1
|
Birmpilis AI, Karachaliou CE, Samara P, Ioannou K, Selemenakis P, Kostopoulos IV, Kavrochorianou N, Kalbacher H, Livaniou E, Haralambous S, Kotsinas A, Farzaneh F, Trougakos IP, Voelter W, Dimopoulos MA, Bamias A, Tsitsilonis O. Antitumor Reactive T-Cell Responses Are Enhanced In Vivo by DAMP Prothymosin Alpha and Its C-Terminal Decapeptide. Cancers (Basel) 2019; 11:cancers11111764. [PMID: 31717548 PMCID: PMC6896021 DOI: 10.3390/cancers11111764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Prothymosin α (proTα) and its C-terminal decapeptide proTα(100-109) were shown to pleiotropically enhance innate and adaptive immune responses. Their activities have been broadly studied in vitro, focusing primarily on the restoration of the deficient immunoreactivity of cancer patients' leukocytes. Previously, we showed that proTα and proTα(100-109) act as danger-associated molecular patterns (DAMPs), ligate Toll-like receptor-4, signal through TRIF- and MyD88-dependent pathways, promote the maturation of dendritic cells and elicit T-helper type 1 (Th1) immune responses in vitro, leading to the optimal priming of tumor antigen-reactive T-cell functions. Herein, we assessed their activity in a preclinical melanoma model. Immunocompetent mice bearing B16.F1 tumors were treated with two cycles of proTα or proTα(100-109) together with a B16.F1-derived peptide vaccine. Coadministration of proTα or proTα(100-109) and the peptide vaccine suppressed melanoma-cell proliferation, as evidenced by reduced tumor-growth rates. Higher melanoma infiltration by CD3+ T cells was observed, whereas ex vivo analysis of mouse total spleen cells verified the in vivo induction of melanoma-reactive cytotoxic responses. Additionally, increased levels of proinflammatory and Th1-type cytokines were detected in mouse serum. We propose that, in the presence of tumor antigens, DAMPs proTα and proTα(100-109) induce Th1-biased immune responses in vivo. Their adjuvant ability to orchestrate antitumor immunoreactivities can eventually be exploited therapeutically in humans.
Collapse
Affiliation(s)
- Anastasios I. Birmpilis
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
| | - Chrysoula-Evangelia Karachaliou
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, Agia Paraskevi, 15310 Athens, Greece; (C.-E.K.); (E.L.)
| | - Pinelopi Samara
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
| | - Kyriaki Ioannou
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
- King’s College London, Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK;
| | - Platon Selemenakis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece; (P.S.); (A.K.)
| | - Ioannis V. Kostopoulos
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
| | - Nadia Kavrochorianou
- Inflammation Research Group, Transgenic Technology Laboratory, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece; (N.K.); (S.H.)
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen. Germany; (H.K.); (W.V.)
| | - Evangelia Livaniou
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, Agia Paraskevi, 15310 Athens, Greece; (C.-E.K.); (E.L.)
| | - Sylva Haralambous
- Inflammation Research Group, Transgenic Technology Laboratory, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece; (N.K.); (S.H.)
| | - Athanasios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece; (P.S.); (A.K.)
| | - Farzin Farzaneh
- King’s College London, Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK;
| | - Ioannis P. Trougakos
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
| | - Wolfgang Voelter
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen. Germany; (H.K.); (W.V.)
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.-A.D.); (A.B.)
| | - Aristotelis Bamias
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.-A.D.); (A.B.)
| | - Ourania Tsitsilonis
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
- Correspondence: ; Tel.: +30-210-727-4215; Fax: +30-210-727-4635
| |
Collapse
|
3
|
Wu CC, Wang LC, Su YT, Wei WY, Tsai KJ. Synthetic α5β1 integrin ligand PHSRN is proangiogenic and neuroprotective in cerebral ischemic stroke. Biomaterials 2018; 185:142-154. [PMID: 30243150 DOI: 10.1016/j.biomaterials.2018.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/02/2018] [Accepted: 09/09/2018] [Indexed: 12/29/2022]
Abstract
Ischemic stroke is the leading cause of disability and death worldwide. An effective therapeutic approach is urgently needed. Stroke-induced angiogenesis and neurogenesis are essential mechanisms in the long-term repair. Extracellular matrix proteins are also involved in tissue self-repair. Recently, a PHSRN (Pro-His-Ser-Arg-Asn) peptide from the fibronectin synergistic motif that can promote wound healing in epithelia and induce endothelial proliferation and cancer cell migration was identified. The therapeutic potential of this peptide in stroke is unknown. Here, we examined the potential of PHSRN in stroke therapy using an ischemic rat model of middle cerebral artery occlusion (MCAO). PHSRN reduced the infarct volume in MCAO rats, improved neurological function, and alleviated motor function impairment. PHSRN targeted the damaged brain region and distributed to endothelial cells after intraperitoneal injection. PHSRN significantly promoted angiogenesis and vascular endothelial growth factor secretion through activation of integrin α5β1 and its downstream intracellular signals, e.g., focal adhesion kinase, Ras, cRaf, and extracellular-signal-regulated kinase. PHSRN treatment also stimulated neurogenesis in MCAO rats, and maintained neuronal survival and neuronal morphologic complexity via induction of VEGF secretion. Together, these results provide insights into the role of integrin α5β1 following ischemia and support the feasibility of using PHSRN peptide in stroke therapy.
Collapse
Affiliation(s)
- Cheng-Chun Wu
- Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Chao Wang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan; Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Tin Su
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Wei-Yen Wei
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Zhu S, Tang S, Su F. Dioscin inhibits ischemic stroke‑induced inflammation through inhibition of the TLR4/MyD88/NF‑κB signaling pathway in a rat model. Mol Med Rep 2017; 17:660-666. [PMID: 29115455 DOI: 10.3892/mmr.2017.7900] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 05/23/2017] [Indexed: 11/05/2022] Open
Abstract
Diosgenin, as an essential natural steroidal saponin, can be extracted from numerous sources, primarily from fenugreek. It is an important raw material for the synthesis of steroid hormone drugs. It exhibits antitumor, anti‑inflammatory, antioxidation and several other significant pharmacologic actions, and is of high pharmaceutical value. In the present study, the activities and underlying mechanisms of dioscin in the inhibition of ischemic stroke in rats were investigated. Inflammatory responses wer analyzed using ELISA kits and caspase‑3 and caspase‑9 activity was analyzed using Caspase‑3 and caspase‑9 activity kits. Western blot analysis was used to measure Toll‑like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor‑κB (NF‑κB), transforming growth factor‑β1 (TGF‑β1), high‑mobility group protein 1 (HMGB‑1), interleukin‑1 receptor‑associated kinase 1 (IRAK1), and tumor necrosis factor receptor‑associated factor 6 (TRAF6) protein expression. Dioscin inhibited infarct volume and neurological scores in the ischemic stroke rat model. The results demonstrated that dioscin reduced inflammatory responses, and suppressed the expression of TLR4, MyD88, NF‑κB, TGF‑β1, HMGB‑1, IRAK1, and TRAF6 in the rat ischemic stroke model. Taken together, these findings suggested that dioscin inhibited ischemic stroke‑induced inflammation through inhibition of the TLR4/MyD88/NF‑kB‑induced inflammation the rat model, which provided novel insights into the mechanisms underlying the effect of dioscin as an anti‑inflammatory candidate for the treatment of ischemic stroke in in the future.
Collapse
Affiliation(s)
- Shilin Zhu
- Department of Neurology, The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410005, P.R. China
| | - Siyuan Tang
- Xiang Ya Nursing School of Central South University, Changsha, Hunan 410013, P.R. China
| | - Feng Su
- Department of Emergency, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|