2
|
Villette V, Chavarha M, Dimov IK, Bradley J, Pradhan L, Mathieu B, Evans SW, Chamberland S, Shi D, Yang R, Kim BB, Ayon A, Jalil A, St-Pierre F, Schnitzer MJ, Bi G, Toth K, Ding J, Dieudonné S, Lin MZ. Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice. Cell 2020; 179:1590-1608.e23. [PMID: 31835034 DOI: 10.1016/j.cell.2019.11.004] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/08/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
Optical interrogation of voltage in deep brain locations with cellular resolution would be immensely useful for understanding how neuronal circuits process information. Here, we report ASAP3, a genetically encoded voltage indicator with 51% fluorescence modulation by physiological voltages, submillisecond activation kinetics, and full responsivity under two-photon excitation. We also introduce an ultrafast local volume excitation (ULoVE) method for kilohertz-rate two-photon sampling in vivo with increased stability and sensitivity. Combining a soma-targeted ASAP3 variant and ULoVE, we show single-trial tracking of spikes and subthreshold events for minutes in deep locations, with subcellular resolution and with repeated sampling over days. In the visual cortex, we use soma-targeted ASAP3 to illustrate cell-type-dependent subthreshold modulation by locomotion. Thus, ASAP3 and ULoVE enable high-speed optical recording of electrical activity in genetically defined neurons at deep locations during awake behavior.
Collapse
Affiliation(s)
- Vincent Villette
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Mariya Chavarha
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ivan K Dimov
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Bradley
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Lagnajeet Pradhan
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Mathieu
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Stephen W Evans
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Simon Chamberland
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Dongqing Shi
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Renzhi Yang
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Biology PhD Program, Stanford University, Stanford, CA 94305, USA
| | - Benjamin B Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Annick Ayon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Abdelali Jalil
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Paris F-75006, France
| | - François St-Pierre
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark J Schnitzer
- CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Guoqiang Bi
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 20031, China
| | - Katalin Toth
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Jun Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Stéphane Dieudonné
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France.
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Uludag H, Ubeda A, Ansari A. At the Intersection of Biomaterials and Gene Therapy: Progress in Non-viral Delivery of Nucleic Acids. Front Bioeng Biotechnol 2019; 7:131. [PMID: 31214586 PMCID: PMC6558074 DOI: 10.3389/fbioe.2019.00131] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Biomaterials play a critical role in technologies intended to deliver therapeutic agents in clinical settings. Recent explosion of our understanding of how cells utilize nucleic acids has garnered excitement to develop a range of older (e.g., antisense oligonucleotides, plasmid DNA and transposons) and emerging (e.g., short interfering RNA, messenger RNA and non-coding RNAs) nucleic acid agents for therapy of a wide range of diseases. This review will summarize biomaterials-centered advances to undertake effective utilization of nucleic acids for therapeutic purposes. We first review various types of nucleic acids and their unique abilities to deliver a range of clinical outcomes. Using recent advances in T-cell based therapy as a case in point, we summarize various possibilities for utilizing biomaterials to make an impact in this exciting therapeutic intervention technology, with the belief that this modality will serve as a therapeutic paradigm for other types of cellular therapies in the near future. We subsequently focus on contributions of biomaterials in emerging nucleic acid technologies, specifically focusing on the design of intelligent nanoparticles, deployment of mRNA as an alternative to plasmid DNA, long-acting (integrating) expression systems, and in vitro/in vivo expansion of engineered T-cells. We articulate the role of biomaterials in these emerging nucleic acid technologies in order to enhance the clinical impact of nucleic acids in the near future.
Collapse
Affiliation(s)
- Hasan Uludag
- Department of Chemical and Materinals Engineering, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Anyeld Ubeda
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Aysha Ansari
- Department of Chemical and Materinals Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Nakamura M, Suzuki A, Akada J, Tomiyoshi K, Hoshida H, Akada R. End Joining-Mediated Gene Expression in Mammalian Cells Using PCR-Amplified DNA Constructs that Contain Terminator in Front of Promoter. Mol Biotechnol 2016; 57:1018-29. [PMID: 26350674 DOI: 10.1007/s12033-015-9890-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mammalian gene expression constructs are generally prepared in a plasmid vector, in which a promoter and terminator are located upstream and downstream of a protein-coding sequence, respectively. In this study, we found that front terminator constructs-DNA constructs containing a terminator upstream of a promoter rather than downstream of a coding region-could sufficiently express proteins as a result of end joining of the introduced DNA fragment. By taking advantage of front terminator constructs, FLAG substitutions, and deletions were generated using mutagenesis primers to identify amino acids specifically recognized by commercial FLAG antibodies. A minimal epitope sequence for polyclonal FLAG antibody recognition was also identified. In addition, we analyzed the sequence of a C-terminal Ser-Lys-Leu peroxisome localization signal, and identified the key residues necessary for peroxisome targeting. Moreover, front terminator constructs of hepatitis B surface antigen were used for deletion analysis, leading to the identification of regions required for the particle formation. Collectively, these results indicate that front terminator constructs allow for easy manipulations of C-terminal protein-coding sequences, and suggest that direct gene expression with PCR-amplified DNA is useful for high-throughput protein analysis in mammalian cells.
Collapse
Affiliation(s)
- Mikiko Nakamura
- Innovation Center, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan.
- Yamaguchi University Biomedical Engineering Center (YUBEC), Tokiwadai, Ube, 755-8611, Japan.
| | - Ayako Suzuki
- Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan
| | - Junko Akada
- Innovation Center, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, 879-5503, Japan
| | - Keisuke Tomiyoshi
- Department of Applied Chemistry, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan
| | - Hisashi Hoshida
- Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan
- Yamaguchi University Biomedical Engineering Center (YUBEC), Tokiwadai, Ube, 755-8611, Japan
| | - Rinji Akada
- Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan.
- Yamaguchi University Biomedical Engineering Center (YUBEC), Tokiwadai, Ube, 755-8611, Japan.
| |
Collapse
|