1
|
Zhang W, Xu R, Chen J, Xiong H, Wang Y, Pang B, Du G, Kang Z. Advances and challenges in biotechnological production of chondroitin sulfate and its oligosaccharides. Int J Biol Macromol 2023; 253:126551. [PMID: 37659488 DOI: 10.1016/j.ijbiomac.2023.126551] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/04/2023]
Abstract
Chondroitin sulfate (CS) is a member of glycosaminoglycans (GAGs) and has critical physiological functions. CS is widely applied in medical and clinical fields. Currently, the supply of CS relies on traditional animal tissue extraction methods. From the perspective of medical applications, the biggest drawback of animal-derived CS is its uncontrollable molecular weight and sulfonated patterns, which are key factors affecting CS activities. The advances of cell-free enzyme catalyzed systems and de novo biosynthesis strategies have paved the way to rationally regulate CS sulfonated pattern and molecular weight. In this review, we first present a general overview of biosynthesized CS and its oligosaccharides. Then, the advances in chondroitin biosynthesis, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) synthesis and regeneration, and CS biosynthesis catalyzed by sulfotransferases are discussed. Moreover, the progress of mining and expression of chondroitin depolymerizing enzymes for preparation of CS oligosaccharides is also summarized. Finally, we analyze and discuss the challenges faced in synthesizing CS and its oligosaccharides using microbial and enzymatic methods. In summary, the biotechnological production of CS and its oligosaccharides is a promising method in addressing the drawbacks associated with animal-derived CS and enabling the production of CS oligosaccharides with defined structures.
Collapse
Affiliation(s)
- Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jiamin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Haibo Xiong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| | - Bo Pang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Wang L, Liu Q, Gong X, Jian W, Cui Y, Jia Q, Zhang J, Zhang Y, Guo Y, Lu H, Tu Z. Cloning and Biochemical Characterization of a Hyaluronate Lyase from Bacillus sp. CQMU-D. J Microbiol Biotechnol 2023; 33:235-241. [PMID: 36524342 PMCID: PMC9998204 DOI: 10.4014/jmb.2209.09036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Hyaluronidase (HAase) can enhance drug diffusion and dissipate edema by degrading hyaluronic acid (HA) in the extracellular matrix into unsaturated HA oligosaccharides in mammalian tissues. Microorganisms are recognized as valuable sources of HAase. In this study, a new hyaluronate lyase (HAaseD) from Bacillus sp. CQMU-D was expressed in Escherichia coli BL21, purified, and characterized. The results showed that HAaseD belonged to the polysaccharide lyase (PL) 8 family and had a molecular weight of 123 kDa. HAaseD could degrade chondroitin sulfate (CS) -A, CS-B, CS-C, and HA, with the highest activity toward HA. The optimum temperature and pH value of HAaseD were 40°C and 7.0, respectively. In addition, HAaseD retained stability in an alkaline environment and displayed higher activity with appropriate concentrations of metal ions. Moreover, HAaseD was an endolytic hyaluronate lyase that could degrade HA to produce unsaturated HA oligosaccharides. Together, our findings indicate that HAaseD from Bacillus sp. CQMU-D is a new hyaluronate lyase and with excellent potential for application in industrial production.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Qianqian Liu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xue Gong
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Wenwen Jian
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yihong Cui
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Qianying Jia
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jibei Zhang
- International Medical College, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yi Zhang
- International Medical College, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yanan Guo
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - He Lu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Zeng Tu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, P.R. China
| |
Collapse
|
3
|
Zhou LJ, Guo LB, Wei W, Lv ZX, Zhang YW. A Novel Chondroitin AC Lyase With Broad Substrate Specificity From Pedobacter rhizosphaerae: Cloning, Expression, and Characterization. Front Bioeng Biotechnol 2022; 9:808872. [PMID: 35004658 PMCID: PMC8733870 DOI: 10.3389/fbioe.2021.808872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/03/2021] [Indexed: 12/01/2022] Open
Abstract
Chondroitin AC lyase (ChSaseAC) is one of the essential polysaccharides lyases in low molecular chondroitin sulfate production. In this work, a novel PrChSaseAC from Pedobacter rhizosphaerae was successfully cloned, expressed in Escherichia coli. After optimizing the induction, the recombinant PrChSaseAC could be expressed efficiently at 0.1 mM IPTG, 25°C, and 12 h induction. Then, it was purified with Ni-NTA affinity chromatography. The characterization of the purified PrChSaseAC showed that it had high specific activity and good storage stability, which would favor the production of low molecular weight chondroitin sulfate. It also displayed activity toward chondroitin sulfate C and hyaluronic acid. PrChSaseAC had the highest activity at pH 7.5, 37°C, 10 mM Ca2+, and 5 mg/ml of chondroitin sulfate A. Molecular docking of substrate and enzyme showed the interactions between the enzyme and substrate; it revealed that the enzyme showed high activity to CS-A and hyaluronic acid, but lower activity to CS-C attributed to the structure of the binding pocket. The high stability and specific activity of the enzyme will benefit the industrial production or clinical treatment.
Collapse
Affiliation(s)
- Li-Jian Zhou
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Li-Bin Guo
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Wei Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, China.,Zhongshiduqing Biotechnology Co. Ltd., Heze, China
| | - Zhi-Xiang Lv
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Wang Z, Sun J, Li Y, Song G, Su H, Yu W, Gong Q. Cloning, expression, and characterization of a glycosaminoglycan lyase from Vibrio sp. H240. Enzyme Microb Technol 2021; 154:109952. [PMID: 34871823 DOI: 10.1016/j.enzmictec.2021.109952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022]
Abstract
Glycosaminoglycan lyase is an effective tool for the functional studies of glycosaminoglycans and for the preparation of oligosaccharides. In this study, a new glycosaminoglycan lyase HCLaseV with a molecular weight of 90 kDa was cloned, expressed, and characterized from Vibrio sp. H240. The lyase belonged to the polysaccharide lyase (PL)- 8 family. HCLaseV showed enzyme activities toward chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, and hyaluronic acid. HCLaseV exhibited the highest activity against HA at pH 7.0 and 40 °C. HCLaseV was an endo-type enzyme whose degradation end-product was unsaturated disaccharides. Ca2+ inhibited the activity of HCLaseV to a certain extent, which was different from most of the enzymes in the PL-8 family. Mutagenesis studies showed that the Ca2+ inhibition might be related to the Asn244 residue. The sequence homology was evaluated by mutagenesis studies, and the catalytic residues in HCLaseV were presumed to be His278, Trp485, and Tyr287. These characteristics are helpful for further basic research and application.
Collapse
Affiliation(s)
- Zheng Wang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Junhao Sun
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yunlu Li
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Guanrui Song
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Hai Su
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qianhong Gong
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
5
|
Wang W, Shi L, Qin Y, Li F. Research and Application of Chondroitin Sulfate/Dermatan Sulfate-Degrading Enzymes. Front Cell Dev Biol 2021; 8:560442. [PMID: 33425887 PMCID: PMC7793863 DOI: 10.3389/fcell.2020.560442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/05/2020] [Indexed: 01/11/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are widely distributed on the cell surface and in the extracellular matrix in the form of proteoglycan, where they participate in various biological processes. The diverse functions of CS/DS can be mainly attributed to their high structural variability. However, their structural complexity creates a big challenge for structural and functional studies of CS/DS. CS/DS-degrading enzymes with different specific activities are irreplaceable tools that could be used to solve this problem. Depending on the site of action, CS/DS-degrading enzymes can be classified as glycosidic bond-cleaving enzymes and sulfatases from animals and microorganisms. As discussed in this review, a few of the identified enzymes, particularly those from bacteria, have wildly applied to the basic studies and applications of CS/DS, such as disaccharide composition analysis, the preparation of bioactive oligosaccharides, oligosaccharide sequencing, and potential medical application, but these do not fulfill all of the needs in terms of the structural complexity of CS/DS.
Collapse
Affiliation(s)
- Wenshuang Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Liran Shi
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Yong Qin
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| |
Collapse
|