1
|
Hu J, Hong Y, Xie X, Yuan Y, Liu W, Fu B. Dexamethasone inhibits androgen receptor-negative prostate cancer cell proliferation via the GR-FOXO3a-GAS5 axis. Heliyon 2024; 10:e27568. [PMID: 38496836 PMCID: PMC10944237 DOI: 10.1016/j.heliyon.2024.e27568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
Background Studies have shown that glucocorticoid receptor (GR) has inconsistent effects on the proliferation of prostate cancer cells, we found dexamethasone inhibited the proliferation of androgen receptor-negative prostate cancer cells, but the underlying mechanisms remain to be illustrated. Methods GR expression and its prognosis role were analyzed based on the TCGA dataset. Bioinformatic analysis was performed to identify the candidate of GR downstream, which includes FOXO3a. After overexpressing FOXO3a in PC-3 cells, cell counting kit-8 (CCK-8) and migration assays were performed to evaluate cell proliferation and migration ability. Regulation of FOXO3a on GAS5 was also analyzed by JASPAR and PCR. Results GR had low expression in prostate cancer and predicted poor prognosis. FOXO3a was identified as the downstream of GR to inhibit the proliferation of prostate cancer cells. Moreover, FOXO3a directly induces GAS5 expression, forming the GR-FOXO3a-GAS5 signaling pathway. Conclusion Our study showed that GR played a role as a tumor suppressor gene in androgen receptor-negative prostate cancer cells via the GR-FOXO3a-GAS5 axis. Our results suggested patients with prostate cancer should be classified and develop a treatment plan according to the expression of AR and GR.
Collapse
Affiliation(s)
- Jieping Hu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yanyan Hong
- Department of Nursing, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Xun Xie
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yuyang Yuan
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Weipeng Liu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| |
Collapse
|
2
|
Huang C, Lin ZJ, Chen JC, Zheng HJ, Lai YH, Huang HC. α-Viniferin-Induced Apoptosis through Downregulation of SIRT1 in Non-Small Cell Lung Cancer Cells. Pharmaceuticals (Basel) 2023; 16:ph16050727. [PMID: 37242510 DOI: 10.3390/ph16050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
α-Viniferin, a natural stilbene compound found in plants and a polymer of resveratrol, had demonstrated potential anti-cancer and anti-inflammatory effects. However, the specific mechanisms underlying its anti-cancer activity were not yet fully understood and required further investigation. This study evaluated the effectiveness of α-viniferin and ε-viniferin using MTT assay. Results showed that α-viniferin was more effective than ε-viniferin in reducing the viability of NCI-H460 cells, a type of non-small cell lung cancer. Annexin V/7AAD assay results provided further evidence that the decrease in cell viability observed in response to α-viniferin treatment was due to the induction of apoptosis in NCI-H460 cells. The present findings indicated that treatment with α-viniferin could stimulate apoptosis in cells by cleaving caspase 3 and PARP. Moreover, the treatment reduced the expression of SIRT1, vimentin, and phosphorylated AKT, and also induced AIF nuclear translocation. Furthermore, this research provided additional evidence for the effectiveness of α-viniferin as an anti-tumor agent in nude mice with NCI-H460 cell xenografts. As demonstrated by the TUNEL assay results, α-viniferin promoted apoptosis in NCI-H460 cells in nude mice.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Zi-Jun Lin
- Center for Teacher Education, National Tsing Hua University, Hsinchu 30014, Taiwan
- Department of Applied Science, Nanda Campus, National Tsing Hua University, Hsinchu 30014, Taiwan
| | - Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 60004, Taiwan
| | - Hao-Jun Zheng
- Center for Teacher Education, National Tsing Hua University, Hsinchu 30014, Taiwan
- Department of Applied Science, Nanda Campus, National Tsing Hua University, Hsinchu 30014, Taiwan
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan
| | - Hsiu-Chen Huang
- Center for Teacher Education, National Tsing Hua University, Hsinchu 30014, Taiwan
- Department of Applied Science, Nanda Campus, National Tsing Hua University, Hsinchu 30014, Taiwan
| |
Collapse
|
3
|
Fuloria S, Sekar M, Khattulanuar FS, Gan SH, Rani NNIM, Ravi S, Subramaniyan V, Jeyabalan S, Begum MY, Chidambaram K, Sathasivam KV, Safi SZ, Wu YS, Nordin R, Maziz MNH, Kumarasamy V, Lum PT, Fuloria NK. Chemistry, Biosynthesis and Pharmacology of Viniferin: Potential Resveratrol-Derived Molecules for New Drug Discovery, Development and Therapy. Molecules 2022; 27:5072. [PMID: 36014304 PMCID: PMC9414909 DOI: 10.3390/molecules27165072] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Viniferin is a resveratrol derivative. Resveratrol is the most prominent stilbenoid synthesized by plants as a defense mechanism in response to microbial attack, toxins, infections or UV radiation. Different forms of viniferin exist, including alpha-viniferin (α-viniferin), beta-viniferin (β-viniferin), delta-viniferin (δ-viniferin), epsilon-viniferin (ε-viniferin), gamma-viniferin (γ-viniferin), R-viniferin (vitisin A), and R2-viniferin (vitisin B). All of these forms exhibit a range of important biological activities and, therefore, have several possible applications in clinical research and future drug development. In this review, we present a comprehensive literature search on the chemistry and biosynthesis of and the diverse studies conducted on viniferin, especially with regards to its anti-inflammatory, antipsoriasis, antidiabetic, antiplasmodic, anticancer, anti-angiogenic, antioxidant, anti-melanogenic, neurodegenerative effects, antiviral, antimicrobial, antifungal, antidiarrhea, anti-obesity and anthelminthic activities. In addition to highlighting its important chemical and biological activities, coherent and environmentally acceptable methods for establishing vinferin on a large scale are highlighted to allow the development of further research that can help to exploit its properties and develop new phyto-pharmaceuticals. Overall, viniferin and its derivatives have the potential to be the most effective nutritional supplement and supplementary medication, especially as a therapeutic approach. More researchers will be aware of viniferin as a pharmaceutical drug as a consequence of this review, and they will be encouraged to investigate viniferin and its derivatives as pharmaceutical drugs to prevent future health catastrophes caused by a variety of serious illnesses.
Collapse
Affiliation(s)
- Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Farrah Syazana Khattulanuar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Subban Ravi
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Srikanth Jeyabalan
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 600116, India
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | | | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Yuan Seng Wu
- Department of Biological Sciences and Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Rusli Nordin
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Mohammad Nazmul Hasan Maziz
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Vinoth Kumarasamy
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| |
Collapse
|
4
|
Abstract
Glucocorticoids act through the glucocorticoid receptor (GR) and exert pleiotropic effects in different cancer types. In prostate cancer cells, GR and androgen receptor (AR) share overlapping transcriptomes and cistromes. Under enzalutamide treatment, GR signaling can bypass AR activation and promote castration resistance via the expression of a subset of AR-target genes. However, GR-dependent growth under enhanced antiandrogen inhibition occurs only in a subset of primed cells. On the other hand, glucocorticoids have been used successfully in the treatment of prostate cancer for many years. In the context of AR signaling, GR competes with AR for DNA-binding and has the potential to halt the proliferation rate of prostate cancer cells. Their target genes overlap by <50% and they execute unique functions in vivo. In addition, even when AR and GR upregulate the same transcriptional target gene, the effect might not be identical in magnitude. Besides being able to drive tumor proliferation, GR is also a key player in prostate cancer cell survival. Stimulation of GR activity can undermine the effects of enhanced antiandrogen treatment, chemotherapy and radiotherapy. GR activation in prostate cancer can increase prosurvival gene expression. Identifying the full spectrum of GR activity will inform the optimal use of glucocorticosteroids in prostate cancer. It will also determine the best strategies to target the protumorigenic effects of GR.
Collapse
Affiliation(s)
- Minas Sakellakis
- Department of Genitourinary Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas, United States
- *Correspondence: Minas Sakellakis, Department of Genitourinary Oncology, MD Anderson Cancer Center, University of Texas, 1515 Holcombe Blvd., Houston, TX 77030 (e-mail: )
| | - Laura Jacqueline Flores
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, University of Texas, Houston, Texas, United States
| |
Collapse
|
5
|
AMPK's double-faced role in advanced stages of prostate cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2064-2073. [PMID: 35781781 DOI: 10.1007/s12094-022-02874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer deaths in men. Unfortunately, a very limited number of drugs are available for the relapsed and advanced stages of PCa, adding only a few months to survival; therefore, it is vital to develop new drugs. 5´ AMP-activated protein kinase (AMPK) is a master regulator of cell metabolism. It plays a significant role in the metabolism of PCa; hence, it can serve well as a treatment option for the advanced stages of PCa. However, whether this pathway contributes to cancer cell survival or death remains unknown. The present study reviews the possible pathways by which AMPK plays role in the advanced stages of PCa, drug resistance, and metastasis: (1) AMPK has a contradictory role in promoting glycolysis and the Warburg effect which are correlated with cancer stem cells (CSCs) survival and advanced PCa. It exerts its effect by interacting with hypoxia-induced factor 1 (HIF1) α, pyruvate kinase 2 (PKM2), glucose transporter (GLUT) 1 and pyruvate dehydrogenase complex (PDHC), which are key regulators of glycolysis; however, whether it promotes or discourage glycolysis is not conclusive. It can also exert an anti-CSC effect by negative regulation of NANOG and epithelial-mesenchymal transition (EMT) transcription factors, which are the major drivers of CSC maintenance; (2) the regulatory effect of AMPK on autophagy is also noticeable. Androgen receptors' expression increases AMPK activation through Calcium/calmodulin-dependent protein kinase 2 (CaMKK2) and induces autophagy. In addition, AMPK itself increases autophagy by downregulating the mammalian target of rapamycin complex (mTORC). However, whether increased autophagy inhibits or promotes cell death and drug resistance is contradictory. This study reveals that there are numerous pathways other than cell metabolism by which AMPK exerts its effects in the advanced stages of PCa, making it a priceless treatment target. Finally, we mention some drugs developed to treat the advanced stages of PCa by acting on AMPK.
Collapse
|
6
|
DU BX, LIN P, LIN J. EGCG and ECG induce apoptosis and decrease autophagy via the AMPK/mTOR and PI3K/AKT/mTOR pathway in human melanoma cells. Chin J Nat Med 2022; 20:290-300. [DOI: 10.1016/s1875-5364(22)60166-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 12/11/2022]
|
7
|
Zheng K, Chen S, Hu X. Peroxisome Proliferator Activated Receptor Gamma Coactivator-1 Alpha: A Double-Edged Sword in Prostate Cancer. Curr Cancer Drug Targets 2022; 22:541-559. [PMID: 35362394 DOI: 10.2174/1568009622666220330194149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022]
Abstract
Peroxisome proliferator activated receptor gamma coactivator-1 alpha (PGC-1α/PPARGC1A) is a pivotal transcriptional coactivator involved in the regulation of mitochondrial metabolism, including biogenesis and oxidative metabolism. PGC-1α is finely regulated by AMP-activated protein kinases (AMPKs), the role of which in tumors remains controversial to date. In recent years, a growing amount of research on PGC-1α and tumor metabolism has emphasized its importance in a variety of tumors, including prostate cancer (PCA). Compelling evidence has shown that PGC-1α may play dual roles in promoting and inhibiting tumor development under certain conditions. Therefore, a better understanding of the critical role of PGC-1α in PCA pathogenesis will provide new insights into targeting PGC-1α for the treatment of this disease. In this review, we highlight the procancer and anticancer effects of PGC-1α in PCA and aim to provide a theoretical basis for targeting AMPK/PGC-1α to inhibit the development of PCA. In addition, our recent findings provide a candidate drug target and theoretical basis for targeting PGC-1α to regulate lipid metabolism in PCA.
Collapse
Affiliation(s)
- Kun Zheng
- Department of urology, Shanghai Sixth People\'s Hospital, 600 Yishan Road, Xuhui District, Shanghai, China
| | - Suzhen Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People\'s Hospital, Shanghai Jiao Tong University Affiliated Sixth People\'s Hospital, China
| | - Xiaoyong Hu
- Department of Urology, Shanghai Sixth People\'s Hospital, 600 Yishan Road, Xuhui District, Shanghai, China
| |
Collapse
|
8
|
Ashrafizadeh M, Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, Hushmandi K, Hashemi M, Nabavi N, Crea F, Ren J, Klionsky DJ, Kumar AP, Wang Y. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res 2022; 41:105. [PMID: 35317831 PMCID: PMC8939209 DOI: 10.1186/s13046-022-02293-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is a leading cause of death worldwide and new estimates revealed prostate cancer as the leading cause of death in men in 2021. Therefore, new strategies are pertinent in the treatment of this malignant disease. Macroautophagy/autophagy is a “self-degradation” mechanism capable of facilitating the turnover of long-lived and toxic macromolecules and organelles. Recently, attention has been drawn towards the role of autophagy in cancer and how its modulation provides effective cancer therapy. In the present review, we provide a mechanistic discussion of autophagy in prostate cancer. Autophagy can promote/inhibit proliferation and survival of prostate cancer cells. Besides, metastasis of prostate cancer cells is affected (via induction and inhibition) by autophagy. Autophagy can affect the response of prostate cancer cells to therapy such as chemotherapy and radiotherapy, given the close association between autophagy and apoptosis. Increasing evidence has demonstrated that upstream mediators such as AMPK, non-coding RNAs, KLF5, MTOR and others regulate autophagy in prostate cancer. Anti-tumor compounds, for instance phytochemicals, dually inhibit or induce autophagy in prostate cancer therapy. For improving prostate cancer therapy, nanotherapeutics such as chitosan nanoparticles have been developed. With respect to the context-dependent role of autophagy in prostate cancer, genetic tools such as siRNA and CRISPR-Cas9 can be utilized for targeting autophagic genes. Finally, these findings can be translated into preclinical and clinical studies to improve survival and prognosis of prostate cancer patients. • Prostate cancer is among the leading causes of death in men where targeting autophagy is of importance in treatment; • Autophagy governs proliferation and metastasis capacity of prostate cancer cells; • Autophagy modulation is of interest in improving the therapeutic response of prostate cancer cells; • Molecular pathways, especially involving non-coding RNAs, regulate autophagy in prostate cancer; • Autophagy possesses both diagnostic and prognostic roles in prostate cancer, with promises for clinical application.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1417466191, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.,Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Daniel J Klionsky
- Life Sciences Institute & Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Huang C, Lin ZJ, Lee CJ, Lai WH, Chen JC, Huang HC. ε-Viniferin and α-viniferin alone or in combination induced apoptosis and necrosis in osteosarcoma and non-small cell lung cancer cells. Food Chem Toxicol 2021; 158:112617. [PMID: 34728247 DOI: 10.1016/j.fct.2021.112617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022]
Abstract
This study investigated the effects and molecular mechanisms of ε-viniferin and α-viniferin in non-small cell lung cancer cell line A549, melanoma cell line A2058, and osteosarcoma cell lines HOS and U2OS. Results showed ε-viniferin having antiproliferative effects on HOS, U2OS, and A549 cells. Compared with ε-viniferin at the same concentration, α-viniferin had higher antiproliferative effects on HOS cells, but not the same effect on U2OS and A549 cells. Lower dose combination of α-viniferin and ε-viniferin had more synergistic effects on A549 cells than either drug alone. α-Viniferin induced apoptosis in HOS cells by decreasing expression of phospho-c-Jun-N-terminal kinase 1/2 (p-JNK1/2) and increasing expression of cleaved Poly (ADP-ribose) polymerase (PARP), whereas α-viniferin in combination with ε-viniferin induced apoptosis in A549 cells by decreasing expression of phospho-protein kinase B (p-AKT) and increasing expression of cleaved PARP and cleaved caspase-3. ε-Viniferin and α-viniferin have not been studied using in vivo tumor models for cancer. This research is the first showing that ε-viniferin treatment resulted in significant inhibition of tumor growth in A549-cell xenograft-bearing nude mice compared with the control group. Consequently, ε-viniferin and α-viniferin may prove to be new approaches and effective therapeutic agents for osteosarcoma and lung cancer treatment.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Zi-Jun Lin
- Center for Teacher Education, National Tsing Hua University, Hsinchu, Taiwan; Department of Applied Science, National Tsing Hua University, Nanda Campus, Hsinchu, Taiwan
| | - Cheng-Ju Lee
- Center for Teacher Education, National Tsing Hua University, Hsinchu, Taiwan; Department of Applied Science, National Tsing Hua University, Nanda Campus, Hsinchu, Taiwan
| | - Wei-Han Lai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan; Center for Teacher Education, National Tsing Hua University, Hsinchu, Taiwan; Department of Applied Science, National Tsing Hua University, Nanda Campus, Hsinchu, Taiwan
| | - Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City, 60004, Taiwan.
| | - Hsiu-Chen Huang
- Center for Teacher Education, National Tsing Hua University, Hsinchu, Taiwan; Department of Applied Science, National Tsing Hua University, Nanda Campus, Hsinchu, Taiwan.
| |
Collapse
|
10
|
Liu B, Zhou H, Zhang T, Gao X, Tao B, Xing H, Zhuang Z, Dardik A, Kyriakides TR, Goodwin JE. Loss of endothelial glucocorticoid receptor promotes angiogenesis via upregulation of Wnt/β-catenin pathway. Angiogenesis 2021; 24:631-645. [PMID: 33650028 PMCID: PMC8292305 DOI: 10.1007/s10456-021-09773-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Objective The glucocorticoid receptor (GR) is a member of the nuclear receptor family that controls key biological processes in the cardiovascular system and has recently been shown to modulate Wnt signaling in endothelial cells. Wnt/β-catenin signaling has been demonstrated to be crucial in the process of angiogenesis. In the current study, we studied whether GR could regulate angiogenesis via the Wnt/β-catenin pathway. Approach and Resultsa Key components of the Wnt/β-catenin pathway were evaluated using quantitative PCR and Western blot in the presence or absence of GR. Enhanced angiogenesis was found in GR deficiency in vitro and confirmed with cell viability assays, proliferation assays and tube formation assays. Consistent with these in vitro findings, endothelial cell-specific GR loss GR in vivo promoted angiogenesis in both a hind limb ischemia model and sponge implantation assay. Results were further verified in a novel mouse model lacking endothelial LRP5/6, a key receptor in canonical Wnt signaling, and showed substantially suppressed angiogenesis using these same in vitro and in vivo assays. To further investigate the mechanism of GR regulation of Wnt signaling, autophagy flux was investigated in endothelial cells by visualizing auto phagolysosomes as well as by assessing P62 degradation and LC3B conversion. Results indicated that potentiated autophagy flux participated in GR-Wnt regulation. Conclusions Lack of endothelial GR triggers autophagy flux, leads to activation of Wnt/β-catenin signaling and promotes angiogenesis. There may also be a synergistic interaction between autophagy and Wnt/β-catenin signaling. Supplementary Information The online version of this article (10.1007/s10456-021-09773-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bing Liu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Han Zhou
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Tiening Zhang
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xixiang Gao
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Bo Tao
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hao Xing
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Zhenwu Zhuang
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, CT, 06510-3221, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT, 06516, USA
| | - Themis R Kyriakides
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Pathology, Yale University, New Haven, CT, 06510, USA
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Benvenuto M, Albonici L, Focaccetti C, Ciuffa S, Fazi S, Cifaldi L, Miele MT, De Maio F, Tresoldi I, Manzari V, Modesti A, Masuelli L, Bei R. Polyphenol-Mediated Autophagy in Cancer: Evidence of In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E6635. [PMID: 32927836 PMCID: PMC7555128 DOI: 10.3390/ijms21186635] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
One of the hallmarks of cellular transformation is the altered mechanism of cell death. There are three main types of cell death, characterized by different morphological and biochemical features, namely apoptosis (type I), autophagic cell death (type II) and necrosis (type III). Autophagy, or self-eating, is a tightly regulated process involved in stress responses, and it is a lysosomal degradation process. The role of autophagy in cancer is controversial and has been associated with both the induction and the inhibition of tumor growth. Autophagy can exert tumor suppression through the degradation of oncogenic proteins, suppression of inflammation, chronic tissue damage and ultimately by preventing mutations and genetic instability. On the other hand, tumor cells activate autophagy for survival in cellular stress conditions. Thus, autophagy modulation could represent a promising therapeutic strategy for cancer. Several studies have shown that polyphenols, natural compounds found in foods and beverages of plant origin, can efficiently modulate autophagy in several types of cancer. In this review, we summarize the current knowledge on the effects of polyphenols on autophagy, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of polyphenols for envisioning future therapies employing polyphenols as chemoadjuvants.
Collapse
Affiliation(s)
- Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| |
Collapse
|
12
|
Wan J, Jiang S, Jiang Y, Ma W, Wang X, He Z, Wang X, Cui R. Data Mining and Expression Analysis of Differential lncRNA ADAMTS9-AS1 in Prostate Cancer. Front Genet 2020; 10:1377. [PMID: 32153626 PMCID: PMC7049946 DOI: 10.3389/fgene.2019.01377] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play important roles in the regulation of gene expression by acting as competing endogenous RNAs (ceRNAs). However, the roles of lncRNA-associated ceRNAs in oncogenesis are not fully understood. The present study aims to determine whether a ceRNA network can serve as a prognostic marker in human prostate cancer (PCa). In order to identify a ceRNA network and the key lncRNAs in PCa, we constructed a differentially expressed lncRNAs (DELs)-differentially expressed miRNAs (DEMis)-differentially expressed mRNAs (DEMs) regulatory network based on the ceRNA theory using data from the Cancer Genome Atlas (TCGA). We found that the DELs-DEMis-DEMs network was composed of 27 DELs nodes, seven DEMis nodes, and three DEMs nodes. The 27 DELs were further analyzed with several public databases to provide meaningful information for understanding the functional roles of lncRNAs in regulatory networks in PCa. We selected ADAMTS9-AS1 to determine its role in PCa and found that ADAMTS9-AS1 significantly influences tumor cell growth and proliferation, suggesting that it plays a tumor suppressive role. In addition, ADAMTS9-AS1 functioned as ceRNA, effectively becoming a sponge for hsa-mir-96 and modulating the expression of PRDM16. These results suggest that ceRNAs could accelerate biomarker discovery and therapeutic strategies for PCa.
Collapse
Affiliation(s)
- Jiahui Wan
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China.,Department of Clinical Laboratory, Harbin Public Security Hospital, Harbin, China
| | - Shijun Jiang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China.,Department of Clinical Laboratory, Daqing Medical College, Daqing, China
| | - Ying Jiang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Wei Ma
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Xiuli Wang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China.,Department of Clinical Laboratory, The Seventh Hospital in Qiqihar, Qiqihar, China
| | - Zikang He
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaojin Wang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Rongjun Cui
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
13
|
Huang C, Huang YL, Wang CC, Pan YL, Lai YH, Huang HC. Ampelopsins A and C Induce Apoptosis and Metastasis through Downregulating AxL, TYRO3, and FYN Expressions in MDA-MB-231 Breast Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2818-2830. [PMID: 30789269 DOI: 10.1021/acs.jafc.8b06444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ampelopsins A and C are resveratrol oligostilbenes whose role in cancer development remains unknown. This study evaluated the antimetastatic and apoptosis-inducing properties of ampelopsins A and C in MDA-MB-231 cells. The IC50 values of ampelopsins A and C against MDA-MB-231 cells at 72 h were 38.75 ± 4.61 and 2.71 ± 0.21 μM, respectively. However, at 24 h, ampelopsins A and C decreased cell metastasis significantly. Among the 71 proteins present on the human phosphoreceptor tyrosin kinase array, ampelopsin C decreased the phosphorylated protein level of AXL, Dtk (TYRO3), EphA2, EphA6, Fyn, Hck, and SRMS. Additionally, antiproliferation effects of ampelopsin C were enhanced when combined with luteolin and chrysin compared to either two or a single agent in MDA-MB-231 cells. Overall, ampelopsins A and C extracted from Vitis thunbergii are both novel antimetastatic agents and potential therapeutic targets in patients with breast cancer.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine , National Yang-Ming University , Taipei 112 , Taiwan
- Department of Earth and Life Sciences , University of Taipei , Taipei 100 , Taiwan
| | - Yu-Ling Huang
- National Research Institute of Chinese Medicine , No. 155-1, Section 2, Li-Nong Street , Beitou District, Taipei 11221 , Taiwan
- Department of Cosmetic Science , Chang Gung University of Science and Technology , No. 261, Wen-Hwa First Road , Kwei-shan, Taoyuan 333 , Taiwan
| | - Chia-Chi Wang
- Department of Applied Science , National Tsing Hua University , South Campus, No. 521, Nanda Road , Hsinchu 30014 , Taiwan
| | - Yi-Ling Pan
- Department of Applied Science , National Tsing Hua University , South Campus, No. 521, Nanda Road , Hsinchu 30014 , Taiwan
| | - Yu-Heng Lai
- Department of Chemistry , Chinese Culture University , Taipei 11114 , Taiwan
| | - Hsiu-Chen Huang
- Department of Applied Science , National Tsing Hua University , South Campus, No. 521, Nanda Road , Hsinchu 30014 , Taiwan
| |
Collapse
|