1
|
Mikolaskova I, Zvarik M, Szaboova K, Tibenska E, Durmanova V, Suchankova M, Kollarik B, Hesko P, Palacka P, Bucova M, Hunakova L. Association of Sympathovagal Imbalance with Increased Inflammation and Impaired Adaptive Immunity in Bladder Cancer Patients. Int J Mol Sci 2024; 25:12765. [PMID: 39684475 DOI: 10.3390/ijms252312765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Stress responses can impact bladder cancer (BC) outcomes via immune-inflammatory pathway modulation. This study explores heart rate variability (HRV) associations with serum immune-inflammatory biomarkers, blood count inflammatory markers, and psychosocial self-report measures in patients versus healthy controls. The TREM-1 and TREM-2 expressions on peripheral blood monocytes were analysed via flow cytometry; serum inflammatory biomarkers by ELISA; HRV (5-min ECG) pre-tumour resection; blood counts by haematology analyser; and psychosocial factors by validated questionnaires. Patients exhibited altered immune-inflammatory profiles with increased TREM-1/TREM-2, sTREM-1, sTREM-1/sTREM-2 ratio, BDNF, MCP-1, and NLR, and reduced IFN-γ, IL-10, LMR, and PMR. HRV analysis indicated sympathetic dominance (SNS, Stress indices, ACmod) and reduced parasympathetic modulation (PNS index, SDNN, RMSSD, 2UV%, DCmod, SD1). Sympathetic HRV indices correlated positively with sTREM-1, sTREM-1/sTREM-2 ratio, fractalkine, and inflammatory markers (SII, NLR, PLR) and negatively with parasympathetic HRV indices-correlations absent in controls. Only in patients, reduced physical function and social support, and higher anxiety, depression, and fatigue, associated positively with sympathetic HRV indices and inflammatory markers. This study links immune-inflammatory markers, HRV parameters, and psychosocial factors in BC, suggesting that immune and autonomic variations may relate to unfavourable outcomes. Incorporating these assessments could help tailor more personalised treatment strategies for BC patients.
Collapse
Affiliation(s)
- Iveta Mikolaskova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Odborarske namestie 14, 811 08 Bratislava, Slovakia
| | - Milan Zvarik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Computer Science, Comenius University in Bratislava, Mlynska dolina F1, 842 48 Bratislava, Slovakia
| | - Kinga Szaboova
- Medirex, s.r.o., Galvaniho 17/C, 820 16 Bratislava, Slovakia
| | - Elena Tibenska
- Medirex, s.r.o., Galvaniho 17/C, 820 16 Bratislava, Slovakia
| | - Vladimira Durmanova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Odborarske namestie 14, 811 08 Bratislava, Slovakia
| | - Magda Suchankova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Odborarske namestie 14, 811 08 Bratislava, Slovakia
| | - Boris Kollarik
- Department of Urology, Saint Cyril and Methodius Hospital, Antolska 11, 851 07 Bratislava, Slovakia
| | - Patrik Hesko
- Department of Urology, Saint Cyril and Methodius Hospital, Antolska 11, 851 07 Bratislava, Slovakia
| | - Patrik Palacka
- 2nd Department of Oncology, Faculty of Medicine, Comenius University in Bratislava, Kolarska 12, 812 50 Bratislava, Slovakia
| | - Maria Bucova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Odborarske namestie 14, 811 08 Bratislava, Slovakia
| | - Luba Hunakova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Odborarske namestie 14, 811 08 Bratislava, Slovakia
| |
Collapse
|
2
|
Lei X, Gou YN, Hao JY, Huang XJ. Mechanisms of TREM2 mediated immunosuppression and regulation of cancer progression. Front Oncol 2024; 14:1375729. [PMID: 38725629 PMCID: PMC11079285 DOI: 10.3389/fonc.2024.1375729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer immunotherapy has recently emerged as a key strategy for cancer treatment. TREM2, a key target for regulating the tumor immune microenvironment, is important in cancer treatment and progression. TREM2 is an immune signaling hub that regulates multiple pathological pathways. It not only suppresses anti-tumor immune responses by inhibiting T cell-mediated immune responses, but it also influences tumorigenesis by affecting NK cell-mediated anti-tumor immunity. Noticeably, TREM2 expression levels also vary significantly among different tumor cells, and it can regulate tumor progression by modulating various signaling pathways. Above all, by summarizing the role of TREM2 in cancer immunotherapy and the mechanism by which TREM2 regulates tumor progression, this paper clarifies TREM2's role in both tumor progression and cancer therapy, identifying a new therapeutic target for oncology diseases.
Collapse
Affiliation(s)
| | | | | | - Xiao Jun Huang
- Department of Gastroenterology, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Zheng P, Tan Y, Liu Q, Wu C, Kang J, Liang S, Zhu L, Yan K, Zeng L, Chen B. Deciphering the molecular and clinical characteristics of TREM2, HCST, and TYROBP in cancer immunity: A comprehensive pan-cancer study. Heliyon 2024; 10:e26993. [PMID: 38468942 PMCID: PMC10926084 DOI: 10.1016/j.heliyon.2024.e26993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Background Hematopoietic cell signal transducer (HCST) and tyrosine kinase-binding protein (TYROBP) are triggering receptors expressed on myeloid cells 2 (TREM2), which are pivotal in the immune response to disease. Despite growing evidence underscoring the significance of TREM2, HCST, and TYROBP in certain forms of tumorigenesis, a comprehensive pan-cancer analysis of these proteins is lacking. Methods Multiple databases were synthesized to investigate the relationship between TREM2, HCST, TYROBP, and various cancer types. These include prognosis, methylation, regulation by long non-coding RNAs and transcription factors, immune signatures, pathway activity, microsatellite instability (MSI), tumor mutational burden (TMB), single-cell transcriptome profiling, and drug sensitivity. Results TREM2, HCST, and TYROBP displayed extensive somatic changes across numerous tumors, and their mRNA expression and methylation levels influenced patient outcomes across multiple cancer types. long non-coding RNA (lncRNA) -messenger RNA (mRNA) and TF-mRNA regulatory networks involving TREM2, HCST, and TYROBP were identified, with lncRNA MEG3 and the transcription factor SIP1 emerging as potential key regulators. Further immune analyses indicated that TREM2, HCST, and TYROBP play critical roles in immune-related pathways and macrophage differentiation, and may be significantly associated with TGF-β and SMAD9. Furthermore, the expression of TREM2, HCST, and TYROBP correlated with the immunotherapy markers TMB and MSI, and influenced sensitivity to immune-targeted drugs, thereby indicating their potential as predictors of immunotherapy outcomes. Conclusion This study offers valuable insights into the roles of TREM2, HCST, and TYROBP in tumor immunotherapy, suggesting their potential as prognostic markers and therapeutic targets for various cancers.
Collapse
Affiliation(s)
- Piao Zheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yejun Tan
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Qing Liu
- The department of neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changwu Wu
- The department of neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Kang
- Department of rheumatology and immunology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuzhi Liang
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Kuipo Yan
- Department of cardiology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Lingfeng Zeng
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Bolin Chen
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Wang J, Li X, Chen S, Cao J, Fan X, Wang H, Zhang X, Yang L. Identification of the role of MCM6 in bladder cancer prognosis, immunotherapy response, and in vitro experimental investigation using multi-omics analysis. Life Sci 2023; 335:122253. [PMID: 37951536 DOI: 10.1016/j.lfs.2023.122253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The tumor-promoting effects of MCM6 in numerous tumors have been widely revealed, yet its specific role in bladder cancer (BLCA) is still elusive. The objective of this research was to explore the underlying impact of MCM6 on BLCA. METHODS Integrating transcriptomic and proteomic data, MCM6 was identified to be strongly correlated with BLCA through weighted gene co-expression network analysis(WGCNA) and venn analyses. Then, the clinical value of MCM6 was validated with public database data. The different molecular/immune characteristics and the benefit of immunotherapy were also found in MCM6-defined subgroups. Additionally, single-cell RNA sequencing (scRNA-seq) data was choose for quantify MCM6 expression in the distinct BLCA cell types. The biological role of MCM6 were evaluated via in vitro functional experiments. RESULTS It was testified that the MCM6 could distinguish patients outcome in TCGA and GEO cohorts. Moreover, compared with the MCM6 low-expression group, the MCM6 high-expression group was related to more tumor-promoting related pathways, aggressive phenotypes, and benefit from immunotherapy. Analysis of scRNA-seq data resulted in MCM6 was mainly expressed in BLCA epithelial cells and the proportion of MCM6-expressing tumor epithelial cells is higher than the normal epithelial cells. Moreover, vitro experiments demonstrated that MCM6 knockdown repressed proliferation, cell cycle, migration, and invasion of BLCA cells. CONCLUSION This research indicated MCM6 is a promising marker for both prognosis and immunotherapy benefit and could promote the cells proliferation, invasion and migration in BLCA.
Collapse
Affiliation(s)
- Jirong Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xiaoran Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Siyu Chen
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jinlong Cao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xinpeng Fan
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Huabin Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xingxing Zhang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|