1
|
Takahashi M, Yano S, Horaguchi Y, Otsuka Y, Suyotha W, Makabe K, Konno H, Kokeguchi S. α-1,3-Glucanase from the gram-negative bacterium Flavobacterium sp. EK-14 hydrolyzes fungal cell wall α-1,3-glucan. Sci Rep 2023; 13:21420. [PMID: 38049513 PMCID: PMC10696023 DOI: 10.1038/s41598-023-48627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
The glycoside hydrolase (GH) 87 α-1,3-glucanase (Agl-EK14) gene was cloned from the genomic DNA of the gram-negative bacterium Flavobacterium sp. EK14. The gene consisted of 2940 nucleotides and encoded 980 amino acid residues. The deduced amino acid sequence of Agl-EK14 included a signal peptide, a catalytic domain, a first immunoglobulin-like domain, a second immunoglobulin-like domain, a ricin B-like lectin domain, and a carboxyl-terminal domain (CTD) involved in extracellular secretion. Phylogenetic analysis of the catalytic domain of GH87 enzymes suggested that Agl-EK14 is distinct from known clusters, such as clusters composed of α-1,3-glucanases from bacilli and mycodextranases from actinomycetes. Agl-EK14 without the signal peptide and CTD hydrolyzed α-1,3-glucan, and the reaction residues from 1 and 2% substrates were almost negligible after 1440 min reaction. Agl-EK14 hydrolyzed the cell wall preparation of Aspergillus oryzae and released glucose, nigerose, and nigero-triose from the cell wall preparation. After treatment of A. oryzae live mycelia with Agl-EK14 (at least 0.5 nmol/ml), mycelia were no longer stained by red fluorescent protein-fused α-1,3-glucan binding domains of α-1,3-glucanase Agl-KA from Bacillus circulans KA-304. Results suggested that Agl-EK14 can be applied to a fungal cell wall lytic enzyme.
Collapse
Affiliation(s)
- Masaki Takahashi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Yui Horaguchi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yuitsu Otsuka
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Wasana Suyotha
- Enzyme Technology Laboratory, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Koki Makabe
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Konno
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Susumu Kokeguchi
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| |
Collapse
|
2
|
Xing M, Wang Y, Zhao Y, Chi Z, Chi Z, Liu G. C-Terminal Bacterial Immunoglobulin-like Domain of κ-Carrageenase Serves as a Multifunctional Module to Promote κ-Carrageenan Hydrolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1212-1222. [PMID: 35057622 DOI: 10.1021/acs.jafc.1c07233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
κ-Carrageenase is an important component for κ-carrageenan oligosaccharide production. Generally, noncatalytic domains are appended to carbohydrate-active domains and potentiate catalytic activity. However, studies devoted to κ-carrageenase are relatively few. Here, a C-terminal bacterial immunoglobulin-like domain (Big_2) was identified in κ-carrageenase (PpCgk) from Pseudoalteromonas porphyrae. Biochemical characterization of native PpCgk and its two truncations, PpCgkCD (catalytic domain) and PpBig_2 (Big_2 domain), revealed that the specific activity, catalytic efficiency (kcat/Km(app)), specific κ-carrageenan-binding capacity, and thermostability of PpCgk were significantly higher than those of PpCgkCD, suggesting that the noncatalytic PpBig_2 domain is a multifunctional module and essential for maintaining the activity and thermostability of PpCgk. Furthermore, it was found that the mode of action of PpCgk was more processive on both the dissolved and gelled substrates than that of PpCgkCD, indicating that PpBig_2 contributes to the processivity of PpCgk. Interestingly, PpBig_2 can be used as an independent module to enhance the hydrolysis of κ-carrageenan through its disruptive function. In addition, sequence analysis suggests that Big_2 domains are highly conserved in bacterial κ-carrageenases, implying the universality of their noncatalytic functions. These findings reveal the multifunctional role of the noncatalytic PpBig_2 and will guide future functional analyses and biotechnology applications of Big_2 domains.
Collapse
Affiliation(s)
- Mengdan Xing
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Yan Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yujuan Zhao
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Zhe Chi
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Zhenming Chi
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Guanglei Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
3
|
Wang Y, Zhang L, Wu Y, Zhu R, Wang Y, Cao Y, Long W, Ji C, Wang H, You L. Peptidome analysis of umbilical cord mesenchymal stem cell (hUC-MSC) conditioned medium from preterm and term infants. Stem Cell Res Ther 2020; 11:414. [PMID: 32967723 PMCID: PMC7510303 DOI: 10.1186/s13287-020-01931-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background The therapeutic role of mesenchymal stem cells (MSCs) has been widely confirmed in several animal models of premature infant diseases. Micromolecule peptides have shown promise for the treatment of premature infant diseases. However, the potential role of peptides secreted from MSCs has not been studied. The purpose of this study is to help to broaden the knowledge of the hUC-MSC secretome at the peptide level through peptidomic profile analysis. Methods We used tandem mass tag (TMT) labeling technology followed by tandem mass spectrometry to compare the peptidomic profile of preterm and term umbilical cord MSC (hUC-MSC) conditioned medium (CM). Gene Ontology (GO) enrichment analysis and ingenuity pathway analysis (IPA) were conducted to explore the differentially expressed peptides by predicting the functions of their precursor proteins. To evaluate the effect of candidate peptides on human lung epithelial cells stimulated by hydrogen peroxide (H2O2), quantitative real-time PCR (qRT-PCR), western blot analysis, and enzyme-linked immunosorbent assay (ELISA) were, respectively, adopted to detect inflammatory cytokines (TNF-α, IL-1β, and IL-6) expression levels at the mRNA and protein levels. Results A total of 131 peptides derived from 106 precursor proteins were differentially expressed in the preterm hUC-MSC CM compared with the term group, comprising 37 upregulated peptides and 94 downregulated peptides. Bioinformatics analysis showed that these differentially expressed peptides may be associated with developmental disorders, inflammatory response, and organismal injury. We also found that peptides 7118TGAKIKLVGT7127 derived from MUC19 and 508AAAAGPANVH517 derived from SIX5 reduced the expression levels of TNF-α, IL-1β, and IL-6 in H2O2-treated human lung epithelial cells. Conclusions In summary, this study provides further secretomics information on hUC-MSCs and provides a series of peptides that might have antiinflammatory effects on pulmonary epithelial cells and contribute to the prevention and treatment of respiratory diseases in premature infants.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China.,Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Lin Zhang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yun Wu
- Department of Ultrasound, Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Rongping Zhu
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yan Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Wei Long
- Department of Obstetrics, Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Huaiyan Wang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China.
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.
| |
Collapse
|
4
|
Immobilization of endoglucanase Cel9A on chitosan nanoparticles leads to its stabilization against organic solvents: the use of polyols to improve the stability. 3 Biotech 2019; 9:269. [PMID: 31218180 DOI: 10.1007/s13205-019-1794-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
The immobilization of enzymes improves their stability in non-conventional media such as organic solvents. In this work, the effects of solvents (DMSO, methanol, ethanol, and n-propanol) on the endoglucanase Cel9A activity and stability were studied. Then, the enzymes were stabilized by its immobilization on chitosan nanoparticles and also using polyols (sorbitol and glycerol) against organic solvents. The SEM results illustrated that the chitosan nanoparticles had about 40 nm diameter. The results indicated that the organic solvents, especially n-propanol, decreased the activity of the free and immobilized enzymes. The reduced activity of the immobilized enzyme was less than that of the free enzyme. Our studies about the enzymes' stability showed that the free and immobilized enzymes in hydrophobic solvents (with high log P) had the lowest stability compared to other solvents as we observed the half-life of the free enzyme in n-propanol solvent was 2.84 min, and the half-life of the immobilized enzyme was 4.98 min in n-propanol and ethanol solvents 4.50 min. Analysis of the combinatory effects of polyols (sorbitol and glycerol) and the solvents on the stability revealed that sorbitol and glycerol had the most stabilizing effect on the free enzyme in hydrophilic (DMSO) and hydrophobic (n-propanol) solvents, respectively. However, the stabilizing effects of polyols in the immobilized enzyme were independent of the solvents' hydrophobicity (or log P) due to the hydrophilic properties of chitosan nanoparticles. Therefore, one can conclude that the physiochemical properties of nanoparticles (such as hydrophilicity) influence the stabilizing effects of polyols on immobilized enzyme.
Collapse
|