1
|
Pereira Santos VE, de França São Marcos B, Fontes PHB, Silva MEDS, Leão SL, da Silva GRP, Ribeiro DE, da Gama MATM, de Oliveira Isídio BE, de Moura IA, Lussón DB, Leal LRS, Venuti A, de Freitas AC. E5 Oncoprotein: A Key Player in Human Papillomavirus-Positive Head and Neck Cancer Pathogenesis and Therapy Resistance. Viruses 2025; 17:512. [PMID: 40284955 PMCID: PMC12031384 DOI: 10.3390/v17040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025] Open
Abstract
Head and neck cancer (HNC) is the sixth most prevalent type of cancer worldwide and is associated with low five-year survival rates. Alcoholism and smoking are the main risk factors associated with the development of head and neck cancer (HNC). However, Human Papillomavirus (HPV) infection has been reported as a significant risk factor, particularly for the oropharyngeal subset. In these cases, patients with HPV-positive HNC exhibit a better clinical prognosis; however, resistance to chemotherapy has been frequently reported. The carcinogenic activity of HPV is related to the viral oncoproteins E5, E6, and E7. E5 has been associated with immune evasion mechanisms and modulation of the tumor microenvironment, which appears to be linked to the virus's resistance to chemotherapeutic treatments. Here, we review the potential of HPV E5 in targeted therapy for HNC and discuss relevant data regarding the activity of this oncoprotein in head and neck carcinogenesis.
Collapse
Affiliation(s)
- Vanessa Emanuelle Pereira Santos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235., 50670-901 Pernambuco, Brazil; (V.E.P.S.); (B.d.F.S.M.); (P.H.B.F.); (M.E.d.S.S.); (S.L.L.); (G.R.P.d.S.); (D.E.R.); (M.A.T.M.d.G.); (B.E.d.O.I.); (I.A.d.M.); (D.B.L.)
| | - Bianca de França São Marcos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235., 50670-901 Pernambuco, Brazil; (V.E.P.S.); (B.d.F.S.M.); (P.H.B.F.); (M.E.d.S.S.); (S.L.L.); (G.R.P.d.S.); (D.E.R.); (M.A.T.M.d.G.); (B.E.d.O.I.); (I.A.d.M.); (D.B.L.)
| | - Pedro Henrique Bezerra Fontes
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235., 50670-901 Pernambuco, Brazil; (V.E.P.S.); (B.d.F.S.M.); (P.H.B.F.); (M.E.d.S.S.); (S.L.L.); (G.R.P.d.S.); (D.E.R.); (M.A.T.M.d.G.); (B.E.d.O.I.); (I.A.d.M.); (D.B.L.)
| | - Micaela Evellin dos Santos Silva
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235., 50670-901 Pernambuco, Brazil; (V.E.P.S.); (B.d.F.S.M.); (P.H.B.F.); (M.E.d.S.S.); (S.L.L.); (G.R.P.d.S.); (D.E.R.); (M.A.T.M.d.G.); (B.E.d.O.I.); (I.A.d.M.); (D.B.L.)
| | - Stephanie Loureiro Leão
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235., 50670-901 Pernambuco, Brazil; (V.E.P.S.); (B.d.F.S.M.); (P.H.B.F.); (M.E.d.S.S.); (S.L.L.); (G.R.P.d.S.); (D.E.R.); (M.A.T.M.d.G.); (B.E.d.O.I.); (I.A.d.M.); (D.B.L.)
| | - Gabriel Rômulo Parente da Silva
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235., 50670-901 Pernambuco, Brazil; (V.E.P.S.); (B.d.F.S.M.); (P.H.B.F.); (M.E.d.S.S.); (S.L.L.); (G.R.P.d.S.); (D.E.R.); (M.A.T.M.d.G.); (B.E.d.O.I.); (I.A.d.M.); (D.B.L.)
| | - Davi Emanuel Ribeiro
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235., 50670-901 Pernambuco, Brazil; (V.E.P.S.); (B.d.F.S.M.); (P.H.B.F.); (M.E.d.S.S.); (S.L.L.); (G.R.P.d.S.); (D.E.R.); (M.A.T.M.d.G.); (B.E.d.O.I.); (I.A.d.M.); (D.B.L.)
| | - Marco Antonio Turiah Machado da Gama
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235., 50670-901 Pernambuco, Brazil; (V.E.P.S.); (B.d.F.S.M.); (P.H.B.F.); (M.E.d.S.S.); (S.L.L.); (G.R.P.d.S.); (D.E.R.); (M.A.T.M.d.G.); (B.E.d.O.I.); (I.A.d.M.); (D.B.L.)
| | - Beatriz Eda de Oliveira Isídio
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235., 50670-901 Pernambuco, Brazil; (V.E.P.S.); (B.d.F.S.M.); (P.H.B.F.); (M.E.d.S.S.); (S.L.L.); (G.R.P.d.S.); (D.E.R.); (M.A.T.M.d.G.); (B.E.d.O.I.); (I.A.d.M.); (D.B.L.)
| | - Ingrid Andrêssa de Moura
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235., 50670-901 Pernambuco, Brazil; (V.E.P.S.); (B.d.F.S.M.); (P.H.B.F.); (M.E.d.S.S.); (S.L.L.); (G.R.P.d.S.); (D.E.R.); (M.A.T.M.d.G.); (B.E.d.O.I.); (I.A.d.M.); (D.B.L.)
| | - David Beltrán Lussón
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235., 50670-901 Pernambuco, Brazil; (V.E.P.S.); (B.d.F.S.M.); (P.H.B.F.); (M.E.d.S.S.); (S.L.L.); (G.R.P.d.S.); (D.E.R.); (M.A.T.M.d.G.); (B.E.d.O.I.); (I.A.d.M.); (D.B.L.)
| | - Lígia Rosa Sales Leal
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235., 50670-901 Pernambuco, Brazil; (V.E.P.S.); (B.d.F.S.M.); (P.H.B.F.); (M.E.d.S.S.); (S.L.L.); (G.R.P.d.S.); (D.E.R.); (M.A.T.M.d.G.); (B.E.d.O.I.); (I.A.d.M.); (D.B.L.)
| | - Aldo Venuti
- HPV-Unit, UOSD Tumor Immunology and Immunotherapy IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235., 50670-901 Pernambuco, Brazil; (V.E.P.S.); (B.d.F.S.M.); (P.H.B.F.); (M.E.d.S.S.); (S.L.L.); (G.R.P.d.S.); (D.E.R.); (M.A.T.M.d.G.); (B.E.d.O.I.); (I.A.d.M.); (D.B.L.)
| |
Collapse
|
2
|
Lv Y, Zhu J, Ge S, Jiang T, Xu Y, Yao W, Jiang C. The AXL-mediated modulation of myeloid-derived suppressor cells (MDSC) in nasopharyngeal carcinoma. Med Oncol 2024; 42:17. [PMID: 39592496 DOI: 10.1007/s12032-024-02561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024]
Abstract
AXL has ubiquitous expression in multiple cancers, and is strongly linked to both tumor progression, metastasis, and poor prognosis, as well as anti-tumor immune response suppression and induction of tumor resistance to immunotherapy. Therefore, it is a strong target for cancer intervention. Despite the wide application of AXL inhibitors in clinical trials, the role of AXL in the tumor immune microenvironment (TIME) remains undetermined. Herein, we established cell lines with stable AXL knockdown or overexpression using lentiviral infection. Subsequently, we co-cultured the cells with healthy human blood-derived CD33 + PBMCs. After two days of culture, we evaluated the differentiation of PBMCs into MDSCs. Additionally, the culture supernatants were collected from both the co-culture system and the individual cultures of each cell group to measure the concentrations of IL-6 and GM-CSF. Additionally, we subcutaneously administered nasopharyngeal carcinoma (NPC) cells into mice, and evaluated the association between AXL content and MDSC recruitment in the resulting tumors. We demonstrated that AXL is a critical modulator of MDSC differentiation and accumulation in NPC. It modulates IL-6, GM-CSF, and Toll-like receptor contents to achieve the aforementioned actions. Herein, we revealed a strong and direct link between AXL, cytokines in TIME, and MDSC differentiation and accumulation. Our work highlights novel approaches to optimizing existing immunotherapeutic interventions.
Collapse
Affiliation(s)
- Yu Lv
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Jiahui Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Sichen Ge
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Tao Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Yajia Xu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Weige Yao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Chengyi Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China.
| |
Collapse
|
3
|
Janjua D, Thakur K, Aggarwal N, Chaudhary A, Yadav J, Chhokar A, Tripathi T, Joshi U, Senrung A, Bharti AC. Prognostic and therapeutic potential of STAT3: Opportunities and challenges in targeting HPV-mediated cervical carcinogenesis. Crit Rev Oncol Hematol 2024; 197:104346. [PMID: 38608913 DOI: 10.1016/j.critrevonc.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Cervical cancer (CaCx) ranks as the fourth most prevalent cancer among women globally. Persistent infection of high-risk human papillomaviruses (HR-HPVs) is major etiological factor associated with CaCx. Signal Transducer and Activator of Transcription 3 (STAT3), a prominent member of the STAT family, has emerged as independent oncogenic driver. It is a target of many oncogenic viruses including HPV. How STAT3 influences HPV viral gene expression or gets affected by HPV is an area of active investigation. A better understanding of host-virus interaction will provide a prognostic and therapeutic window for CaCx control and management. In this comprehensive review, we delve into carcinogenic role of STAT3 in development of HPV-induced CaCx. With an emphasis on fascinating interplay between STAT3 and HPV genome, the review explores the diverse array of opportunities and challenges associated with this field to harness the prognostic and therapeutic potential of STAT3 in CaCx.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Daulat Ram College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
4
|
Zhang C, Gu L, Xiao J, Jin F. Knockdown of RBM15 inhibits tumor progression and the JAK-STAT signaling pathway in cervical cancer. BMC Cancer 2023; 23:684. [PMID: 37474926 PMCID: PMC10360283 DOI: 10.1186/s12885-023-11163-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND RNA binding motif protein 15 (RBM15), a writer of N6-methyladenosine (m6A) methylation, contributes significantly to the development of various tumors. However, the function of RBM15 in cervical cancer (CC) has not been determined. METHODS Based on the GSE9750, GSE63514, and m6A datasets, m6A-related differentially expressed genes (DEGs) were screened out. The hub genes were identified by generating a Protein-Protein Interaction (PPI) network. RT-qPCR was conducted to assess the mRNA expression of hub genes. CCK8, scratch wound healing, and transwell assays were utilized to examine the influence of RBM15 on HeLa and SiHa cells. Tumor xenograft models were used to assess the effects of RBM15 on tumorigenesis. A mechanistic analysis of RBM15 in CC tumors was conducted using the GeneCards and Coxpresdb databases, followed by a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and the pathway-related genes were subsequently validated using Western blotting. RESULTS Five DEGs were screened, including WTAP, RBM15, CBLL1, and YTHDC2. Among them, WTAP, RBM15, CBLL1, and YTHDC2 were hub genes and can be used as biomarkers for CC. RBM15 expression was considerably increased, while WTAP, CBLL1, and YTHDC2 were significantly downregulated. Knockdown of RBM15 significantly suppressed the proliferation, invasion, and migration of CC cells and tumorigenesis. Moreover, knockdown of RBM15 significantly reduced the expression levels of proteins related to the JAK-STAT pathway. CONCLUSIONS Knockdown of RBM15 inhibited the progression of CC cells, which probably by inhibiting the JAK-STAT pathway pathway.
Collapse
Affiliation(s)
- Chunnian Zhang
- Department of Gynecology, Ganzhou People's Hospital, No. 16, Meiguan Avenue, Ganzhou City, 341000, Jiangxi Province, China.
| | - Liqin Gu
- Department of Gynecology, Ganzhou People's Hospital, No. 16, Meiguan Avenue, Ganzhou City, 341000, Jiangxi Province, China
| | - Juan Xiao
- Department of Gynecology, Ganzhou People's Hospital, No. 16, Meiguan Avenue, Ganzhou City, 341000, Jiangxi Province, China
| | - Feng Jin
- Department of Gynecology, Ganzhou People's Hospital, No. 16, Meiguan Avenue, Ganzhou City, 341000, Jiangxi Province, China
| |
Collapse
|