1
|
Malach P, Kay C, Tinworth C, Patel F, Joosse B, Wade J, Rosa do Carmo M, Donovan B, Brugman M, Montiel-Equihua C, Francis N. Identification of a small molecule for enhancing lentiviral transduction of T cells. Mol Ther Methods Clin Dev 2023; 31:101113. [PMID: 37790244 PMCID: PMC10544093 DOI: 10.1016/j.omtm.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
Genetic modification of cells using viral vectors has shown huge therapeutic benefit in multiple diseases. However, inefficient transduction contributes to the high cost of these therapies. Several transduction-enhancing small molecules have previously been identified; however, some may be toxic to the cells or patient, otherwise alter cellular characteristics, or further increase manufacturing complexity. In this study, we aimed to identify molecules capable of enhancing lentiviral transduction of T cells from available small-molecule libraries. We conducted a high-throughput flow-cytometry-based screen of 27,892 compounds, which subsequently was narrowed down to six transduction-enhancing small molecules for further testing with two therapeutic lentiviral vectors used to manufacture GSK's clinical T cell therapy products. We demonstrate enhanced transduction without a negative impact on other product attributes. Furthermore, we present results of transcriptomic analysis, suggesting alteration of ribosome biogenesis, resulting in reduced interferon response, as a potential mechanism of action for the transduction-enhancing activity of the lead compound. Finally, we demonstrate the ability of the lead transduction enhancer to produce a comparable T cell product using a 3-fold reduction in vector volume in our clinical manufacturing process, resulting in a predicted 15% reduction in the overall cost of goods.
Collapse
Affiliation(s)
- Paulina Malach
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Charlotte Kay
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Chris Tinworth
- Medicinal Chemistry, Medicine Design, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Florence Patel
- Screening, Profiling and Molecular Biology, Medicine Design, GSK Upper Providence, Collegeville, PA 19426, USA
| | - Bryan Joosse
- Screening, Profiling and Molecular Biology, Medicine Design, GSK Upper Providence, Collegeville, PA 19426, USA
| | - Jennifer Wade
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Marlene Rosa do Carmo
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Brian Donovan
- Screening, Profiling and Molecular Biology, Medicine Design, GSK Upper Providence, Collegeville, PA 19426, USA
| | - Martijn Brugman
- Analytical Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Claudia Montiel-Equihua
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Natalie Francis
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| |
Collapse
|
2
|
Muñiz-García A, Pichardo AH, Littlewood J, Tasker S, Sharkey J, Wilm B, Peace H, O'Callaghan D, Green M, Taylor A, Murray P. Near infrared conjugated polymer nanoparticles (CPN™) for tracking cells using fluorescence and optoacoustic imaging. NANOSCALE ADVANCES 2023; 5:5520-5528. [PMID: 37822909 PMCID: PMC10563848 DOI: 10.1039/d3na00546a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
Tracking the biodistribution of cell therapies is crucial for understanding their safety and efficacy. Optical imaging techniques are particularly useful for tracking cells due to their clinical translatability and potential for intra-operative use to validate cell delivery. However, there is a lack of appropriate optical probes for cell tracking. The only FDA-approved material for clinical use is indocyanine green (ICG). ICG can be used for both fluorescence and photoacoustic imaging, but is prone to photodegradation, and at higher concentrations, undergoes quenching and can adversely affect cell health. We have developed novel near-infrared imaging probes comprising conjugated polymer nanoparticles (CPNs™) that can be fine-tuned to absorb and emit light at specific wavelengths. To compare the performance of the CPNs™ with ICG for in vivo cell tracking, labelled mesenchymal stromal cells (MSCs) were injected subcutaneously in mice and detected using fluorescence imaging (FI) and a form of photoacoustic imaging called multispectral optoacoustic tomography (MSOT). MSCs labelled with either ICG or CPN™ 770 could be detected with FI, but only CPN™ 770-labelled MSCs could be detected with MSOT. These results show that CPNs™ show great promise for tracking cells in vivo using optical imaging techniques, and for some applications, out-perform ICG.
Collapse
Affiliation(s)
- Ana Muñiz-García
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London London UK
| | - Alejandra Hernandez Pichardo
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
| | - James Littlewood
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
- iThera Medical GmbH Munich Germany
| | - Suzannah Tasker
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
| | | | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
| | | | | | | | - Arthur Taylor
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
| |
Collapse
|
3
|
Heerde T, Schütz D, Lin YJ, Münch J, Schmidt M, Fändrich M. Cryo-EM structure and polymorphic maturation of a viral transduction enhancing amyloid fibril. Nat Commun 2023; 14:4293. [PMID: 37464004 DOI: 10.1038/s41467-023-40042-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Amyloid fibrils have emerged as innovative tools to enhance the transduction efficiency of retroviral vectors in gene therapy strategies. In this study, we used cryo-electron microscopy to analyze the structure of a biotechnologically engineered peptide fibril that enhances retroviral infectivity. Our findings show that the peptide undergoes a time-dependent morphological maturation into polymorphic amyloid fibril structures. The fibrils consist of mated cross-β sheets that interact by the hydrophobic residues of the amphipathic fibril-forming peptide. The now available structural data help to explain the mechanism of retroviral infectivity enhancement, provide insights into the molecular plasticity of amyloid structures and illuminate the thermodynamic basis of their morphological maturation.
Collapse
Affiliation(s)
- Thomas Heerde
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany.
| | - Desiree Schütz
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Yu-Jie Lin
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
4
|
Calcat-I-Cervera S, Rendra E, Scaccia E, Amadeo F, Hanson V, Wilm B, Murray P, O'Brien T, Taylor A, Bieback K. Harmonised culture procedures minimise but do not eliminate mesenchymal stromal cell donor and tissue variability in a decentralised multicentre manufacturing approach. Stem Cell Res Ther 2023; 14:120. [PMID: 37143116 PMCID: PMC10161493 DOI: 10.1186/s13287-023-03352-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs), commonly sourced from adipose tissue, bone marrow and umbilical cord, have been widely used in many medical conditions due to their therapeutic potential. Yet, the still limited understanding of the underlying mechanisms of action hampers clinical translation. Clinical potency can vary considerably depending on tissue source, donor attributes, but importantly, also culture conditions. Lack of standard procedures hinders inter-study comparability and delays the progression of the field. The aim of this study was A- to assess the impact on MSC characteristics when different laboratories, performed analysis on the same MSC material using harmonised culture conditions and B- to understand source-specific differences. METHODS Three independent institutions performed a head-to-head comparison of human-derived adipose (A-), bone marrow (BM-), and umbilical cord (UC-) MSCs using harmonised culture conditions. In each centre, cells from one specific tissue source were isolated and later distributed across the network to assess their biological properties, including cell expansion, immune phenotype, and tri-lineage differentiation (part A). To assess tissue-specific function, angiogenic and immunomodulatory properties and the in vivo biodistribution were compared in one expert lab (part B). RESULTS By implementing a harmonised manufacturing workflow, we obtained largely reproducible results across three independent laboratories in part A of our study. Unique growth patterns and differentiation potential were observed for each tissue source, with similar trends observed between centres. Immune phenotyping verified expression of typical MSC surface markers and absence of contaminating surface markers. Depending on the established protocols in the different laboratories, quantitative data varied slightly. Functional experiments in part B concluded that conditioned media from BM-MSCs significantly enhanced tubulogenesis and endothelial migration in vitro. In contrast, immunomodulatory studies reported superior immunosuppressive abilities for A-MSCs. Biodistribution studies in healthy mice showed lung entrapment after administration of all three types of MSCs, with a significantly faster clearance of BM-MSCs. CONCLUSION These results show the heterogeneous behaviour and regenerative properties of MSCs as a reflection of intrinsic tissue-origin properties while providing evidence that the use of harmonised culture procedures can reduce but do not eliminate inter-lab and operator differences.
Collapse
Affiliation(s)
- Sandra Calcat-I-Cervera
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Erika Rendra
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service, Baden-Württemberg-Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany
| | - Eleonora Scaccia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service, Baden-Württemberg-Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany
| | - Francesco Amadeo
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK
- Cellular Therapies Laboratory, NHS Blood and Transplant, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Vivien Hanson
- Cellular Therapies Laboratory, NHS Blood and Transplant, Liverpool, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Timothy O'Brien
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Arthur Taylor
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service, Baden-Württemberg-Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
5
|
Amadeo F, Hanson V, Liptrott NJ, Wilm B, Murray P, Taylor A. Fate of intravenously administered umbilical cord mesenchymal stromal cells and interactions with the host's immune system. Biomed Pharmacother 2023; 159:114191. [PMID: 36623449 DOI: 10.1016/j.biopha.2022.114191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells showing promise in pre-clinical studies and currently used in many clinical trials. The regenerative potential of MSCs is mediated, at least in part, by direct and indirect immunomodulatory processes. However, the mechanism of action is not fully understood yet, and there are still concerns about possible undesired negative effects associated with the administration of living cells. In this study, we (i) compare the long-term fate and safety of umbilical cord (UC-)MSCs administered to immunocompetent and immunocompromised (severe combined immunodeficient (SCID) and non-obese diabetic (NOD)/SCID) animals, and (ii) investigate the immunological response of the host to the administered cells. Intravenous administration of firefly luciferase expressing UC-MSCs revealed that the cells get trapped in the lungs of both immunocompetent and immunocompromised animals, with > 95% of the cells disappearing within 72 h after administration. In 27% of the SCID and 45% of the NOD/SCID, a small fraction of the cells lived up to day 14 but in most cases they all disappeared earlier. One NOD/SCID mouse showed a weak signal up to day 31. Immunocompetent mice displayed elevated percentages of neutrophils in the lungs, the blood, and the spleen 2 h after the administration of the cells. The concentration of neutrophil chemoattractants (MCP1, CCL7, Gro-α and IP-10) were also increased in the plasma of the animals 2 h after the administration of the MSCs. Our results suggest that although the UC-MSCs are short-lived in mice, they still result in an immunological response that might contribute to a therapeutic effect.
Collapse
Affiliation(s)
- Francesco Amadeo
- Cellular Therapies Laboratory, NHS Blood and Transplant, Liverpool, UK; Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Vivien Hanson
- Cellular Therapies Laboratory, NHS Blood and Transplant, Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Arthur Taylor
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK.
| |
Collapse
|
6
|
Teryek M, Jadhav P, Bento R, Parekkadan B. 3D Microcapsules for Human Bone Marrow Derived Mesenchymal Stem Cell Biomanufacturing in a Vertical-Wheel Bioreactor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528656. [PMID: 36824906 PMCID: PMC9949076 DOI: 10.1101/2023.02.16.528656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Microencapsulation of human mesenchymal stromal cells (MSCs) via electrospraying has been well documented in tissue engineering and regenerative medicine. Herein, we report the use of microencapsulation, via electrospraying, for MSC expansion using a commercially available hydrogel that is durable, optimized to MSC culture, and enzymatically degradable for cell recovery. Critical parameters of the electrospraying encapsulation process such as seeding density, correlation of microcapsule output with hydrogel volume, and applied voltage were characterized to consistently fabricate cell-laden microcapsules of uniform size. Upon encapsulation, we then verified ~ 10x expansion of encapsulated MSCs within a vertical-wheel bioreactor and the preservation of critical quality attributes such as immunophenotype and multipotency after expansion and cell recovery. Finally, we highlight the genetic manipulation of encapsulated MSCs as an example of incorporating bioactive agents in the capsule material to create new compositions of MSCs with altered phenotypes.
Collapse
Affiliation(s)
- Matthew Teryek
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Pankaj Jadhav
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Raphaela Bento
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|