phosphoproteomic analysis of H358 lung cancer cells chronically exposed to cigarette smoke. We identified 1,812 phosphosites, of which 278 phosphosites were hyperphosphorylated (≥ 3-fold) in H358 cells chronically exposed to cigarette smoke. Our data revealed hyperphosphorylation of S560 within the conserved kinase domain of PAK6. Activation of PAK6 is associated with various processes in cancer including metastasis. Mechanistic studies revealed that inhibition of PAK6 led to reduction in cell proliferation, migration and invasion of the cigarette smoke treated cells. Further, siRNA mediated silencing of PAK6 resulted in decreased invasive abilities in a panel of non-small cell lung cancer (NSCLC) cells. Consistently, mice bearing tumor xenograft showed reduced tumor growth upon treatment with PF-3758309 (group II PAK inhibitor). Immunohistochemical analysis revealed overexpression of PAK6 in 66.6% (52/78) of NSCLC cases in tissue microarrays. Taken together, our study indicates that PAK6 is a promising novel therapeutic target for NSCLC, especially in smokers.
Collapse
Affiliation(s)
- Remya Raja
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India
| | | | - Aneesha Radhakrishnan
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - Nazia Syed
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - Hitendra S Solanki
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Vinuth N Puttamallesh
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Amrita School of Biotechnology, Amrita University, Kollam, 690 525, India
| | - Sai A Balaji
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Vishalakshi Nanjappa
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Amrita School of Biotechnology, Amrita University, Kollam, 690 525, India
| | - Keshava K Datta
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Niraj Babu
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India
| | - Santosh Renuse
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Amrita School of Biotechnology, Amrita University, Kollam, 690 525, India
| | - Arun H Patil
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Amrita School of Biotechnology, Amrita University, Kollam, 690 525, India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Xiaofei Chang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland, 21205, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India
| |
Collapse
|