1
|
Ghouli MR, Binder DK. Neuroglia in epilepsy. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:69-86. [PMID: 40148058 DOI: 10.1016/b978-0-443-19102-2.00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Epilepsy is a group of neurologic diseases characterized by spontaneous, repetitive disruption to neuronal activity. Neurons have been at the core of epilepsy research efforts, and pharmacotherapies historically have been generated by targeting neuronal mechanisms. As a result, most currently available antiseizure drugs (ASDs) work to either decrease excitatory glutamatergic neurotransmission or to increase inhibitory GABAergic neurotransmission. However, ASDs may have undesirable side effects on cognition and also fail to control seizures in approximately 30% of epilepsy patients. In recent years, glia have surfaced as essential modulators of neuronal function in health and disease. The redirection of focus onto neuroglia provides new perspectives and opportunities to generate novel therapeutic targets that may treat refractory epilepsy and diminish the unwanted side effect profile of current treatments. In this chapter, we discuss the contribution of astroglia, oligodendroglia, and microglia to the genesis, development, and progression of epilepsy, and we highlight key enzymes, receptors, transporters, and channels that may be pursued as nonneuronal targets for novel ASDs.
Collapse
Affiliation(s)
- Manolia R Ghouli
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States; Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States; Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, CA, United States.
| |
Collapse
|
2
|
Clasadonte J, Deprez T, Stephens GS, Mairet-Coello G, Cortin PY, Boutier M, Frey A, Chin J, Rajman M. ΔFosB is part of a homeostatic mechanism that protects the epileptic brain from further deterioration. Front Mol Neurosci 2024; 16:1324922. [PMID: 38283700 PMCID: PMC10810990 DOI: 10.3389/fnmol.2023.1324922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
Activity induced transcription factor ΔFosB plays a key role in different CNS disorders including epilepsy, Alzheimer's disease, and addiction. Recent findings suggest that ΔFosB drives cognitive deficits in epilepsy and together with the emergence of small molecule inhibitors of ΔFosB activity makes it an interesting therapeutic target. However, whether ΔFosB contributes to pathophysiology or provides protection in drug-resistant epilepsy is still unclear. In this study, ΔFosB was specifically downregulated by delivering AAV-shRNA into the hippocampus of chronically epileptic mice using the drug-resistant pilocarpine model of mesial temporal epilepsy (mTLE). Immunohistochemistry analyses showed that prolonged downregulation of ΔFosB led to exacerbation of neuroinflammatory markers of astrogliosis and microgliosis, loss of mossy fibers, and hippocampal granule cell dispersion. Furthermore, prolonged inhibition of ΔFosB using a ΔJunD construct to block ΔFosB signaling in a mouse model of Alzheimer's disease, that exhibits spontaneous recurrent seizures, led to similar findings, with increased neuroinflammation and decreased NPY expression in mossy fibers. Together, these data suggest that seizure-induced ΔFosB, regardless of seizure-etiology, is part of a homeostatic mechanism that protects the epileptic brain from further deterioration.
Collapse
Affiliation(s)
- Jerome Clasadonte
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Tania Deprez
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | | | | | - Pierre-Yves Cortin
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Maxime Boutier
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Aurore Frey
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Jeannie Chin
- Baylor College of Medicine, Houston, TX, United States
| | - Marek Rajman
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| |
Collapse
|
3
|
Luo X, Xu M, Guo W. Adult neurogenesis research in China. Dev Growth Differ 2023; 65:534-545. [PMID: 37899611 DOI: 10.1111/dgd.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023]
Abstract
Neural stem cells are multipotent stem cells that generate functional newborn neurons through a process called neurogenesis. Neurogenesis in the adult brain is tightly regulated and plays a pivotal role in the maintenance of brain function. Disruption of adult neurogenesis impairs cognitive function and is correlated with numerous neurologic disorders. Deciphering the mechanisms underlying adult neurogenesis not only advances our understanding of how the brain functions, but also offers new insight into neurologic diseases and potentially contributes to the development of effective treatments. The field of adult neurogenesis is experiencing significant growth in China. Chinese researchers have demonstrated a multitude of factors governing adult neurogenesis and revealed the underlying mechanisms of and correlations between adult neurogenesis and neurologic disorders. Here, we provide an overview of recent advancements in the field of adult neurogenesis due to Chinese scientists.
Collapse
Affiliation(s)
- Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Wolinski P, Ksiazek-Winiarek D, Glabinski A. Cytokines and Neurodegeneration in Epileptogenesis. Brain Sci 2022; 12:brainsci12030380. [PMID: 35326336 PMCID: PMC8945903 DOI: 10.3390/brainsci12030380] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022] Open
Abstract
Epilepsy is a common brain disorder characterized by a heterogenous etiology. Its main features are recurrent seizures. Despite many clinical studies, about 30% of cases are refractory to treatment. Recent studies suggested the important role of immune-system elements in its pathogenesis. It was suggested that a deregulated inflammatory process may lead to aberrant neural connectivity and the hyperexcitability of the neuronal network. The aim of our study was the analysis of the expression of inflammatory mediators in a mouse model of epilepsy and their impact on the neurodegeneration process located in the brain. We used the KA-induced model of epilepsy in SJL/J mice and performed the analysis of gene expression and protein levels. We observed the upregulation of IL1β and CXCL12 in the early phase of KA-induced epilepsy and elevated levels of CCL5 at a later time point, compared with control animals. The most important result obtained in our study is the elevation of CXCL2 expression at both studied time points and its correlation with the neurodegeneration observed in mouse brain. Increasing experimental and clinical data suggest the influence of peripheral inflammation on epileptogenesis. Thus, studies focused on the molecular markers of neuroinflammation are of great value and may help deepen our knowledge about epilepsy, leading to the discovery of new drugs.
Collapse
|
5
|
Zhao S, Liu F, Shi W, Wang J, Zhou Z, Zhang X. DL-3-n-butylphthalide promotes hippocampal neurogenesis and reduces mossy fiber sprouting in chronic temporal lobe epilepsy rats. BMC Neurol 2022; 22:3. [PMID: 34979964 PMCID: PMC8722179 DOI: 10.1186/s12883-021-02516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background A decrease in hippocampal neurogenesis is considered an important cause of cognitive impairment, while changes in mossy fiber sprouting are closely related to development of spontaneous recurrent seizures in chronic temporal lobe epilepsy (TLE). Racemic l-3-n-butylphthalide (DL-NBP) can alleviate cognitive impairment in ischemic stroke and Alzheimer’s disease by promoting neurogenesis. DL-NBP treatment can also improve cognitive function and reduce seizure incidence in chronic epileptic mice. However, the mechanisms of action of DL-NBP remain unclear. The aim of the present study was to examine the effects of DL-NBP on mossy fiber sprouting, hippocampal neurogenesis, spontaneous epileptic seizures, and cognitive functioning in the chronic phase of TLE. Methods Nissl staining was used to evaluate hippocampal injury, while immunofluorescent staining was used to analyze hippocampal neurogenesis. The duration of spontaneous seizures was measured by electroencephalography. The Morris water maze was used to evaluate cognitive function. Timm staining was used to assess mossy fiber sprouting. Results TLE animals showed reduced proliferation of newborn neurons, cognitive dysfunction, and spontaneous seizures. Treatment with DL-NBP after TLE increased the proliferation and survival of newborn neurons in the dentate gyrus, reversed the neural loss in the hippocampus, alleviated cognitive impairments, and decreased mossy fiber sprouting and long-term spontaneous seizure activity. Conclusions We provided pathophysiological and morphological evidence that DL-NBP might be a useful therapeutic for the treatment of TLE.
Collapse
Affiliation(s)
- Shanshan Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Fangxi Liu
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Wei Shi
- Department of Neurology, Tacheng District People's Hospital, Tacheng, 834700, Xinjiang, China
| | - Jialu Wang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Zhike Zhou
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
6
|
The Kainic Acid Models of Temporal Lobe Epilepsy. eNeuro 2021; 8:ENEURO.0337-20.2021. [PMID: 33658312 PMCID: PMC8174050 DOI: 10.1523/eneuro.0337-20.2021] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Experimental models of epilepsy are useful to identify potential mechanisms of epileptogenesis, seizure genesis, comorbidities, and treatment efficacy. The kainic acid (KA) model is one of the most commonly used. Several modes of administration of KA exist, each producing different effects in a strain-, species-, gender-, and age-dependent manner. In this review, we discuss the advantages and limitations of the various forms of KA administration (systemic, intrahippocampal, and intranasal), as well as the histologic, electrophysiological, and behavioral outcomes in different strains and species. We attempt a personal perspective and discuss areas where work is needed. The diversity of KA models and their outcomes offers researchers a rich palette of phenotypes, which may be relevant to specific traits found in patients with temporal lobe epilepsy.
Collapse
|
7
|
Pacheco ALD, de Melo IS, de Souza FMA, Nicácio DCSP, Freitas-Santos J, Oliveira Dos Santos YM, Costa MDA, Cavalcante CDMB, Gomes Dos Santos Neto J, Gitaí DLG, Sabino-Silva R, Torres de Miranda C, Borbely AU, Duzzioni M, Shetty AK, de Castro OW. Maternal crack cocaine use in rats leads to depressive- and anxiety-like behavior, memory impairment, and increased seizure susceptibility in the offspring. Eur Neuropsychopharmacol 2021; 44:34-50. [PMID: 33454149 DOI: 10.1016/j.euroneuro.2020.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022]
Abstract
Crack users suffer the effects of cocaine present in the drug and the action of other active compounds from its pyrolysis. An emergent fact is an increase in the number of pregnant crack cocaine users. Studies suggest that crack cocaine and its metabolites cross the placenta, promoting premature birth, fever, irritability, sweating, and seizures in the early months of life. In children, the effects of crack cocaine have been associated with cognitive deficits, difficulty in verbalization, aggressiveness, and depression, besides enhancing the susceptibility to epileptic seizures, including status epilepticus (SE) in adulthood. Therefore, we investigated the effect of maternal exposure to smoke crack cocaine on several behavioral parameters in the offspring during adulthood. A series of behavioral tests and intrahippocampal pilocarpine (H-PILO) microinjection at sub-convulsive and convulsive doses in a rat model demonstrated that exposure to crack cocaine during the embryonic period leads to anxiogenic-like behavior and long-term memory impairment in both genders and promotes depressive-like behavior in the female. Besides, crack cocaine offspring exposed to a sub-convulsive H-PILO dose showed higher susceptibility to SE, increased seizure frequency, and neurodegeneration, while animals that received a convulsive dose of H-PILO displayed no alteration in SE severity. Taken together, our data suggest that crack cocaine exposure during the gestational period leads to an increased predilection for anxiety and depression, long-term memory deficits, and reduction in the threshold for developing epileptic seizures associated with neuronal death, which predispose crack cocaine babies to develop neuropsychological disorders.
Collapse
Affiliation(s)
- Amanda Larissa Dias Pacheco
- Department of Physiology, Institute of Biological Sciences and Health of Federal University of Alagoas, Maceió, Brazil
| | - Igor Santana de Melo
- Department of Physiology, Institute of Biological Sciences and Health of Federal University of Alagoas, Maceió, Brazil
| | | | | | - Jucilene Freitas-Santos
- Department of Physiology, Institute of Biological Sciences and Health of Federal University of Alagoas, Maceió, Brazil
| | | | - Maisa de Araújo Costa
- Department of Physiology, Institute of Biological Sciences and Health of Federal University of Alagoas, Maceió, Brazil
| | | | - José Gomes Dos Santos Neto
- Department of Physiology, Institute of Biological Sciences and Health of Federal University of Alagoas, Maceió, Brazil
| | - Daniel Leite Góes Gitaí
- Department of Physiology, Institute of Biological Sciences and Health of Federal University of Alagoas, Maceió, Brazil
| | - Robinson Sabino-Silva
- Department of Physiology, Biomedical Sciences Institute, Federal University of Uberlandia (UFU), Minas Gerais, Brazil
| | - Cláudio Torres de Miranda
- Department of Physiology, Institute of Biological Sciences and Health of Federal University of Alagoas, Maceió, Brazil
| | - Alexandre Urban Borbely
- Department of Physiology, Institute of Biological Sciences and Health of Federal University of Alagoas, Maceió, Brazil
| | - Marcelo Duzzioni
- Department of Physiology, Institute of Biological Sciences and Health of Federal University of Alagoas, Maceió, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Olagide Wagner de Castro
- Department of Physiology, Institute of Biological Sciences and Health of Federal University of Alagoas, Maceió, Brazil.
| |
Collapse
|
8
|
Dong BC, Li MX, Wang XY, Cheng X, Wang Y, Xiao T, Jolkkonen J, Zhao CS, Zhao SS. Effects of CXCR7-neutralizing antibody on neurogenesis in the hippocampal dentate gyrus and cognitive function in the chronic phase of cerebral ischemia. Neural Regen Res 2020; 15:1079-1085. [PMID: 31823888 PMCID: PMC7034276 DOI: 10.4103/1673-5374.270416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stromal cell-derived factor-1 and its receptor CXCR4 are essential regulators of the neurogenesis that occurs in the adult hippocampal dentate gyrus. However, the effects of CXCR7, a new atypical receptor of stromal cell-derived factor-1, on hippocampal neurogenesis after a stroke remain largely unknown. Our study is the first to investigate the effect of a CXCR7-neutralizing antibody on neurogenesis in the dentate gyrus and the associated recovery of cognitive function of rats in the chronic stage of cerebral ischemia. The rats were randomly divided into sham, sham + anti-CXCR7, ischemia and ischemia + anti-CXCR7 groups. Endothelin-1 was injected in the ipsilateral motor cortex and striatum to induce focal cerebral ischemia. Sham group rats were injected with saline instead of endothelin-1 via intracranial injection. Both sham and ischemic rats were treated with intraventricular infusions of CXCR7-neutralizing antibodies for 6 days 1 week after surgery. Immunofluorescence staining with doublecortin, a marker for neuronal precursors, was performed to assess the neurogenesis in the dentate gyrus. We found that anti-CXCR7 antibody infusion enhanced the proliferation and dendritic development of doublecortin-labeled cells in the dentate gyrus in both ischemic and sham-operated rats. Spatial learning and memory functions were assessed by Morris water maze tests 30–32 days after ischemia. CXCR7-neutralizing antibody treatment significantly reduced the escape latency of the spatial navigation trial and increased the time spent in the target quadrant of spatial probe trial in animals that received ischemic insult, but not in sham operated rats. These results suggest that CXCR7-neutralizing antibody enhances the neurogenesis in the dentate gyrus and improves the cognitive function after cerebral ischemia in rats. All animal experimental protocols and procedures were approved by the Institutional Animal Care and Use Committee of China Medical University (CMU16089R) on December 8, 2016.
Collapse
Affiliation(s)
- Bing-Chao Dong
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mei-Xuan Li
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiao-Yin Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xi Cheng
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yu Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ting Xiao
- Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, Liaoning Province, China
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Chuan-Sheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shan-Shan Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
9
|
CXCR7 regulates epileptic seizures by controlling the synaptic activity of hippocampal granule cells. Cell Death Dis 2019; 10:825. [PMID: 31672961 PMCID: PMC6823462 DOI: 10.1038/s41419-019-2052-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
C–X–C motif chemokine receptor 7 (CXCR7), which mediates the immune response in the brain, was recently reported to regulate neurological functions. However, the role of CXCR7 in epilepsy remains unclear. Here, we found that CXCR7 was upregulated in the hippocampal dentate gyrus (DG) of mice subjected to kainic acid (KA)-induced epilepsy and in the brain tissues of patients with temporal lobe epilepsy. Silencing CXCR7 in the hippocampal DG region exerted an antiepileptic effect on the KA-induced mouse model of epilepsy, whereas CXCR7 overexpression produced a seizure-aggravating effect. Mechanistically, CXCR7 selectively regulated N-methyl-d-aspartate receptor (NMDAR)-mediated synaptic neurotransmission in hippocampal dentate granule cells by modulating the cell membrane expression of the NMDAR subunit2A, which requires the activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Thus, CXCR7 may regulate epileptic seizures and represents a novel target for antiepileptic treatments.
Collapse
|
10
|
Hiragi T, Ikegaya Y, Koyama R. Microglia after Seizures and in Epilepsy. Cells 2018; 7:cells7040026. [PMID: 29597334 PMCID: PMC5946103 DOI: 10.3390/cells7040026] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 01/23/2023] Open
Abstract
Microglia are the resident immune cells in the brain that constitute the brain’s innate immune system. Recent studies have revealed various functions of microglia in the development and maintenance of the central nervous system (CNS) in both health and disease. However, the role of microglia in epilepsy remains largely undiscovered, partly because of the complex phenotypes of activated microglia. Activated microglia likely exert different effects on brain function depending on the phase of epileptogenesis. In this review, we mainly focus on the animal models of temporal lobe epilepsy (TLE) and discuss the proepileptic and antiepileptic roles of activated microglia in the epileptic brain. Specifically, we focus on the roles of microglia in the production of inflammatory cytokines, regulation of neurogenesis, and surveillance of the surrounding environment in epilepsy.
Collapse
Affiliation(s)
- Toshimitsu Hiragi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan.
| |
Collapse
|
11
|
Liu TT, Li Y, Shu Y, Xiao B, Feng L. Ephrin‑b3 modulates hippocampal neurogenesis and the reelin signaling pathway in a pilocarpine‑induced model of epilepsy. Int J Mol Med 2018; 41:3457-3467. [PMID: 29512697 PMCID: PMC5881691 DOI: 10.3892/ijmm.2018.3543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/05/2018] [Indexed: 12/13/2022] Open
Abstract
Ephrin-B3 is important in the regulation of cell proliferation, differentiation and migration via cell-cell contact, and can activate the reelin pathway during brain development. However, the effect of ephrin-B3 on hippocampal neurogenesis and the reelin pathway in epilepsy remains to be fully elucidated. In the present study, the expression of ephrin-B3 in pilocarpine-induced status epilepticus (SE) rats was investigated. SYBR Green-based reverse transcription-quantitative polymerase chain reaction analysis, immunohistochemical labeling and western blot analysis were used to detect the gene and protein expression levels of ephrin-B3 and reelin pathway proteins. Immunofluorescence staining of doublecortin (DCX) was utilized to analyze hippocampal neurogenesis. The data revealed that the mRNA and protein expression levels of ephrin-B3 in the hippocampus decreased during the spontaneous seizure period. Of note, the expression of reelin and its downstream phosphorylation disabled 1 (p-Dab1) were also notably decreased during the spontaneous seizure period, which showed similar dynamic changes as in the expression of ephrin-B3. In addition, it was found that the number of DCX-labeled neuronal progenitor cells was increased in the hippocampus following pilocarpine-induced SE. To further clarify the role of ephrin-B3 in neurogenesis and the reelin pathway in epilepsy, an exogenous ephrin-B3 clustering stimulator, EphB3-Fc, was infused into the bilateral hippocampus of the rats post-SE. Following EphB3-Fc injection, it was found that the expression levels of reelin and p-Dab1 were significantly increased in the epileptic rats following EphB3-Fc injection. The number of DCX-labeled neuronal progenitor cells was reduced in the hippocampus of the epileptic rats. Furthermore, the intensity and frequency of spontaneous recurrent seizures and electroencephalographic seizures were attenuated in the epileptic rats post-injection. These results demonstrated the critical role of ephrin-B3 in regulation of the reelin pathway and hippocampal neurogenesis in epilepsy, providing experimental evidence that ephrin-B3 functions as a potential protective factor in epilepsy, at least in animals.
Collapse
Affiliation(s)
- Tian-Tian Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi Li
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Yi Shu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
12
|
Zhang X, Qu H, Wang Y, Zhao S, Xiao T, Zhao C, Teng W. Aberrant plasticity in the hippocampus after neonatal seizures. Int J Neurosci 2017; 128:384-391. [PMID: 28937832 DOI: 10.1080/00207454.2017.1384380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaoqian Zhang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Huiling Qu
- Department of Neurology, The People's Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ying Wang
- Department of Neurology, The First Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Shanshan Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ting Xiao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
- Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, Liaoning, PR China
| | - Chuansheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Weiyu Teng
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| |
Collapse
|
13
|
The effect of CXCR2 inhibition on seizure activity in the pilocarpine epilepsy mouse model. Brain Res Bull 2017; 134:91-98. [DOI: 10.1016/j.brainresbull.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 01/13/2023]
|
14
|
Liu TT, Feng L, Liu HF, Shu Y, Xiao B. Altered axon initial segment in hippocampal newborn neurons, associated with recurrence of temporal lobe epilepsy in rats. Mol Med Rep 2017; 16:3169-3178. [PMID: 28713955 PMCID: PMC5547972 DOI: 10.3892/mmr.2017.7017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/06/2017] [Indexed: 01/23/2023] Open
Abstract
Hippocampal neurogenesis in temporal lobe epilepsy (TLE) may result in alteration of the excitability of neurons, which contributes to spontaneous recurrent seizures. Axon initial segment (AIS) structural and functional plasticity is important in the control of neuronal excitability. It remains to be elucidated whether the plasticity of AIS occurs in hippocampal newly-generated neurons that are involved in recurrent seizures following pilocarpine-induced status epilepticus (SE). The present study first established a pilocarpine-induced TLE rat model to assess the features of newborn neurons and AIS plasticity alterations using double immunofluorescence staining of Ankyrin G and doublecortin (DCX). AIS plasticity alterations include length and distance from soma in the hippocampal newly-generated neurons post-SE. The results of the present study demonstrated that pilocarpine-induced epileptic rats exhibited aberrant hippocampal neurogenesis and longer DCX-labeled cell dendrites in the dentate gyrus. Pilocarpine-induced epileptic rats demonstrated shortened lengths of AIS and an increased distance from the soma in hippocampal newborn neurons. Mibefradil, a T/L-type calcium blocker, reversed the alterations in length and position of AIS in hippocampal newborn neurons post-SE, accompanied by decreased long-term seizure activity without increased aberrant neurogenesis. These findings indicate that the plasticity of AIS in hippocampal neurogenesis may have profound consequences in epilepsy, at least in animals.
Collapse
Affiliation(s)
- Tian-Tian Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Heng-Fang Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yi Shu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
15
|
Zhou Z, Liu T, Sun X, Mu X, Zhu G, Xiao T, Zhao M, Zhao C. CXCR4 antagonist AMD3100 reverses the neurogenesis promoted by enriched environment and suppresses long-term seizure activity in adult rats of temporal lobe epilepsy. Behav Brain Res 2017; 322:83-91. [DOI: 10.1016/j.bbr.2017.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/02/2017] [Accepted: 01/06/2017] [Indexed: 12/16/2022]
|
16
|
Jiang X, Lachance M, Rossignol E. Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy. PROGRESS IN BRAIN RESEARCH 2016; 226:81-126. [PMID: 27323940 DOI: 10.1016/bs.pbr.2016.04.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GABAergic interneurons of the parvalbumin-positive fast-spiking basket cells subtype (PV INs) are important regulators of cortical network excitability and of gamma oscillations, involved in signal processing and cognition. Impaired development or function of PV INs has been associated with epilepsy in various animal models of epilepsy, as well as in some genetic forms of epilepsy in humans. In this review, we provide an overview of some of the experimental data linking PV INs dysfunction with epilepsy, focusing on disorders of the specification, migration, maturation, synaptic function, or connectivity of PV INs. Furthermore, we reflect on the potential therapeutic use of cell-type specific stimulation of PV INs within active networks and on the transplantation of PV INs precursors in the treatment of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- X Jiang
- Université de Montréal, Montréal, QC, Canada; CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - M Lachance
- CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - E Rossignol
- Université de Montréal, Montréal, QC, Canada; CHU Ste-Justine Research Center, Montréal, QC, Canada.
| |
Collapse
|