1
|
Yamaguchi J, Andrade MA, Truong TT, Toney GM. Glutamate Spillover Dynamically Strengthens Gabaergic Synaptic Inhibition of the Hypothalamic Paraventricular Nucleus. J Neurosci 2024; 44:e1851222023. [PMID: 38154957 PMCID: PMC10869154 DOI: 10.1523/jneurosci.1851-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) is strongly inhibited by γ-aminobutyric acid (GABA) from the surrounding peri-nuclear zone (PNZ). Because glutamate mediates fast excitatory transmission and is substrate for GABA synthesis, we tested its capacity to dynamically strengthen GABA inhibition. In PVN slices from male mice, bath glutamate applied during ionotropic glutamate receptor blockade increased PNZ-evoked inhibitory postsynaptic currents (eIPSCs) without affecting GABA-A receptor agonist currents or single-channel conductance, implicating a presynaptic mechanism(s). Consistent with this interpretation, bath glutamate failed to strengthen IPSCs during pharmacological saturation of GABA-A receptors. Presynaptic analyses revealed that glutamate did not affect paired-pulse ratio, peak eIPSC variability, GABA vesicle recycling speed, or readily releasable pool (RRP) size. Notably, glutamate-GABA strengthening (GGS) was unaffected by metabotropic glutamate receptor blockade and graded external Ca2+ when normalized to baseline amplitude. GGS was prevented by pan- but not glial-specific inhibition of glutamate uptake and by inhibition of glutamic acid decarboxylase (GAD), indicating reliance on glutamate uptake by neuronal excitatory amino acid transporter 3 (EAAT3) and enzymatic conversion of glutamate to GABA. EAAT3 immunoreactivity was strongly localized to presumptive PVN GABA terminals. High bath K+ also induced GGS, which was prevented by glutamate vesicle depletion, indicating that synaptic glutamate release strengthens PVN GABA inhibition. GGS suppressed PVN cell firing, indicating its functional significance. In sum, PVN GGS buffers neuronal excitation by apparent "over-filling" of vesicles with GABA synthesized from synaptically released glutamate. We posit that GGS protects against sustained PVN excitation and excitotoxicity while potentially aiding stress adaptation and habituation.
Collapse
Affiliation(s)
- Junya Yamaguchi
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| | - Mary Ann Andrade
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| | - Tamara T Truong
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| | - Glenn M Toney
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
- Center for Biomedical Neuroscience, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| |
Collapse
|
2
|
Tran JU, Brown BL. Structural Basis for Allostery in PLP-dependent Enzymes. Front Mol Biosci 2022; 9:884281. [PMID: 35547395 PMCID: PMC9081730 DOI: 10.3389/fmolb.2022.884281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are found ubiquitously in nature and are involved in a variety of biological pathways, from natural product synthesis to amino acid and glucose metabolism. The first structure of a PLP-dependent enzyme was reported over 40 years ago, and since that time, there is a steady wealth of structural and functional information revealed for a wide array of these enzymes. A functional mechanism that is gaining more appreciation due to its relevance in drug design is that of protein allostery, where binding of a protein or ligand at a distal site influences the structure, organization, and function at the active site. Here, we present a review of current structure-based mechanisms of allostery for select members of each PLP-dependent enzyme family. Knowledge of these mechanisms may have a larger potential for identifying key similarities and differences among enzyme families that can eventually be exploited for therapeutic development.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Breann L. Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
3
|
Applications of genetic code expansion in studying protein post-translational modification. J Mol Biol 2021; 434:167424. [PMID: 34971673 DOI: 10.1016/j.jmb.2021.167424] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/18/2023]
Abstract
Various post-translational modifications can naturally occur on proteins, regulating the activity, subcellular localization, interaction, or stability of the proteins. However, it can be challenging to decipher the biological implication or physiological roles of site-specific modifications due to their dynamic and sub-stoichiometric nature. Genetic code expansion method, relying on an orthogonal aminoacyl-tRNA synthetase/tRNA pair, enables site-specific incorporation of non-canonical amino acids. Here we focus on the application of genetic code expansion to study site-specific protein post-translational modification in vitro and in vivo. After a brief introduction, we discuss possibilities of incorporating non-canonical amino acids containing post-translational modifications or their mimics into target proteins. This approach is applicable for Ser/Thr/Tyr phosphorylation, Tyr sulfation and nitration, Lys acetylation and acylation, Lys/His mono-methylation, as well as Arg citrullination. The next section describes the use of a precursor non-canonical amino acid followed by chemical and/or enzymatic reactions to afford the desired modification, such as Cys/Lys acylation, ubiquitin and ubiquitin-like modifications, as well as Lys/Gln methylation. We also discuss means for functional regulation of enzymes involving in post-translational modifications through genetically incorporated non-canonical amino acids. Lastly, the limitations and perspectives of genetic code expansion in studying protein post-translational modification are described.
Collapse
|
4
|
Pyridoxal kinase inhibition by artemisinins down-regulates inhibitory neurotransmission. Proc Natl Acad Sci U S A 2020; 117:33235-33245. [PMID: 33318193 DOI: 10.1073/pnas.2008695117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The antimalarial artemisinins have also been implicated in the regulation of various cellular pathways including immunomodulation of cancers and regulation of pancreatic cell signaling in mammals. Despite their widespread application, the cellular specificities and molecular mechanisms of target recognition by artemisinins remain poorly characterized. We recently demonstrated how these drugs modulate inhibitory postsynaptic signaling by direct binding to the postsynaptic scaffolding protein gephyrin. Here, we report the crystal structure of the central metabolic enzyme pyridoxal kinase (PDXK), which catalyzes the production of the active form of vitamin B6 (also known as pyridoxal 5'-phosphate [PLP]), in complex with artesunate at 2.4-Å resolution. Partially overlapping binding of artemisinins with the substrate pyridoxal inhibits PLP biosynthesis as demonstrated by kinetic measurements. Electrophysiological recordings from hippocampal slices and activity measurements of glutamic acid decarboxylase (GAD), a PLP-dependent enzyme synthesizing the neurotransmitter γ-aminobutyric acid (GABA), define how artemisinins also interfere presynaptically with GABAergic signaling. Our data provide a comprehensive picture of artemisinin-induced effects on inhibitory signaling in the brain.
Collapse
|
5
|
Wang H, Liu L, Rao X, Zeng B, Yu Y, Zhou C, Zeng L, Zheng P, Pu J, Xu S, Cheng K, Zhang H, Ji P, Wei H, Xie P. Integrated phosphoproteomic and metabolomic profiling reveals perturbed pathways in the hippocampus of gut microbiota dysbiosis mice. Transl Psychiatry 2020; 10:346. [PMID: 33051451 PMCID: PMC7553953 DOI: 10.1038/s41398-020-01024-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
The dysbiosis of gut microbiota is an important environmental factor that can induce mental disorders, such as depression, through the microbiota-gut-brain axis. However, the underlying pathogenic mechanisms are complex and not completely understood. Here we utilized mass spectrometry to identify the global phosphorylation dynamics in hippocampus tissue in germ-free mice and specific pathogen-free mice (GF vs SPF), fecal microbiota transplantation (FMT) model ("depression microbiota" and the "healthy microbiota" recipient mice). As a result, 327 phosphosites of 237 proteins in GF vs SPF, and 478 phosphosites of 334 proteins in "depression microbiota" vs "healthy microbiota" recipient mice were identified as significant. These phosphorylation dysregulations were consistently associated with glutamatergic neurotransmitter system disturbances. The FMT mice exhibited disturbances in lipid metabolism and amino acid metabolism in both the periphery and brain through integrating phosphoproteomic and metabolomic analysis. Moreover, CAMKII-CREB signaling pathway, in response to these disturbances, was the primary common perturbed cellular process. In addition, we demonstrated that the spliceosome, never directly implicated in mental disorders previously, was a substantially neuronal function disrupted by gut microbiota dysbiosis, and the NCBP1 phosphorylation was identified as a novel pathogenic target. These results present a new perspective to study the pathologic mechanisms of gut microbiota dysbiosis related depression and highlight potential gut-mediated therapies for depression.
Collapse
Affiliation(s)
- Haiyang Wang
- grid.459985.cChongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, 401147 Chongqing, China ,grid.203458.80000 0000 8653 0555College of Biomedical Engineering, Chongqing Medical University, 400016 Chongqing, China ,grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Lanxiang Liu
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China ,grid.203458.80000 0000 8653 0555Department of Neurology, Yongchuan Hospital of Chongqing Medical University, 402460 Chongqing, China
| | - Xuechen Rao
- grid.203458.80000 0000 8653 0555College of Biomedical Engineering, Chongqing Medical University, 400016 Chongqing, China ,grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Benhua Zeng
- grid.410570.70000 0004 1760 6682Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, 400038 Chongqing, China
| | - Ying Yu
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Chanjuan Zhou
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Li Zeng
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China ,grid.412461.4Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, China
| | - Peng Zheng
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China ,grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Juncai Pu
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China ,grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Shaohua Xu
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Ke Cheng
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China ,grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Hanping Zhang
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China ,grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Ping Ji
- grid.459985.cChongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, 401147 Chongqing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, 400038, Chongqing, China.
| | - Peng Xie
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, 401147, Chongqing, China. .,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China. .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
6
|
The regulation of glutamic acid decarboxylases in GABA neurotransmission in the brain. Arch Pharm Res 2019; 42:1031-1039. [PMID: 31786745 DOI: 10.1007/s12272-019-01196-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter that is required for the control of synaptic excitation/inhibition and neural oscillation. GABA is synthesized by glutamic acid decarboxylases (GADs) that are widely distributed and localized to axon terminals of inhibitory neurons as well as to the soma and, to a lesser extent, dendrites. The expression and activity of GADs is highly correlated with GABA levels and subsequent GABAergic neurotransmission at the inhibitory synapse. Dysregulation of GADs has been implicated in various neurological disorders including epilepsy and schizophrenia. Two isoforms of GADs, GAD67 and GAD65, are expressed from separate genes and have different regulatory processes and molecular properties. This review focuses on the recent advances in understanding the structure of GAD, its transcriptional regulation and post-transcriptional modifications in the central nervous system. This may provide insights into the pathological mechanisms underlying neurological diseases that are associated with GAD dysfunction.
Collapse
|
7
|
Gao Y, Chen L, Du Z, Gao W, Wu Z, Liu X, Huang H, Xu D, Li Q. Glutamate Decarboxylase 65 Signals through the Androgen Receptor to Promote Castration Resistance in Prostate Cancer. Cancer Res 2019; 79:4638-4649. [PMID: 31182548 DOI: 10.1158/0008-5472.can-19-0700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/30/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yi Gao
- Department of Urology, RuiJin Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Lu Chen
- Department of Urology, RuiJin Hospital, Shanghai JiaoTong University, Shanghai, China
| | - ZunGuo Du
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Pathology, HuaShan Hospital, Fudan University, Shanghai, China
| | - WenChao Gao
- Department of General Surgery, ChangZheng Hospital, Second Military Medical University, Shanghai, China
| | - ZhengMing Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - XiuJuan Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hai Huang
- Department of Urology, RuiJin Hospital, Shanghai JiaoTong University, Shanghai, China
| | - DanFeng Xu
- Department of Urology, RuiJin Hospital, Shanghai JiaoTong University, Shanghai, China
| | - QingQuan Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Marottoli FM, Priego M, Flores-Barrera E, Pisharody R, Zaldua S, Fan KD, Ekkurthi GK, Brady ST, Morfini GA, Tseng KY, Tai LM. EGF Treatment Improves Motor Behavior and Cortical GABAergic Function in the R6/2 Mouse Model of Huntington's Disease. Mol Neurobiol 2019; 56:7708-7718. [PMID: 31104296 DOI: 10.1007/s12035-019-1634-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/24/2019] [Indexed: 01/13/2023]
Abstract
Recent evidence indicates that disruption of epidermal growth factor (EGF) signaling by mutant huntingtin (polyQ-htt) may contribute to the onset of behavioral deficits observed in Huntington's disease (HD) through a variety of mechanisms, including cerebrovascular dysfunction. Yet, whether EGF signaling modulates the development of HD pathology and the associated behavioral impairments remain unclear. To gain insight on this issue, we used the R6/2 mouse model of HD to assess the impact of chronic EGF treatment on behavior, and cerebrovascular and cortical neuronal functions. We found that bi-weekly treatment with a low dose of EGF (300 µg/kg, i.p.) for 6 weeks was sufficient to effectively improve motor behavior in R6/2 mice and diminish mortality, compared to vehicle-treated littermates. These beneficial effects of EGF treatment were dissociated from changes in cerebrovascular leakiness, a result that was surprising given that EGF ameliorates this deficit in other neurodegenerative diseases. Rather, the beneficial effect of EGF on R6/2 mice behavior was concomitant with a marked amelioration of cortical GABAergic function. As GABAergic transmission in cortical circuits is disrupted in HD, these novel data suggest a potential mechanistic link between deficits in EGF signaling and GABAergic dysfunction in the progression of HD.
Collapse
Affiliation(s)
- Felecia M Marottoli
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mercedes Priego
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Eden Flores-Barrera
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rohan Pisharody
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Steve Zaldua
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kelly D Fan
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Giri K Ekkurthi
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Leon M Tai
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
Modi J, Prentice H, Wu JY. Preparation, Stimulation and Other Uses of Adult Rat Brain Synaptosomes. Bio Protoc 2017; 7:e2664. [PMID: 34595322 DOI: 10.21769/bioprotoc.2664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/16/2017] [Accepted: 11/30/2017] [Indexed: 11/02/2022] Open
Abstract
In this paper, our protocol for preparation of brain synaptosomes is described. Synaptosomes are a valuable model system for analysis of structural components of the synapse as well as for investigation of synaptic function. Synaptosomal preparations are necessary for understanding molecular changes at synapses where critical post-translational modifications of synaptic proteins may occur. Not only are synaptosomes rich in synaptic proteins, but they can be used for analyzing uptake of neurotransmitters into synaptic vesicles and for analysis of the involvement of neurotransmitter synthesis and release. Synaptosomes can be stimulated with increased calcium influx to release neurotransmitters. Synaptosomal preparations have been used in characterizing calcium dependent phosphorylation and activation of the GABA synthesizing enzyme GAD65 (L-glutamic acid decarboxylase with molecular weight of 65 kDa). By examining protein complexes on the membrane of synaptic vesicles obtained from synaptosomal preparations, it was possible to characterize the role of GAD65 in the coupled synthesis and vesicular uptake of GABA (γ-aminobutyric acid) culminating in GABA vesicular release, which contributes in an important way to fine-tuning of GABAergic neurotransmission.
Collapse
Affiliation(s)
- Jigar Modi
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.,Center of Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Howard Prentice
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.,Center of Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA.,Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL, USA
| | - Jang-Yen Wu
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.,Center of Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA.,Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
10
|
Rossignoli G, Phillips RS, Astegno A, Menegazzi M, Voltattorni CB, Bertoldi M. Phosphorylation of pyridoxal 5'-phosphate enzymes: an intriguing and neglected topic. Amino Acids 2017; 50:205-215. [PMID: 29204749 DOI: 10.1007/s00726-017-2521-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022]
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes catalyze a wide range of reactions of amino acids and amines, with the exception of glycogen phosphorylase which exhibits peculiar both substrate preference and chemical mechanism. They represent about 4% of the gene products in eukaryotic cells. Although structure-function investigations regarding these enzymes are copious, their regulation by post-translational modifications is largely unknown. Protein phosphorylation is the most common post-translational modification fundamental in mediating diverse cellular functions. This review aims at summarizing the current knowledge on regulation of PLP enzymes by phosphorylation. Starting from the paradigmatic PLP-dependent glycogen phosphorylase, the first phosphoprotein discovered, we collect data in literature regarding functional phosphorylation events of eleven PLP enzymes belonging to different fold types and discuss the impact of the modification in affecting their activity and localization as well as the implications on the pathogenesis of diseases in which many of these enzymes are involved. The pivotal question is to correlate the structural consequences of phosphorylation among PLP enzymes of different folds with the functional modifications exerted in terms of activity or conformational changes or others. Although the literature shows that the phosphorylation of PLP enzymes plays important roles in mediating diverse cellular functions, our recapitulation of clue findings in the field makes clear that there is still much to be learnt. Besides mass spectrometry-based proteomic analyses, further biochemical and structural studies on purified native proteins are imperative to fully understand and predict how phosphorylation regulates PLP enzymes and to find the relationship between addition of a phosphate moiety and physiological response.
Collapse
Affiliation(s)
- Giada Rossignoli
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy
| | - Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy
| | - Carla Borri Voltattorni
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy.
| |
Collapse
|
11
|
McCune CD, Beio ML, Sturdivant JM, de la Salud-Bea R, Darnell BM, Berkowitz DB. Synthesis and Deployment of an Elusive Fluorovinyl Cation Equivalent: Access to Quaternary α-(1'-Fluoro)vinyl Amino Acids as Potential PLP Enzyme Inactivators. J Am Chem Soc 2017; 139:14077-14089. [PMID: 28906111 PMCID: PMC6052324 DOI: 10.1021/jacs.7b04690] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Developing specific chemical functionalities to deploy in biological environments for targeted enzyme inactivation lies at the heart of mechanism-based inhibitor development but also is central to other protein-tagging methods in modern chemical biology including activity-based protein profiling and proteolysis-targeting chimeras. We describe here a previously unknown class of potential PLP enzyme inactivators; namely, a family of quaternary, α-(1'-fluoro)vinyl amino acids, bearing the side chains of the cognate amino acids. These are obtained by the capture of suitably protected amino acid enolates with β,β-difluorovinyl phenyl sulfone, a new (1'-fluoro)vinyl cation equivalent, and an electrophile that previously eluded synthesis, capture and characterization. A significant variety of biologically relevant AA side chains are tolerated including those for alanine, valine, leucine, methionine, lysine, phenylalanine, tyrosine, and tryptophan. Following addition/elimination, the resulting transoid α-(1'-fluoro)-β-(phenylsulfonyl)vinyl AA-esters undergo smooth sulfone-stannane interchange to stereoselectively give the corresponding transoid α-(1'-fluoro)-β-(tributylstannyl)vinyl AA-esters. Protodestannylation and global deprotection then yield these sterically encumbered and densely functionalized quaternary amino acids. The α-(1'-fluoro)vinyl trigger, a potential allene-generating functionality originally proposed by Abeles, is now available in a quaternary AA context for the first time. In an initial test of this new inhibitor class, α-(1'-fluoro)vinyllysine is seen to act as a time-dependent, irreversible inactivator of lysine decarboxylase from Hafnia alvei. The enantiomers of the inhibitor could be resolved, and each is seen to give time-dependent inactivation with this enzyme. Kitz-Wilson analysis reveals similar inactivation parameters for the two antipodes, L-α-(1'-fluoro)vinyllysine (Ki = 630 ± 20 μM; t1/2 = 2.8 min) and D-α-(1'-fluoro)vinyllysine (Ki = 470 ± 30 μM; t1/2 = 3.6 min). The stage is now set for exploration of the efficacy of this trigger in other PLP-enzyme active sites.
Collapse
Affiliation(s)
| | | | | | | | - Brendan M. Darnell
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304
| | - David B. Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304
| |
Collapse
|