1
|
Rueda J, Segers S, Hopster J, Kudlek K, Liedo B, Marchiori S, Danaher J. Anticipatory gaps challenge the public governance of heritable human genome editing. JOURNAL OF MEDICAL ETHICS 2025; 51:jme-2023-109801. [PMID: 38955479 DOI: 10.1136/jme-2023-109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Considering public moral attitudes is a hallmark of the anticipatory governance of emerging biotechnologies, such as heritable human genome editing. However, such anticipatory governance often overlooks that future morality is open to change and that future generations may perform different moral assessments on the very biotechnologies we are trying to govern in the present. In this article, we identify an 'anticipatory gap' that has not been sufficiently addressed in the discussion on the public governance of heritable genome editing, namely, uncertainty about the moral visions of future generations about the emerging applications that we are currently attempting to govern now. This paper motivates the relevance of this anticipatory gap, identifying the challenges it generates and offering various recommendations so that moral uncertainty does not lead to governance paralysis with regard to human germline genome editing.
Collapse
Affiliation(s)
- Jon Rueda
- University of Basque Country, Leioa, Spain
| | - Seppe Segers
- Department of Philosophy and Moral Sciences, Universiteit Gent, Gent, Belgium
| | - Jeroen Hopster
- Ethics Institute, Utrecht University, Utrecht, The Netherlands
| | - Karolina Kudlek
- Ethics Institute, Utrecht University, Utrecht, The Netherlands
| | - Belén Liedo
- Instituto de Filosfía, CSIC, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | | | - John Danaher
- National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
2
|
Paranthaman S, Uthaiah CA, Md S, Alkreathy HM. Comprehensive strategies for constructing efficient CRISPR/Cas based cancer therapy: Target gene selection, sgRNA optimization, delivery methods and evaluation. Adv Colloid Interface Sci 2025; 341:103497. [PMID: 40157335 DOI: 10.1016/j.cis.2025.103497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/17/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Cancer is a complicated disease that results from the interplay between specific changes in cellular genetics and diverse microenvironments. The application of high-performance and customizable clustered regularly interspaced palindromic repeats/associated protein (CRISPR/Cas) nuclease systems has significantly enhanced genome editing for accurate cancer modeling and facilitated simultaneous genetic modification for cancer therapy and mutation identification. Achieving an effective CRISPR/Cas platform for cancer treatment depends on the identification, selection, and optimization of specific mutated genes in targeted cancer tissues. However, overcoming the off-target effects, specificity, and immunogenicity are additional challenges that must be addressed while developing a gene editing system for cancer therapy. From this perspective, we briefly covered the pipeline of CRISPR/Cas cancer therapy, identified target genes to optimize gRNAs and sgRNAs, and explored alternative delivery modalities, including viral, non-viral, and extracellular vesicles. In addition, the list of patents and current clinical trials related to this unique cancer therapy method is discussed. In summary, we have discussed comprehensive start-to-end pipeline strategies for CRISPR/Cas development to advance the precision, effectiveness, and safety of clinical applications for cancer therapy.
Collapse
Affiliation(s)
- Sathishbabu Paranthaman
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar 563103, Karnataka, India.
| | - Chinnappa A Uthaiah
- Genetics Laboratory, Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raipur, Chhattisgarh 492099, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Mohammed Alkreathy
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Balaraman AK, Babu MA, Moglad E, Mandaliya V, Rekha MM, Gupta S, Prasad GVS, Kumari M, Chauhan AS, Ali H, Goyal K. Exosome-mediated delivery of CRISPR-Cas9: A revolutionary approach to cancer gene editing. Pathol Res Pract 2025; 266:155785. [PMID: 39708520 DOI: 10.1016/j.prp.2024.155785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/08/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Several molecular strategies based on targeted gene delivery systems have been developed in recent years; however, the CRISPR-Cas9 technology introduced a new era of targeted gene editing, precisely modifying oncogenes, tumor suppressor genes, and other regulatory genes involved in carcinogenesis. However, efficiently and safely delivering CRISPR-Cas9 to cancer cells across the cell membrane and the nucleus is still challenging. Using viral vectors and nanoparticles presents issues of immunogenicity, off-target effects, and low targeting affinity. Naturally, extracellular vesicles called exosomes have garnered the most attention as delivery vehicles in oncology-related CRISPR-Cas9 calls due to their biocompatibility, loading capacity, and inherent targeting features. The following review discusses the current progress in using exosomes to deliver CRISPR-Cas9 components, the approaches to load the CRISPR components into exosomes, and the modification of exosomes to increase stability and tumor-targeted delivery. We discuss the latest strategies in targeting recently accomplished in the exosome field, including modifying the surface of exosomes to enhance their internalization by cancer cells, as well as the measures taken to overcome the impacts of TME on delivery efficiency. Focusing on in vitro and in vivo experimentation, this review shows that exosome-mediated CRISPR-Cas9 can potentially treat cancer types, including pancreatic, lymphoma, and leukemia, for given gene targets. This paper compares exosome-mediated delivery and conventional vectors regarding safety, immune response, and targeting ability. Last but not least, we present the major drawbacks and potential development of the seemingly promising field of exosome engineering in gene editing, with references to CRISPR technologies and applications that may help make the target exosomes therapeutic in oncology.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Viralkumar Mandaliya
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India.
| |
Collapse
|
4
|
Fieni C, Ciummo SL, Sorrentino C, Marchetti S, Vespa S, Lanuti P, Lotti LV, Di Carlo E. Prevention of prostate cancer metastasis by a CRISPR-delivering nanoplatform for interleukin-30 genome editing. Mol Ther 2024; 32:3932-3954. [PMID: 39244641 PMCID: PMC11573607 DOI: 10.1016/j.ymthe.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/09/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
Prostate cancer (PC) is a leading cause of cancer-related deaths in men worldwide. Interleukin-30 (IL-30) is a PC progression driver, and its suppression would be strategic for fighting metastatic disease. Biocompatible lipid nanoparticles (NPs) were loaded with CRISPR-Cas9gRNA to delete the human IL30 (hIL30) gene and functionalized with anti-PSCA-Abs (Cas9hIL30-PSCA NPs). Efficiency of the NPs in targeting IL-30 and the metastatic potential of PC cells was examined in vivo in xenograft models of lung metastasis, and in vitro by using two organ-on-chip (2-OC)-containing 3D spheroids of IL30+ PC-endothelial cell co-cultures in circuit with either lung-mimicking spheroids or bone marrow (BM)-niche-mimicking scaffolds. Cas9hIL30-PSCA NPs demonstrated circulation stability, genome editing efficiency, without off-target effects and organ toxicity. Intravenous injection of three doses/13 days, or five doses/20 days, of NPs in mice bearing circulating PC cells and tumor microemboli substantially hindered lung metastasization. Cas9hIL30-PSCA NPs inhibited PC cell proliferation and expression of IL-30 and metastasis drivers, such as CXCR2, CXCR4, IGF1, L1CAM, METAP2, MMP2, and TNFSF10, whereas CDH1 was upregulated. PC-Lung and PC-BM 2-OCs revealed that Cas9hIL30-PSCA NPs suppressed PC cell release of CXCL2/GROβ, which was associated with intra-metastatic myeloid cell infiltrates, and of DKK1, OPG, and IL-6, which boosted endothelial network formation and cancer cell migration. Development of a patient-tailored nanoplatform for selective CRISPR-mediated IL-30 gene deletion is a clinically valuable tool against PC progression.
Collapse
Affiliation(s)
- Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Simona Marchetti
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone Vespa
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Lavinia Vittoria Lotti
- Department of Experimental Medicine, "La Sapienza" University of Rome, 00161 Rome, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
5
|
Sorrentino C, Ciummo SL, Fieni C, Di Carlo E. Nanomedicine for cancer patient-centered care. MedComm (Beijing) 2024; 5:e767. [PMID: 39434967 PMCID: PMC11491554 DOI: 10.1002/mco2.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide, and an increase in incidence is estimated in the next future, due to population aging, which requires the development of highly tolerable and low-toxicity cancer treatment strategies. The use of nanotechnology to tailor treatments according to the genetic and immunophenotypic characteristics of a patient's tumor, and to allow its targeted release, can meet this need, improving the efficacy of treatment and minimizing side effects. Nanomedicine-based approach for the diagnosis and treatment of cancer is a rapidly evolving field. Several nanoformulations are currently in clinical trials, and some have been approved and marketed. However, their large-scale production and use are still hindered by an in-depth debate involving ethics, intellectual property, safety and health concerns, technical issues, and costs. Here, we survey the key approaches, with specific reference to organ-on chip technology, and cutting-edge tools, such as CRISPR/Cas9 genome editing, through which nanosystems can meet the needs for personalized diagnostics and therapy in cancer patients. An update is provided on the nanopharmaceuticals approved and marketed for cancer therapy and those currently undergoing clinical trials. Finally, we discuss the emerging avenues in the field and the challenges to be overcome for the transfer of nano-based precision oncology into clinical daily life.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| |
Collapse
|
6
|
Doghish YA, Doghish AS, Mageed SSA, Mohammed OA, Hamza TA, Abdelaziz AA, Moustafa YM, Abdel-Reheim MA, Abbass SO, Abbass SO, Abbass MO, Noureldin S, Amin SA, Elimam H, Doghish SA. Natural compounds targeting miRNAs: a novel approach in oral cancer therapy. Funct Integr Genomics 2024; 24:202. [PMID: 39455476 DOI: 10.1007/s10142-024-01473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Oral cancer (OC) is a significant global health issue, with high rates of both mortality and morbidity. Conventional treatments, including surgery, radiation, and chemotherapy, are commonly used, but they often come with serious side effects and may not fully eliminate cancer cells, resulting in recurrence and resistance to treatment. In recent years, natural products derived from plants and other biological sources have gained attention for their potential anticancer properties. These compounds offer advantages such as lower toxicity compared to traditional chemotherapy. Notable natural compounds like quercetin, berberine, curcumin, andrographolide, nimbolide, ovatodiolide, and cucurbitacin B have demonstrated effectiveness in inhibiting OC cell growth by targeting various signaling pathways involved in cancer progression. Recent breakthroughs in molecular biology have highlighted the crucial role of microRNAs (miRNAs) in the development of OC. Targeting dysregulated miRNAs with natural products offers a promising strategy for treating the disease. Natural compounds exert anticancer effects by influencing both altered cellular signaling pathways and miRNA expression profiles. This study aims to explore the role of miRNAs as potential molecular targets in OC and to investigate how natural products may regulate these miRNAs. Additionally, this review will shed light on the therapeutic potential of phytochemicals in modulating miRNA expression and their significance in OC treatment.
Collapse
Affiliation(s)
- Youssef A Doghish
- Faculty of Dentistry, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Tamer A Hamza
- Faculty of Dentistry, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed Adel Abdelaziz
- Faculty of Dentistry, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | | | | | - Sara O Abbass
- Faculty of Dentistry, Modern University for Technology & Information, Cairo, Egypt
| | | | - Salma Noureldin
- Faculty of Dentistry, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Salma Ahmed Amin
- Faculty of Dentistry, Misr International University (MIU), Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Sama A Doghish
- Faculty of Computer and Information Sciences, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
7
|
Maniaci A, Briglia M, Allia F, Montalbano G, Romano GL, Zaouali MA, H’mida D, Gagliano C, Malaguarnera R, Lentini M, Graziano ACE, Giurdanella G. The Role of Pericytes in Inner Ear Disorders: A Comprehensive Review. BIOLOGY 2024; 13:802. [PMID: 39452111 PMCID: PMC11504721 DOI: 10.3390/biology13100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Inner ear disorders, including sensorineural hearing loss, Meniere's disease, and vestibular neuritis, are prevalent conditions that significantly impact the quality of life. Despite their high incidence, the underlying pathophysiology of these disorders remains elusive, and current treatment options are often inadequate. Emerging evidence suggests that pericytes, a type of vascular mural cell specialized to maintain the integrity and function of the microvasculature, may play a crucial role in the development and progression of inner ear disorders. The pericytes are present in the microvasculature of both the cochlea and the vestibular system, where they regulate blood flow, maintain the blood-labyrinth barrier, facilitate angiogenesis, and provide trophic support to neurons. Understanding their role in inner ear disorders may provide valuable insights into the pathophysiology of these conditions and lead to the development of novel diagnostic and therapeutic strategies, improving the standard of living. This comprehensive review aims to provide a detailed overview of the role of pericytes in inner ear disorders, highlighting the anatomy and physiology in the microvasculature, and analyzing the mechanisms that contribute to the development of the disorders. Furthermore, we explore the potential pericyte-targeted therapies, including antioxidant, anti-inflammatory, and angiogenic approaches, as well as gene therapy strategies.
Collapse
Affiliation(s)
- Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Marilena Briglia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Fabio Allia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Laboratory, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019 Monastir, Tunisia;
| | - Dorra H’mida
- Department of Cytogenetics and Reproductive Biology, Farhat Hached Hospital, 4021 Sousse, Tunisia;
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mario Lentini
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| |
Collapse
|
8
|
Morshedzadeh F, Abbaszadegan MR, Peymani M, Mozaffari-Jovin S. KRAS mutations detection methodology: from RFLP to CRISPR/Cas based methods. Funct Integr Genomics 2024; 24:183. [PMID: 39367162 DOI: 10.1007/s10142-024-01421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 10/06/2024]
Abstract
In personalized cancer medicine, the identification of KRAS mutations is essential for making treatment decisions and improving patient outcomes. This work presents a comprehensive review of the current approaches for detection of KRAS mutations in different cancers. We highlight the value of fast and reliable KRAS mutations discovery and the effectiveness of molecular testing for selecting individuals who might benefit from targeted therapy. We provide an overview of various methods and tools available for detecting KRAS mutations, such as digital droplet PCR, next-generation sequencing (NGS), and polymerase chain reaction (PCR). We also address the difficulties and limitations in the identification of KRAS mutations, namely tumor heterogeneity and the emergence of resistance mechanisms. This article aims to guide clinicians in KRAS mutation identification.
Collapse
Affiliation(s)
- Firouzeh Morshedzadeh
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Peymani
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Sina Mozaffari-Jovin
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Cuomo RG, Zhang Z, Yamada K, Krosky AJ, Shi J, Kohli RM, Parker JB. Expression and purification of cell-penetrating Cas9 and Cas12a enzymes for peptide-assisted genome editing. Methods Enzymol 2024; 705:25-49. [PMID: 39389665 DOI: 10.1016/bs.mie.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Recent advances in CRISPR-Cas genomic editors have shifted us ever closer to achieving the ultimate therapeutic goal of accomplishing any edit in any cell. However, delivery of this editing machinery to primary cells with high efficiency while avoiding cellular toxicity remains a formidable challenge. Peptide-Assisted Genome Editing (PAGE) provides a simple, modular, and rapid approach for the protein-based delivery of CRISPR-Cas proteins or ribonucleoprotein complexes into primary cells with high efficiency and minimal cytotoxicity. In this chapter, we detail an expression and purification protocol to obtain highly pure Cas9-T6N and opCas12a-T8N PAGE genomic editors. The robustness of this protocol allows for consistent preparations of the purified editors that can be reliably used for the editing of primary and immortalized cells.
Collapse
Affiliation(s)
- Rosella G Cuomo
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhen Zhang
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Keisuke Yamada
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander J Krosky
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Junwei Shi
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States; Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, United States; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, United States.
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States.
| | - Jared B Parker
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Murjani K, Tripathi R, Singh V. An overview and potential of CRISPR-Cas systems for genome editing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:1-17. [PMID: 39266179 DOI: 10.1016/bs.pmbts.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Genome editing involves altering of the DNA in organisms including bacteria, plants, and animals using molecular scissors that helps in treatment and diagnosis of various diseases. Genome editing technology is exponentially growing and have been developed for enabling precise genomic alterations and the addition, removal, and correction of genes. These modifications begin with the creation of double-stranded breaks (DSBs) that is generated by nucleases and can be joined through homology-directed repair (HDR) or non-homologous end-joining (NHEJ). NHEJ is quick but increases mutation chances due to deletions and insertions of nucleotides at the break site, while HDR uses homologous templates for precise repair and targeted DNA specific to the gene or sequence. Other methods such as zinc-finger protein is a transcription factor that binds with DNA and binds specific to that sequence, which uniquely recognise 3-base pairs of DNA. TALENs consists of two domains: TALE domain, a transcription activator and FokI that is a restriction endonuclease that cuts the DNA at specific sites. CRISPR-Cas systems are clustered regularly interspersed short palindromic repeats present in various bacterial species. These sequences activate RNA-guided DNA cleavage, aiding in the development of an adaptive immune defence against foreign DNA. CRISPR-Cas9 is widely used for genome editing, regulation, diagnostic and many.
Collapse
Affiliation(s)
- Karan Murjani
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Renu Tripathi
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India.
| |
Collapse
|
11
|
Ferraresso F, Leung J, Kastrup CJ. RNA therapeutics to control fibrinolysis: review on applications in biology and medicine. J Thromb Haemost 2024; 22:2103-2114. [PMID: 38663489 PMCID: PMC11269028 DOI: 10.1016/j.jtha.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
Regulation of fibrinolysis, the process that degrades blood clots, is pivotal in maintaining hemostasis. Dysregulation leads to thrombosis or excessive bleeding. Proteins in the fibrinolysis system include fibrinogen, coagulation factor XIII, plasminogen, tissue plasminogen activator, urokinase plasminogen activator, α2-antiplasmin, thrombin-activatable fibrinolysis inhibitor, plasminogen activator inhibitor-1, α2-macroglobulin, and others. While each of these is a potential therapeutic target for diseases, they lack effective or long-acting inhibitors. Rapid advances in RNA-based technologies are creating powerful tools to control the expression of proteins. RNA agents can be long-acting and tailored to either decrease or increase production of a specific protein. Advances in nucleic acid delivery, such as by lipid nanoparticles, have enabled the delivery of RNA to the liver, where most proteins of coagulation and fibrinolysis are produced. This review will summarize the classes of RNA that induce 1) inhibition of protein synthesis, including small interfering RNA and antisense oligonucleotides; 2) protein expression, including messenger RNA and self-amplifying RNA; and 3) gene editing for gene knockdown and precise editing. It will review specific examples of RNA therapies targeting proteins in the coagulation and fibrinolysis systems and comment on the wide range of opportunities for controlling fibrinolysis for biological applications and future therapeutics using state-of-the-art RNA therapies.
Collapse
Affiliation(s)
- Francesca Ferraresso
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin, USA; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jerry Leung
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian J Kastrup
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin, USA; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada; Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
12
|
Porcel JM, Pont M, Sorolla A. CRISPR Technology in Lung Diseases: The Example of Lung Cancer and Cystic Fibrosis. Arch Bronconeumol 2024; 60:397-399. [PMID: 38729885 DOI: 10.1016/j.arbres.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Affiliation(s)
- José M Porcel
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr Pifarré Foundation, IRBLleida, Lleida, Spain; Pleural Medicine and Clinical Ultrasound Unit, Department of Internal Medicine, Arnau de Vilanova University Hospital, Lleida, Spain.
| | - Mariona Pont
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr Pifarré Foundation, IRBLleida, Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr Pifarré Foundation, IRBLleida, Lleida, Spain
| |
Collapse
|
13
|
Wulandari DA, Hartati YW, Ibrahim AU, Pitaloka DAE, Irkham. Multidrug-resistant tuberculosis. Clin Chim Acta 2024; 559:119701. [PMID: 38697459 DOI: 10.1016/j.cca.2024.119701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
One of predominant contributors to global mortality is tuberculosis (TB), an infection caused by Mycobacterium tuberculosis (MTB). Inappropriate and ineffectual treatment can lead to the development of drug-resistant TB. One of the most common forms of drug-resistant TB is multidrug-resistant tuberculosis (MDR-TB), caused by mutations in the rpoB and katG genes that lead to resistance to anti-TB drugs, rifampicin (RIF) and isoniazid (INH), respectively. Although culturing remains the gold standard, it is not rapid thereby delaying potential treatment and potentially increasing the incidence of MDR-TB. In contrast, molecular techniques provide a highly sensitive and specific alternative. This review discusses the classification of biomarkers used to detect MDR-TB, some of the commonly used anti-TB drugs, and DNA mutations in MTB that lead to anti-TB resistance. The objective of this review is to increase awareness of the need for rapid and precise detection of MDR-TB cases to decrease morbidity and mortality of this infectious disease worldwide.
Collapse
Affiliation(s)
- Dika Apriliana Wulandari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, 45363, Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, 45363, Indonesia
| | - Abdullahi Umar Ibrahim
- Department of Biomedical Engineering, Near East University, Mersin 10, Nicosia 99010, Turkey; Research Center for Science, Technology and Engineering (BILTEM), Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - Dian Ayu Eka Pitaloka
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, 45363, Indonesia.
| |
Collapse
|
14
|
Cui T, Cai B, Tian Y, Liu X, Liang C, Gao Q, Li B, Ding Y, Li R, Zhou Q, Li W, Teng F. Therapeutic In Vivo Gene Editing Achieved by a Hypercompact CRISPR-Cas12f1 System Delivered with All-in-One Adeno-Associated Virus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308095. [PMID: 38408137 PMCID: PMC11109646 DOI: 10.1002/advs.202308095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/29/2024] [Indexed: 02/28/2024]
Abstract
CRISPR-based gene therapies are making remarkable strides toward the clinic. But the large size of most widely used Cas endonucleases including Cas9 and Cas12a restricts their efficient delivery by the adeno-associated virus (AAV) for in vivo gene editing. Being exceptionally small, the recently engineered type V-F CRISPR-Cas12f1 systems can overcome the cargo packaging bottleneck and present as strong candidates for therapeutic applications. In this study, the pairwise editing efficiencies of different engineered Cas12f1/sgRNA scaffold combinations are systemically screened and optimized, and the CasMINI_v3.1/ge4.1 system is identified as being able to significantly boost the gene editing activity. Moreover, packaged into single AAV vectors and delivered via subretinal injection, CasMINI_v3.1/ge4.1 achieves remarkably high in vivo editing efficiencies, over 70% in transduced retinal cells. Further, the efficacy of this Cas12f1 system-based gene therapy to treat retinitis pigmentosa in RhoP23H mice is demonstrated by the therapeutic benefits achieved including rescued visual function and structural preservation. And minimal bystander editing activity is detected. This work advances and expands the therapeutic potential of the miniature Cas12f1 system to support efficient and accurate in vivo gene therapy.
Collapse
Affiliation(s)
- Tongtong Cui
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Bingyu Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Yao Tian
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Xin Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Chen Liang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Qingqin Gao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Bojin Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Yali Ding
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Rongqi Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Qi Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
| | - Fei Teng
- University of Chinese Academy of SciencesBeijing101408China
| |
Collapse
|
15
|
Stampone E, Bencivenga D, Capellupo MC, Roberti D, Tartaglione I, Perrotta S, Della Ragione F, Borriello A. Genome editing and cancer therapy: handling the hypoxia-responsive pathway as a promising strategy. Cell Mol Life Sci 2023; 80:220. [PMID: 37477829 PMCID: PMC10361942 DOI: 10.1007/s00018-023-04852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
The precise characterization of oxygen-sensing pathways and the identification of pO2-regulated gene expression are both issues of critical importance. The O2-sensing system plays crucial roles in almost all the pivotal human processes, including the stem cell specification, the growth and development of tissues (such as embryogenesis), the modulation of intermediate metabolism (including the shift of the glucose metabolism from oxidative to anaerobic ATP production and vice versa), and the control of blood pressure. The solid cancer microenvironment is characterized by low oxygen levels and by the consequent activation of the hypoxia response that, in turn, allows a complex adaptive response characterized mainly by neoangiogenesis and metabolic reprogramming. Recently, incredible advances in molecular genetic methodologies allowed the genome editing with high efficiency and, above all, the precise identification of target cells/tissues. These new possibilities and the knowledge of the mechanisms of adaptation to hypoxia suggest the effective development of new therapeutic approaches based on the manipulation, targeting, and exploitation of the oxygen-sensor system molecular mechanisms.
Collapse
Affiliation(s)
- Emanuela Stampone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Maria Chiara Capellupo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Domenico Roberti
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Immacolata Tartaglione
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Silverio Perrotta
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy.
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy.
| |
Collapse
|