1
|
Li Y, Chen D, Xu Y, Ding Q, Xu X, Li Y, Mi Y, Chen Y. Prognostic implications, genomic and immune characteristics of lung adenocarcinoma with lepidic growth pattern. J Clin Pathol 2025; 78:277-284. [PMID: 39097406 DOI: 10.1136/jcp-2024-209603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024]
Abstract
AIMS Conflicting data were provided regarding the prognostic impact and genomic features of lung adenocarcinoma (LUAD) with lepidic growth pattern (LP+A). Delineation of the genomic and immune characteristics of LP+A could provide deeper insights into its prognostic implications and treatment determination. METHODS We conducted a search of articles in PubMed, EMBASE and the Cochrane Library from inception to January 2024. A domestic cohort consisting of 52 LUAD samples was subjected to whole-exome sequencing as internal validation. Data from The Cancer Genomic Atlas and the Gene Expression Omnibus datasets were obtained to characterise the genomic and immune profiles of LP+A. Pooled HRs and rates were calculated. RESULTS The pooled results indicated that lepidic growth pattern was either predominant (0.35, 95% CI 0.22 to 0.56, p<0.01) or minor (HR 0.50, 95% CI 0.36 to 0.70, p<0.01) histological subtype was associated with favourable disease-free survival. Pooled gene mutation rates suggested higher EGFR mutation (0.55, 95% CI 0.46 to 0.64, p<0.01) and lower KRAS mutation (0.14, 95% CI 0.02 to 0.25, p=0.02) in lepidic-predominant LUAD. Lepidic-predominant LUAD had lower tumour mutation burden and pooled positive rate of PD-L1 expression compared with other subtypes. LP+A was characterised by abundance in resting CD4+memory T cells, monocytes and γδ T cells, as well as scarcity of cancer-associated fibroblasts. CONCLUSIONS LP+A was a unique histological subtype with a higher EGFR mutation rate, lower tumour mutation burden and immune checkpoint expression levels. Our findings suggested potential benefits from targeted therapy over immunotherapy in LP+A.
Collapse
Affiliation(s)
- Yue Li
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Donglai Chen
- Department of Thoracic Surgery, Zhongshan Hospital Fudan University, Shanghai, Shanghai, China
| | - Yi Xu
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qifeng Ding
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuejun Xu
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yongzhong Li
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yedong Mi
- Department of Thoracic Surgery, Jiangyin People's Hospital, Jiangyin, Jiangsu, China
| | - Yongbing Chen
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Tan Y, Huang YH, Xue JW, Zhang R, Liu R, Wang Y, Feng ZB. Clinicopathological features and prognostic significance of pulmonary adenocarcinoma with signet ring cell components: meta-analysis and SEER analysis. Clin Exp Med 2023; 23:4341-4354. [PMID: 37779169 DOI: 10.1007/s10238-023-01200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Pulmonary adenocarcinoma is a common type of lung cancer that has been on the rise in recent years. Signet ring cell components (SRCC) can be present in various patterns of pulmonary adenocarcinoma, including papillary, acinar, and solid patterns. "Signet ring cell carcinoma" is a distinct subtype in the 2014 WHO classification of lung neoplasms, subsequent WHO classifications in 2015 and 2021 have deemed signet ring cells as accompanying morphological features with no clinical significance. The prognostic and clinical implications of SRCC in pulmonary adenocarcinoma remain controversial. Therefore, we conducted a meta-analysis to investigate the clinicopathological features and prognostic factors of SRCC in pulmonary adenocarcinoma. We conducted a comprehensive search in PubMed, EMBASE, and Web of Science to identify studies that examined the clinicopathological features and prognostic implications of pulmonary adenocarcinoma with SRCC. We used both fixed- and random-effects models to analyze the data and calculate the pooled hazard ratio (HR) and odds ratio (OR) with 95% confidence intervals (CIs). Additionally, we explored the prognostic significance of SRCC in pulmonary adenocarcinoma using the Surveillance, Epidemiology, and End Results (SEER) database. Our meta-analysis included 29 studies with pulmonary adenocarcinoma and SRCC components. The results showed that pulmonary adenocarcinoma with SRCC was associated with larger tumor size (OR = 1.99; 95% CI, 1.62-2.44, p < 0.001), advanced overall stage (OR = 5.18, 95% CI, 3.28-8.17, p < 0.00001) and lymph node stage (OR = 5.79, 95% CI, 1.96-17.09, p = 0.001), and worse overall survival (OS) compared to those without SRCC (HR = 1.80, 95% CI, 1.50-2.16, p < 0.00001). Analysis using the SEER dataset confirmed these findings. Our meta-analysis provides evidence that pulmonary adenocarcinoma with SRCC is associated with distinct clinicopathological features and a poorer prognosis. These findings have important implications for the management and treatment of patients. However, further studies are needed to validate these findings and explore the significance of SRCC in various subtypes of pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Yang Tan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Ying-He Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jia-Wen Xue
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Rui Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Run Liu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Yan Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
3
|
Wang Y, Yang X, Liu B, Yan S, Liu M, Li X, Li S, Lv C, Ma Y, Zhou L, Song Z, Xv W, Yang Y, Lin D, Wu N. Percentage of Newly Proposed High-Grade Patterns Is Associated with Prognosis of Pathological T1-2N0M0 Lung Adenocarcinoma. Ann Surg Oncol 2022; 29:10.1245/s10434-022-11444-0. [PMID: 35211858 DOI: 10.1245/s10434-022-11444-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/24/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To evaluate the prognostic value of the percentage of high-grade patterns (micropapillary, solid, and complex glands) in early-stage lung adenocarcinoma (LUAD). METHODS A total of 1049 patients undergoing radical surgery with pathological T1-2N0M0 LUAD were screened retrospectively, and 191 patients were involved in the final analysis. Disease-free survival (DFS) was evaluated using the Kaplan-Meier curve and Cox regression analysis. The optimal cut-off value was determined using maximally selected rank statistics. RESULTS The entire cohort was divided into quartile groups based on the percentage of high-grade patterns: Group 1 (≤ 30%), Group 2 (31-55%), Group 3 (56-85%), and Group 4 (≥ 86%). There were significant differences in smoking history (P = 0.041), EGFR mutations (P < 0.001), and ALK rearrangement (P = 0.010) between the four groups, but no significant differences in other clinicopathological features. Kaplan-Meier analysis showed that a higher percentage of high-grade patterns predicted worse DFS (P = 0.001), and multivariate analysis indicated that the percentage of high-grade patterns was an independent predictor (Group 2 vs. Group 1, HR = 2.136, P = 0.228; Group 3 vs. Group 1, HR = 3.355, P = 0.035; Group 4 vs. Group 1, HR = 5.147, P = 0.003, respectively). A cut-off value of 20% (P = 0.048) and 50% (P <0.001) for high-grade patterns were tested, and both revealed a significant difference in distinguishing DFS between subgroups. CONCLUSIONS The percentage of high-grade patterns is associated with the prognosis of early-stage invasive LUAD. A higher percentage indicates a worse prognosis.
Collapse
Affiliation(s)
- Yaqi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xin Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Bing Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Shi Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Mengfei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xiang Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Shaolei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Chao Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yuanyuan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Lixin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Zhijie Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Wantong Xv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yue Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dongmei Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
4
|
Hao J, Wang J, Wei P, Liu J, Su P, Xing A, Jing H. Anaplastic lymphoma kinase fusion protein expression is associated with a favorable prognosis in resected invasive mucinous lung adenocarcinoma: A retrospective study from two Chinese tertiary hospitals. J Cancer Res Ther 2022; 18:445-451. [DOI: 10.4103/jcrt.jcrt_2334_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Zhai W, Liang D, Duan F, Wong W, Yan Q, Gong L, Lai R, Dai S, Long H, Wang J. Prognostic Nomograms Based on Ground Glass Opacity and Subtype of Lung Adenocarcinoma for Patients with Pathological Stage IA Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:769881. [PMID: 34957101 PMCID: PMC8692790 DOI: 10.3389/fcell.2021.769881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/04/2021] [Indexed: 12/03/2022] Open
Abstract
The value of lung adenocarcinoma (LUAD) subtypes and ground glass opacity (GGO) in pathological stage IA invasive adenocarcinoma (IAC) has been poorly understood, and reports of their association with each other have been limited. In the current study, we retrospectively reviewed 484 patients with pathological stage IA invasive adenocarcinoma (IAC) at Sun Yat-sen University Cancer Center from March 2011 to August 2018. Patients with at least 5% solid or micropapillary presence were categorized as high-risk subtypes. Independent indicators for disease-free survival (DFS) and overall survival (OS) were identified by multivariate Cox regression analysis. Based on these indicators, we developed prognostic nomograms of OS and DFS. The predictive performance of the two nomograms were assessed by calibration plots. A total of 412 patients were recognized as having the low-risk subtype, and 359 patients had a GGO. Patients with the low-risk subtype had a high rate of GGO nodules (p < 0.001). Multivariate Cox regression analysis showed that the high-risk subtype and GGO components were independent prognostic factors for OS (LUAD subtype: p = 0.002; HR 3.624; 95% CI 1.263–10.397; GGO component: p = 0.001; HR 3.186; 95% CI 1.155–8.792) and DFS (LUAD subtype: p = 0.001; HR 2.284; 95% CI 1.448–5.509; GGO component: p = 0.003; HR 1.877; 95% CI 1.013–3.476). The C-indices of the nomogram based on the LUAD subtype and GGO components to predict OS and DFS were 0.866 (95% CI 0.841–0.891) and 0.667 (95% CI 0.586–0.748), respectively. Therefore, the high-risk subtype and GGO components were potential prognostic biomarkers for patients with stage IA IAC, and prognostic models based on these indicators showed good predictive performance and satisfactory agreement between observational and predicted survival.
Collapse
Affiliation(s)
- Wenyu Zhai
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dachuan Liang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fangfang Duan
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wingshing Wong
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qihang Yan
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Li Gong
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Renchun Lai
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuqin Dai
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Long
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junye Wang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
6
|
Gu R, Shi Z, Duan T, Song M. Feasibility and Safety of Neoadjuvant Alectinib in Pulmonary Invasive Mucinous Adenocarcinoma with ALK Rearrangement: Case Report and Literature Review. Onco Targets Ther 2021; 14:5107-5113. [PMID: 34707369 PMCID: PMC8544264 DOI: 10.2147/ott.s334213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Background Pulmonary invasive mucinous adenocarcinoma (IMA) is a rare variant of lung adenocarcinoma that rarely shows anaplastic lymphoma kinase (ALK) rearrangement. Alectinib (tyrosine kinase inhibitors) has been listed as category 1 recommendations for advanced ALK + NSCLC first-line therapy due to low toxicity and excellent efficacy, and its median progression-free survival is 34.8 months. Here, we report a case of a patient with ALK-rearranged lung IMA who showed favorable results to neoadjuvant alectinib. Case A 67-year-old man with no history of smoking was diagnosed with clinical stage as IIIB invasive mucinous adenocarcinoma based on clinical symptoms, chest CT and pathological findings. The anaplastic lymphoma kinase (ALK) fusion status was assessed by real-time PCR. After acquiring informed consent from the patient, we offered neoadjuvant alectinib at a dosage of 150 mg twice per day for three cycles (84 days), all lesions were undetectable on chest CT. Later, a thoracoscopic left lobectomy was performed. The postoperative pathological showed that a small amount of tumor cells remained, and the TNM stage was downstaged as T1aN0M0 IA. Conclusion To our knowledge, this is the first case discussing the treatment of ALK-rearranged IMA of the lung with neoadjuvant alectinib. Alectinib is an effective ALK inhibitor, and in cases of lung adenocarcinoma with ALK rearrangement, alectinib treatment is a reasonable and priority option. Neoadjuvant alectinib may be clinically feasible and well tolerated in locally advanced NSCLC.
Collapse
Affiliation(s)
- Rumeng Gu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.,Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, People's Republic of China
| | - Ziling Shi
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.,Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, People's Republic of China
| | - Ting Duan
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - Meijun Song
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Jeon HW, Kim YD, Sim SB, Moon MH. Significant difference in recurrence according to the proportion of high grade patterns in stage IA lung adenocarcinoma. Thorac Cancer 2021; 12:1952-1958. [PMID: 34037324 PMCID: PMC8258359 DOI: 10.1111/1759-7714.13984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patients with early lung cancer are the best candidates for surgical resection. However, those patients with high grade patterns (micropapillary or solid) do not have a good prognosis, even if they have been diagnosed with stage I lung adenocarcinoma. A new modified grading system has been introduced and this study aimed to identify the prognostic role of the new grading system in patients with stage IA lung adenocarcinoma. METHODS Patients with pathological stage IA lung adenocarcinoma, according to the eighth TNM classification who underwent curative resection, were reviewed. The pathological data of stage IA adenocarcinoma was reviewed 1 (grade 1: lepidic predominant with no or less than 20% of high grade patterns, grade 2: acinar or papillary predominant with no or less than 20% of high grade patterns, grade 3: any tumor with 20% or more of high grade patterns). Prognostic factors were analyzed for disease-free interval (DFI) and overall survival (OS) using Cox proportional models. RESULTS The medical records of 429 patients with stage IA lung adenocarcinoma were reviewed. DFI (p < 0.001) and OS (p < 0.001) were significantly lower in patients diagnosed with grade 3 compared with grade 1 and grade 2. Multivariate analysis showed that smoking (p = 0.013), value of SUVmax (p = 0.005), lymphovascular invasion (p = 0.004) and grade 3 (p = 0.008) were significant prognostic factors for DFI. CONCLUSIONS The proportion of high grade patterns showed a different prognosis, even if curative resection had been performed for stage IA adenocarcinoma. This new grading system is more simple and useful in the prediction of a prognosis in patients with stage IA lung adenocarcinoma.
Collapse
Affiliation(s)
- Hyun Woo Jeon
- Department of Thoracic and Cardiovascular Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Du Kim
- Department of Thoracic and Cardiovascular Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Bo Sim
- Department of Thoracic and Cardiovascular Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi Hyoung Moon
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
8
|
Li Y, Tan Y, Hu S, Xie J, Yan Z, Zhang X, Zong Y, Han-Zhang H, Li Q, Li C. Targeted Sequencing Analysis of Predominant Histological Subtypes in Resected Stage I Invasive Lung Adenocarcinoma. J Cancer 2021; 12:3222-3229. [PMID: 33976731 PMCID: PMC8100815 DOI: 10.7150/jca.51405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/15/2021] [Indexed: 01/11/2023] Open
Abstract
Objective: Lung adenocarcinoma (LADC) is classified into five main histological subtypes with distinct clinicopathologic characteristics: lepidic-predominant adenocarcinoma (LPA), acinar-predominant adenocarcinoma (APA), papillary-predominant adenocarcinoma (PPA), micropapillary-predominant adenocarcinoma (MPA) and solid-predominant adenocarcinoma (SPA). However, the mutational profiles of predominant histological subtypes have not been well defined. In this study, we aimed to reveal the genomic landscape of 5 main histological subtypes. Patients and Methods: We performed next-generation sequencing (NGS) in a cohort of 86 stage I invasive adenocarcinoma (IAC) patients, using a customized panel including 168 cancer-associated genes. Results: Our analysis identified a total of 302 genomic alterations. Five subtypes showed different mutation profiles with LPA, APA, PPA, MPA and SPA had an average mutation rate of 1.95 (range: 0-5), 2.56 (range: 1-6), 3.5 (range: 1-7), 3.75 (range: 1-8) and 6.05 (range: 2-12), respectively (p=4.17e-06). Driver mutations occurred in 96.55% (83/86) of all patients. EGFR (73.3%), KRAS (9.3%), ALK (4.7%) and MET (4.7%) are the most commonly mutated lung cancer driver genes, TP53 is the top mutated tumor suppressor gene. SPA patients harbored more driver mutations and higher frequency of TP53 than LPA patients. Interestingly, LRP1B mutations, which has been reported to be associated with high tumor mutation burden and better response to immunotherapy, were only detected from 5 SPA patients (p=0.001). No patients from other four cohorts harbored LRP1B mutations. Conclusions: We revealed distinctive mutation landscape of the 5 major histological subtypes of LADC, evident by distinctive average mutation rate with SPA and LPA having the highest and lowest average mutation rate, respectively. SPA patients showed higher mutation rate of LRP1B and higher rates for PD-L1 positivity, indicating that SPA patients may have better response to immunotherapy.
Collapse
Affiliation(s)
- Yan Li
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, China
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, China
| | - Yan Tan
- Department of Pathology, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, China
| | - Song Hu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, China
| | - Jun Xie
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, China
| | - Zhantao Yan
- Department of Pathology, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, China
| | - Xian Zhang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, China
| | - Yun Zong
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, China
| | - Han Han-Zhang
- Burning Rock Biotech, Guangzhou, Guangdong, 510300, China
| | - Qing Li
- Department of Pathology, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, China
| | - Chong Li
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, China
| |
Collapse
|
9
|
Qi X, Qi C, Qin B, Kang X, Hu Y, Han W. Immune-Stromal Score Signature: Novel Prognostic Tool of the Tumor Microenvironment in Lung Adenocarcinoma. Front Oncol 2020; 10:541330. [PMID: 33072571 PMCID: PMC7538811 DOI: 10.3389/fonc.2020.541330] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Immune and stromal cells in the tumor microenvironment (TME) significantly contribute to the prognosis of lung adenocarcinoma; however, the TME-related immune prognostic signature is unknown. The aim of this study was to develop a novel immune prognostic model of the TME in lung adenocarcinoma. Methods: First, the immune and stromal scores among lung adenocarcinoma patients were determined using the ESTIMATE algorithm in accordance with The Cancer Genome Atlas (TCGA) database. Differentially expressed immune-related genes (IRGs) between high and low immune/stromal score groups were analyzed, and a univariate Cox regression analysis was performed to identify IRGs significantly correlated with overall survival (OS) among patients with lung adenocarcinoma. Furthermore, a least absolute shrinkage and selection operator (LASSO) regression analysis was performed to generate TME-related immune prognostic signatures. Gene set enrichment analysis was performed to analyze the mechanisms underlying these immune prognostic signatures. Finally, the functions of hub IRGs were further analyzed to delineate the potential prognostic mechanisms in comprehensive TCGA datasets. Results: In total, 702 intersecting differentially expressed IRGs (589 upregulated and 113 downregulated) were screened. Univariate Cox regression analysis revealed that 58 significant differentially expressed IRGs were correlated with patient prognosis in the training cohort, of which three IRGs (CLEC17A, INHA, and XIRP1) were identified through LASSO regression analysis. A robust prognostic model was generated on the basis of this three-IRG signature. Furthermore, functional enrichment analysis of the high-risk-score group was performed primarily on the basis of metabolic pathways, whereas analysis of the low-risk-score group was performed primarily on the basis of immunoregulation and immune cell activation. Finally, hub IRGs CLEC17A, INHA, and XIRP1 were considered novel prognostic biomarkers for lung adenocarcinoma. These hub genes had different mutation frequencies and forms in lung adenocarcinoma and participated in different signaling pathways. More importantly, these hub genes were significantly correlated with the infiltration of CD4+ T cells, CD8+ T cells, macrophages, B cells, and neutrophils. Conclusions: The robust novel TME-related immune prognostic signature effectively predicted the prognosis of patients with lung adenocarcinoma. Further studies are required to further elucidate the regulatory mechanisms of these hub IRGs in the TME and to develop new treatment strategies.
Collapse
Affiliation(s)
- Xiaoguang Qi
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Chunyan Qi
- Department of Health Management, Chinese PLA General Hospital, Beijing, China
| | - Boyu Qin
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Xindan Kang
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Yi Hu
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Weidong Han
- Department of Bio-therapeutic, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Liu Y, Ye X, Yu Y, Lu S. Prognostic significance of anaplastic lymphoma kinase rearrangement in patients with completely resected lung adenocarcinoma. J Thorac Dis 2019; 11:4258-4270. [PMID: 31737311 DOI: 10.21037/jtd.2019.09.65] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Reports of the prognostic significance of anaplastic lymphoma kinase (ALK) rearrangement in early stage lung adenocarcinoma have been contradictory. This study aimed to identify the associations of ALK rearrangement with clinicopathologic features and prognosis in patients with surgically resected stage I-IIIA lung adenocarcinoma. Methods Analysis of ALK status was performed by a fully-automated immunochemistry assay (with rabbit monoclonal Ventana D5F3 antibody) in tissue sections of 2,103 patients with surgically-resected stage I-IIIA lung adenocarcinoma. ALK positive patients were matched with negative patients in a 1:1 ratio using propensity score matching (PSM). Clinical outcomes were assessed by disease-free survival (DFS) and overall survival (OS) after surgery. Initial recurrence pattern was also investigated according to ALK status. Results Among 2,103 stage I-IIIA lung adenocarcinoma cases, 81 (3.9%) were ALK positive. ALK positivity was significantly associated with younger age (P<0.001), solid predominant adenocarcinoma (P<0.001), variants of invasive adenocarcinoma (P<0.001), higher frequency of pleura invasion (P=0.040), smaller tumor size (P=0.014), mediastinal lymph node involvement (N2; P<0.001) and later pathologic stage (IIIA; P=0.001). In the match cohort, ALK positivity was not associated with DFS [hazard ratio (HR), 0.58; 95% confidence interval (CI): 0.33-1.03, P=0.063] or OS (HR, 0.61; 95% CI: 0.22-1.67, P=0.334). Lymph node involvement (HR: 5.36, 95% CI, 3.01-9.65, P<0.001) and solid predominant adenocarcinoma subtype (HR, 2.02; 95% CI: 1.07-3.79; P=0.029) were the independent prognostic factors of inferior DFS, and lymph node involvement was the independent prognostic factors of worse OS (HR, 6.61; 95% CI: 2.43-17.94; P<0.001). ALK positive patients had a higher risk of developing tumor recurrence in liver (P=0.043). Conclusions ALK rearrangement was not an independent prognostic factor in stage I-IIIA lung adenocarcinoma patients but leaded to a higher risk of developing recurrence in liver.
Collapse
Affiliation(s)
- Yinglei Liu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiangyun Ye
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yongfeng Yu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
11
|
Miyahara N, Nii K, Benazzo A, Hoda MA, Iwasaki A, Klepetko W, Klikovits T, Hoetzenecker K. Solid predominant subtype in lung adenocarcinoma is related to poor prognosis after surgical resection: A systematic review and meta-analysis. Eur J Surg Oncol 2019; 45:1156-1162. [PMID: 30772108 DOI: 10.1016/j.ejso.2019.01.220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/02/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent studies have indicated that solid predominant (SP) subtype of lung adenocarcinoma (LADC) may be associated with early recurrence and worse prognosis. Hence, a systematic review and meta-analysis were performed to evaluate the association between LADC subtype and survival. METHODS The MEDLINE, SCOPUS, Web of Science and Cochrane Libraries were reviewed for eligible studies in December 2017. Studies were included if they compared outcomes of patients with and without SP subtype in resection specimens of LADC patients after surgical treatment by using multivariate Cox regression analysis. A meta-analysis for overall survival (OS) and disease-free survival (DFS) was performed. The hazard ratios (HR) or odds ratios with 95% confidence intervals (CIs) from each study were used to calculate pooled HRs. Statistical analyses were performed using Review Manager 5.3. RESULTS In total, 14 eligible studies including 12,137 LADC patients were identified, which assessed the impact of SP subtype on OS and DFS in patients treated with pulmonary resection. SP subtype was reported in 1246 (10.2%) patients and was associated with significantly worse OS (pooled HR, 1.51; 1.29-1.75) and DFS (pooled HR, 1.26; 1.14-1.40). CONCLUSIONS SP subtype is associated with significantly worse OS and DFS in patients with LADC after pulmonary resection. These data provide evidence for the integration of the distinct histological LADC subtyping into prognostic tools and guidelines for adjuvant treatment after complete surgical resection.
Collapse
Affiliation(s)
- Naofumi Miyahara
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria; Department of General Thoracic, Breast, and Pediatric Surgery, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka City, Fukuoka, 814-0180, Japan
| | - Kazuhito Nii
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alberto Benazzo
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Mir Alireza Hoda
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Akinori Iwasaki
- Department of General Thoracic, Breast, and Pediatric Surgery, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka City, Fukuoka, 814-0180, Japan
| | - Walter Klepetko
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Thomas Klikovits
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Konrad Hoetzenecker
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
12
|
Li S, Cao L, Wang X, Wang F, Wang L, Jiang R. Neuron-Specific Enolase Is an Independent Prognostic Factor in Resected Lung Adenocarcinoma Patients with Anaplastic Lymphoma Kinase Gene Rearrangements. Med Sci Monit 2019; 25:675-690. [PMID: 30673691 PMCID: PMC6353286 DOI: 10.12659/msm.913054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background An extensive body of research reveals the clinical value of serum tumor markers in lung cancer patients, including carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCCA), cytokeratin-19 fragments (Cyfra21-1), and neuron-specific enolase (NSE), but little is known about the clinical properties of these serum tumor markers in anaplastic lymphoma kinase (ALK)-positive lung cancer patients. Matreial/Methods We retrospectively analyzed 54 patients harboring ALK rearrangements and 520 patients without ALK rearrangements, and all these patients were treated exclusively by surgery between 2011 and 2016. Results NSE level (P=0.007 for OS) was identified as an independent prognostic factor among patients with resected ALK-positive adenocarcinoma of the lung. Conclusions A high level of NSE is associated with worse outcome among resected lung adenocarcinoma patients harboring ALK rearrangements.
Collapse
Affiliation(s)
- Shouying Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China (mainland).,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China (mainland).,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Lianjing Cao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China (mainland).,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China (mainland).,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Xinyue Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China (mainland).,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China (mainland).,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Fan Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China (mainland).,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China (mainland).,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Liuchun Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China (mainland).,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China (mainland).,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Richeng Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China (mainland).,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China (mainland).,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China (mainland)
| |
Collapse
|
13
|
Gao Q, Li P, Jiang X, Zhan Z, Yan Q, Zhang B, Huang C. Worse disease-free, tumor-specific, and overall survival in surgically-resected lung adenocarcinoma patients with ALK rearrangement. Oncotarget 2017; 8:86066-86081. [PMID: 29156778 PMCID: PMC5689668 DOI: 10.18632/oncotarget.20973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/26/2017] [Indexed: 12/12/2022] Open
Abstract
Introduction This study determined the prevalence of anaplastic lymphoma kinase (ALK) rearrangement, and identified the associations of ALK rearrangement with clinicopathologic characteristics and treatment outcomes in patients with surgically-resected stage I-III lung adenocarcinoma. Methods A total of 534 surgically-resected lung adenocarcinoma patients were studied. The prevalence of ALK protein over-expression was determined by a fully-automated immunochemistry assay (with mouse monoclonal Ventana D5F3 antibody), and the associations of ALK rearrangement with clinicopathologic characteristics and treatment outcomes were analyzed. Results Forty-two (7.9%) of the 534 lung adenocarcinoma patients were ALK IHC-positive. ALK rearrangement was significantly associated with younger age (P = 0.011), high T-stage (P = 0.025), high pathologic stage (P = 0.002), solid predominant adenocarcinoma with mucin production (P = 0.006), invasive mucinous adenocarcinoma (P = 0.009), and receipt of adjuvant therapy after surgery (P = 0.036), but no significant associations were found between the ALK rearrangement and sex or smoking status. ALK IHC-positivity was significantly associated with a shorter disease-free survival, tumor-specific survival, and overall survival (P = 0.001, 0.026, and 0.007, respectively). Multivariate analysis showed that ALK IHC-positivity was an adverse prognostic factor for disease-free survival (HR, 1.80; 95% CI 1.18-2.77; P = 0.007), tumor-specific survival (HR, 2.59; 95% CI 1.35-4.97; P = 0.004), and overall survival (HR, 1.92; 95% CI 1.07-3.44; P = 0.030). Conclusion The clinical characteristics of patients with ALK-positive lung adenocarcinoma were similar to those of EGFR-mutated patients. ALK rearrangement was an adverse prognostic factor in surgically-resected lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Qiongqiong Gao
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Department of Thoracic Oncology, Tianjin Cancer Institute & Hospital, Tianjin 300060, P.R. China
| | - Pupu Li
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Department of Thoracic Oncology, Tianjin Cancer Institute & Hospital, Tianjin 300060, P.R. China
| | - Xiangli Jiang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Department of Thoracic Oncology, Tianjin Cancer Institute & Hospital, Tianjin 300060, P.R. China
| | - Zhongli Zhan
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Department of Pathology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin 300060, P.R. China
| | - Qingna Yan
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Department of Pathology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin 300060, P.R. China
| | - Bo Zhang
- Department of Ultrasound Diagnosis, Second Hospital of Tianjin Medical University, Tianjin 300060, P.R. China
| | - Chun Huang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Department of Thoracic Oncology, Tianjin Cancer Institute & Hospital, Tianjin 300060, P.R. China
| |
Collapse
|