1
|
Li Z, Zhang W, Zhang Z, Mao G, Qi L, Wang Y, Yang H, Ye H. PICH, A protein that maintains genomic stability, can promote tumor growth. Gene 2025; 935:149074. [PMID: 39491600 DOI: 10.1016/j.gene.2024.149074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Genomic instability is regardedas a hallmark of cancer cells. It can be presented in many ways, among which chromosome instability has received attention. Ultrafine anaphase bridges are a typeof chromatin bridges, the untimely resolution of which can also lead to chromosome instability. PICH can play a role in maintaining chromosome stability by regulating chromosome morphologyand resolving ultrafine anaphase bridges. Recently, PICH has been found to be overexpressed in various cancers. Overexpression of PICH is related to the proliferation of tumors and poor prognosis. In this article, we consider that PICH can maintain genomic stability by regulating appropriate chromosome structure, ensuring proper chromosome segregation, and facilitating replication fork reversal. We summarize how PICH regulates chromosome stability, how PICH resolves Ultrafine anaphase bridges with other proteins, and how PICH promotes tumor progression.
Collapse
Affiliation(s)
- Zeyuan Li
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Wentao Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Zihan Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Guoming Mao
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Linping Qi
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Yubin Wang
- Laboratory Medicine Center Gansu Provincial Natural Science, Lanzhou University Second Hospital, People's Republic of China
| | - Hanteng Yang
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
| | - Huili Ye
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China; Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China; Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
| |
Collapse
|
2
|
Lu Z, Hou G. Characterization of the function and clinical value of ERCC family genes in lung adenocarcinoma. Front Oncol 2024; 14:1476100. [PMID: 39582530 PMCID: PMC11581973 DOI: 10.3389/fonc.2024.1476100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction ERCC genes, responsible for encoding enzymes involved in base excision repair, have been implicated in various cancers, contributing to chemoresistance. However, a comprehensive analysis of the prognostic and therapeutic significance of this gene family in lung adenocarcinoma (LUAD) is lacking. Methods This study conducted a multidimensional assessment of ERCC family genes in LUAD using bioinformatic approaches, including mRNA expression level, gene methylation, and copy number variation (CNV), as well as their correlations with clinical outcome, gene set variations, and tumor-infiltrating lymphocytes (TILs). In addition, We evaluated the anti-tumor effects of ERCC8 in cell lines, demonstrating its clinical potential on an experimental level. Results Overall, the expression of ERCC genes exhibited a negative correlation with good prognosis, with ERCC6L and ERCC8 demonstrating the most reliable predictive performance. Gene methylation level and CNV increases of ERCC genes generally displayed negative and positive associations with their expression levels, respectively. Additionally, GSVA analysis suggested that ERCC expression was positively correlated with cell cycle and apoptosis pathways but negatively correlated to the TSC/mTOR pathway. Furthermore, the expression of ERCC genes exhibited a complex relationship with TILs and the response to anti-tumor drugs. The results of in vitro cellular experiments show that inhibiting ERCC8 can alleviate the malignant phenotype of LUAD cells. Discussion Our study revealed the multifaceted biological and clinical significance of ERCC family members in LUAD. These findings provide new insights into the function of ERCC family genes in LUAD and their potential clinical applications.
Collapse
Affiliation(s)
- Zhimin Lu
- Department of Outpatient, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, China
| | - Guoxin Hou
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, China
| |
Collapse
|
3
|
Castejón-Griñán M, Albers E, Simón-Carrasco L, Aguilera P, Sbroggio M, Pladevall-Morera D, Ingham A, Lim E, Guillen-Benitez A, Pietrini E, Lisby M, Hickson ID, Lopez-Contreras AJ. PICH deficiency limits the progression of MYC-induced B-cell lymphoma. Blood Cancer J 2024; 14:16. [PMID: 38253636 PMCID: PMC10803365 DOI: 10.1038/s41408-024-00979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Plk1-interacting checkpoint helicase (PICH) is a DNA translocase involved in resolving ultrafine anaphase DNA bridges and, therefore, is important to safeguard chromosome segregation and stability. PICH is overexpressed in various human cancers, particularly in lymphomas such as Burkitt lymphoma, which is caused by MYC translocations. To investigate the relevance of PICH in cancer development and progression, we have combined novel PICH-deficient mouse models with the Eμ-Myc transgenic mouse model, which recapitulates B-cell lymphoma development. We have observed that PICH deficiency delays the onset of MYC-induced lymphomas in Pich heterozygous females. Moreover, using a Pich conditional knockout mouse model, we have found that Pich deletion in adult mice improves the survival of Eμ-Myc transgenic mice. Notably, we show that Pich deletion in healthy adult mice is well tolerated, supporting PICH as a suitable target for anticancer therapies. Finally, we have corroborated these findings in two human Burkitt lymphoma cell lines and we have found that the death of cancer cells was accompanied by chromosomal instability. Based on these findings, we propose PICH as a potential therapeutic target for Burkitt lymphoma and for other cancers where PICH is overexpressed.
Collapse
Affiliation(s)
- María Castejón-Griñán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Eliene Albers
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lucía Simón-Carrasco
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain
| | - Paula Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mauro Sbroggio
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - David Pladevall-Morera
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Ingham
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ernest Lim
- Center for Chromosome Stability, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alba Guillen-Benitez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain
| | - Elena Pietrini
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain
| | - Michael Lisby
- Center for Chromosome Stability, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Andres J Lopez-Contreras
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain.
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Li C, Shi J, Wei S, Jia H. Potential 'anti-cancer' effects of esketamine on proliferation, apoptosis, migration and invasion in esophageal squamous carcinoma cells. Eur J Med Res 2023; 28:517. [PMID: 37968758 PMCID: PMC10647146 DOI: 10.1186/s40001-023-01511-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Esketamine, an N-methyl-D-aspartate receptor antagonist, is commonly used for anesthesia and analgesia clinically. It was reported to negatively regulate cell proliferation, metastasis and apoptosis in cancer cells, including lung cancer and pancreatic cancer. However, its impact on esophageal squamous cell carcinoma (ESCC) malignance and underlying mechanism remain elusive. This study was aimed to investigate the antitumor effects of esketamine on ESCC in vitro. METHODS ESCC cell lines (KYSE-30 and KYSE-150) were cultured and treated with different concentrations (0.1, 0.2, 0.4, 0.8, 1, 2 mM) of esketamine. Their proliferation, apoptosis, migration and invasion were assessed with various assays. Furthermore, mass spectrometry-based proteomic analysis and GO/KEGG enrichment analysis were applied to characterize the differentially expressed proteins (DEPs) with or without esketamine treatment. Some key proteins identified from proteomic analysis were further validated with Western blotting and bioinformatics analysis. RESULTS Esketamine significantly inhibited the proliferation, migration, invasion and promoted apoptosis of the both types of cell lines in a dose- and time-dependent manner. A total of 321 common DEPs, including 97 upregulated and 224 downregulated proteins, were found with HPLC-MS analyses. GO/KEGG enrichment analysis suggested that esketamine affected cell population proliferation, GTPase activity and Apelin signaling pathway. The ERCC6L, AHR and KIF2C protein expression was significantly downregulated in these ESCC cells treated with esketamine compared to the controls and their changes were associated with the suppressive effects of esketamine on ESCC through bioinformatics analysis. CONCLUSIONS Our work demonstrated that esketamine has potential anti-ESCC properties in vitro but subjected to further in vivo and clinical study.
Collapse
Affiliation(s)
- Chao Li
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, 12th Health Road, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Jingpu Shi
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, 12th Health Road, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Sisi Wei
- Scientific Research Center, The Fourth Hospital of Hebei Medical University, 12th Health Road, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Huiqun Jia
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, 12th Health Road, Shijiazhuang, Hebei, 050011, People's Republic of China.
| |
Collapse
|
5
|
Ye H, Shi W, Yang J, Wang L, Jiang X, Zhao H, Qin L, Qin J, Li L, Cai W, Guan J, Yang H, Zhou H, Yu Z, Sun H, Jiao Z. PICH Activates Cyclin A1 Transcription to Drive S-Phase Progression and Chemoresistance in Gastric Cancer. Cancer Res 2023; 83:3767-3782. [PMID: 37646571 DOI: 10.1158/0008-5472.can-23-1331] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/17/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
The chemotherapeutic agent 5-fluorouracil (5-FU) remains the backbone of postoperative adjuvant treatment for gastric cancer. However, fewer than half of patients with gastric cancer benefit from 5-FU-based chemotherapies owing to chemoresistance and limited clinical biomarkers. Here, we identified the SNF2 protein Polo-like kinase 1-interacting checkpoint helicase (PICH) as a predictor of 5-FU chemosensitivity and characterized a transcriptional function of PICH distinct from its role in chromosome separation. PICH formed a transcriptional complex with RNA polymerase II (Pol II) and ATF4 at the CCNA1 promoter in an ATPase-dependent manner. Binding of the PICH complex promoted cyclin A1 transcription and accelerated S-phase progression. Overexpressed PICH impaired 5-FU chemosensitivity in human organoids and patient-derived xenografts. Furthermore, elevated PICH expression was negatively correlated with survival in postoperative patients receiving 5-FU chemotherapy. Together, these findings reveal an ATPase-dependent transcriptional function of PICH that promotes cyclin A1 transcription to drive 5-FU chemoresistance, providing a potential predictive biomarker of 5-FU chemosensitivity for postoperative patients with gastric cancer and prompting further investigation into the transcriptional activity of PICH. SIGNIFICANCE PICH binds Pol II and ATF4 in an ATPase-dependent manner to form a transcriptional complex that promotes cyclin A1 expression, accelerates S-phase progression, and impairs 5-FU chemosensitivity in gastric cancer.
Collapse
Affiliation(s)
- Huili Ye
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Wengui Shi
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Jing Yang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Long Wang
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Xiangyan Jiang
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Huiming Zhao
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Long Qin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Junjie Qin
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Lianshun Li
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Weiwen Cai
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Junhong Guan
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Hanteng Yang
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Huinian Zhou
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Zeyuan Yu
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Hui Sun
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Zuoyi Jiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, P.R. China
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, P.R. China
| |
Collapse
|
6
|
Cui M, Chang Y, Wang J, Wu J, Li G, Tan J. ERCC6L facilitates the progression of laryngeal squamous cell carcinoma by the binding of FOXM1 and KIF4A. Cell Death Discov 2023; 9:41. [PMID: 36726012 PMCID: PMC9892579 DOI: 10.1038/s41420-023-01314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
The role of excision repair cross-complementation group 6-like (ERCC6L) has been reported in several cancers, but little is known about its expression and function in laryngeal squamous cell carcinoma (LSCC). In this study, the expression of ERCC6L in LSCC was determined by immunohistochemistry and its correlation with prognostic factors was analyzed. Furthermore, cytological functional validation elucidated the role and underlying mechanisms of ERCC6L dysregulation in LSCC. Our data revealed that ERCC6L expression was elevated in LSCC and it's correlated with TNM stage. In addition, ERCC6L knockdown LSCC cells showed decreased proliferation and migration, increased apoptosis, and reactive oxygen species (ROS). Mechanically, overexpression of ERCC6L promoted nuclear translocation of FOXM1 to facilitate direct binding to the KIF4A promoter and upregulated KIF4A expression. Furthermore, KIF4A knockdown attenuated the role of ERCC6L overexpression in promoting proliferation, migration, and tumorigenesis of LSCC cells. In summary, ERCC6L promoted the binding of FOXM1 and KIF4A in LSCC cells to drive their progression, which may be a promising target for precision therapy in this disease.
Collapse
Affiliation(s)
- Meng Cui
- Department of Head and Neck Thyroid, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, People's Republic of China
| | - Yu Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Dong Road, Zhengzhou, 450007, People's Republic of China
| | - Jiheng Wang
- Department of Head and Neck Thyroid, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, People's Republic of China
| | - Junfu Wu
- Department of Head and Neck Thyroid, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, People's Republic of China
| | - Gang Li
- Department of Head and Neck Thyroid, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, People's Republic of China
| | - Jie Tan
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University People's Hospital, Peking University, Xi Zhi Men South Street 11, Western District, Beijing, 100034, P.R. China.
| |
Collapse
|