1
|
Dupont ME, Jacobsen SB, Christiansen SNN, Tfelt-Hansen J, Smerup MH, Andersen JD, Morling N. Fresh and frozen cardiac tissue are comparable in DNA methylation array β-values, but formalin-fixed, paraffin-embedded tissue may overestimate DNA methylation levels. Sci Rep 2023; 13:16381. [PMID: 37773256 PMCID: PMC10541404 DOI: 10.1038/s41598-023-43788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023] Open
Abstract
Untreated fresh cardiac tissue is the optimal tissue material for investigating DNA methylation patterns of cardiac biology and diseases. However, fresh tissue is difficult to obtain. Therefore, tissue stored as frozen or formalin-fixed, paraffin-embedded (FFPE) is widely used for DNA methylation studies. It is unknown whether storage conditions alter the DNA methylation in cardiac tissue. In this study, we compared the DNA methylation patterns of fresh, frozen, and FFPE cardiac tissue to investigate if the storage method affected the DNA methylation results. We used the Infinium MethylationEPIC assay to obtain genome-wide methylation levels in fresh, frozen, and FFPE tissues from nine individuals. We found that the DNA methylation levels of 21.4% of the examined CpG sites were overestimated in the FFPE samples compared to that of fresh and frozen tissue, whereas 5.7% were underestimated. Duplicate analyses of the DNA methylation patterns showed high reproducibility (precision) for frozen and FFPE tissues. In conclusion, we found that frozen and FFPE tissues gave reproducible DNA methylation results and that frozen and fresh tissues gave similar results.
Collapse
Affiliation(s)
- Mikkel Eriksen Dupont
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Stine Bøttcher Jacobsen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steffan Noe Niikanoff Christiansen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jacob Tfelt-Hansen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Holdgaard Smerup
- Department of Cardiothoracic Surgery, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Steenaard RV, Feelders RA, Dogan F, van Koetsveld PM, Creemers SG, Ettaieb MHT, van Kemenade FJ, Haak HR, Hofland LJ. The Role of the IGF2 Methylation Score in Diagnosing Adrenocortical Tumors with Unclear Malignant Potential-Feasibility of Formalin-Fixed Paraffin-Embedded Tissue. Biomedicines 2023; 11:2013. [PMID: 37509652 PMCID: PMC10377429 DOI: 10.3390/biomedicines11072013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The differentiation between benign and malignant adrenocortical tumors based on pathological assessment can be difficult. We present a series of 17 patients with unclear malignant tumors, of whom six had recurrent or metastatic disease. The assessment of the methylation pattern of insulin-like growth factor 2 (IGF2) regulatory regions in fresh frozen material has shown to be valuable in determining the malignancy of adrenocortical tumors, although this has not been elaborately tested in unclear malignant tumors. Since fresh frozen tissue was only available in six of the patients, we determined the feasibility of using formalin-fixed paraffin-embedded (FFPE) tissue for this method. We isolated DNA from FFPE tissue and matched the fresh frozen tissue of three patients with adrenocortical carcinoma. Methylation patterns of IGF2 regulatory regions were determined by pyrosequencing using different amounts of bisulfite-converted DNA (5 ng, 20 ng, 40 ng). Compared to fresh frozen tissue, FFPE tissue had a higher failure rate (fresh frozen 0%; FFPE 18.5%) and poor-to-moderate replicability (fresh frozen rho = 0.89-0.99, median variation 1.6%; FFPE rho = -0.09-0.85, median variation 7.7%). There was only a poor-to-moderate correlation between results from fresh frozen and FFPE tissue (rho = -0.28-0.70, median variation 13.2%). In conclusion, FFPE tissue is not suitable for determining the IGF2 methylation score in patients with an unclear malignant adrenocortical tumor using the currently used method. We, therefore, recommend fresh frozen storage of resection material for diagnostic and biobank purposes.
Collapse
Affiliation(s)
- Rebecca V Steenaard
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Internal Medicine, Máxima MC, 5504 DB Veldhoven, The Netherlands
- CAPHRI School for Public Health and Primary Care, Ageing and Long-Term Care, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Richard A Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Fadime Dogan
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Peter M van Koetsveld
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Sara G Creemers
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | | | | | - Harm R Haak
- Department of Internal Medicine, Máxima MC, 5504 DB Veldhoven, The Netherlands
- CAPHRI School for Public Health and Primary Care, Ageing and Long-Term Care, Maastricht University, 6229 HX Maastricht, The Netherlands
- Department of Internal Medicine, Division of General Internal Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
3
|
Sahnane N, Rivera D, Libera L, Carnevali I, Banelli B, Facchi S, Gismondi V, Paudice M, Cirmena G, Vellone VG, Sessa F, Varesco L, Tibiletti MG. Pyrosequencing Assay for BRCA1 Methylation Analysis: Results from a Cross-Validation Study. J Mol Diagn 2023; 25:217-226. [PMID: 36739964 DOI: 10.1016/j.jmoldx.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Epithelial ovarian cancers (EOCs) harboring germline or somatic pathogenic variants in BRCA1 and BRCA2 genes show sensitivity to poly(ADP-ribose) polymerase inhibition. It has been suggested that BRCA1 promoter methylation is perhaps a better determinant of therapy response, because of its intrinsic dynamic feature, with respect to genomic scars or gene mutation. Conflicting evidence was reported so far, and the lack of a validated assay to measure promoter methylation was considered a main confounding factor in data interpretation. To contribute to the validation process of a pyrosequencing assay for BRCA1 promoter methylation, 109 EOCs from two Italian centers were reciprocally blindly investigated. By comparing two different pyrosequencing assays, addressing a partially overlapping region of BRCA1 promoter, an almost complete concordance of results was obtained. Moreover, the clinical relevance of this approach was also supported by the finding of BRCA1 transcript down-regulation in BRCA1-methylated EOCs. These findings could lead to the development of a simple and cheap pyrosequencing assay for diagnostics, easily applicable to formalin-fixed, paraffin-embedded tissues. This technique may be implemented in routine clinical practice in the near future to identify EOCs sensitive to poly(ADP-ribose) polymerase inhibitor therapy, thus increasing the subset of women affected by EOCs who could benefit from such treatment.
Collapse
Affiliation(s)
- Nora Sahnane
- Unit of Pathology, Ospedale di Circolo, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi Hospital, Varese, Italy; Research Center for Familial and Hereditary Tumors, Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Daniela Rivera
- Hereditary Cancer Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Libera
- Research Center for Familial and Hereditary Tumors, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Ileana Carnevali
- Unit of Pathology, Ospedale di Circolo, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi Hospital, Varese, Italy; Research Center for Familial and Hereditary Tumors, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Barbara Banelli
- Tumor Epigenetics Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Sofia Facchi
- Research Center for Familial and Hereditary Tumors, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Viviana Gismondi
- Hereditary Cancer Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Paudice
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Gabriella Cirmena
- Hereditary Cancer Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Valerio G Vellone
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy; Anatomic Pathology University Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Fausto Sessa
- Unit of Pathology, Ospedale di Circolo, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi Hospital, Varese, Italy; Research Center for Familial and Hereditary Tumors, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Liliana Varesco
- Hereditary Cancer Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria G Tibiletti
- Unit of Pathology, Ospedale di Circolo, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi Hospital, Varese, Italy; Research Center for Familial and Hereditary Tumors, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
4
|
Schaffner SL, Wassouf Z, Lazaro DF, Xylaki M, Gladish N, Lin DTS, MacIsaac J, Ramadori K, Hentrich T, Schulze-Hentrich JM, Outeiro TF, Kobor MS. Alpha-synuclein overexpression induces epigenomic dysregulation of glutamate signaling and locomotor pathways. Hum Mol Genet 2022; 31:3694-3714. [PMID: 35567546 PMCID: PMC9616577 DOI: 10.1093/hmg/ddac104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
Parkinson’s disease (PD) is a neurological disorder with complex interindividual etiology that is becoming increasingly prevalent worldwide. Elevated alpha-synuclein levels can increase risk of PD and may influence epigenetic regulation of PD pathways. Here, we report genome-wide DNA methylation and hydroxymethylation alterations associated with overexpression of two PD-linked alpha-synuclein variants (wild-type and A30P) in LUHMES cells differentiated to dopaminergic neurons. Alpha-synuclein altered DNA methylation at thousands of CpGs and DNA hydroxymethylation at hundreds of CpGs in both genotypes, primarily in locomotor behavior and glutamate signaling pathway genes. In some cases, epigenetic changes were associated with transcription. SMITE network analysis incorporating H3K4me1 ChIP-seq to score DNA methylation and hydroxymethylation changes across promoters, enhancers, and gene bodies confirmed epigenetic and transcriptional deregulation of glutamate signaling modules in both genotypes. Our results identify distinct and shared impacts of alpha-synuclein variants on the epigenome, and associate alpha-synuclein with the epigenetic etiology of PD.
Collapse
Affiliation(s)
- Samantha L Schaffner
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Zinah Wassouf
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Diana F Lazaro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Nicole Gladish
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - David T S Lin
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Julia MacIsaac
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Katia Ramadori
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Julia M Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany.,Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
5
|
Jarmasz JS, Stirton H, Davie JR, Del Bigio MR. DNA methylation and histone post-translational modification stability in post-mortem brain tissue. Clin Epigenetics 2019; 11:5. [PMID: 30635019 PMCID: PMC6330433 DOI: 10.1186/s13148-018-0596-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Background Epigenetic (including DNA and histone) modifications occur in a variety of neurological disorders. If epigenetic features of brain autopsy material are to be studied, it is critical to understand the post-mortem stability of the modifications. Methods Pig and mouse brain tissue were formalin-fixed and paraffin-embedded, or frozen after post-mortem delays of 0, 24, 48, and 72 h. Epigenetic modifications frequently reported in the literature were studied by DNA agarose gel electrophoresis, DNA methylation enzyme-linked immunosorbent assays, Western blotting, and immunohistochemistry. We constructed a tissue microarray of human neocortex samples with devitalization or death to fixation times ranging from < 60 min to 5 days. Results In pig and mouse brain tissue, we found that DNA cytosine modifications (5mC, 5hmC, 5fC, and 5caC) were stable for ≥ 72 h post-mortem. Histone methylation was generally stable for ≥ 48 h (H3K9me2/K9me3, H3K27me2, H3K36me3) or ≥ 72 h post-mortem (H3K4me3, H3K27me3). Histone acetylation was generally less stable. The levels of H3K9ac, H3K27ac, H4K5ac, H4K12ac, and H4K16ac declined as early as ≤ 24 h post-mortem, while the levels of H3K14ac did not change at ≥ 48 h. Immunohistochemistry showed that histone acetylation loss occurred primarily in the nuclei of large neurons, while immunoreactivity in glial cell nuclei was relatively unchanged. In the human brain tissue array, immunoreactivity for DNA cytosine modifications and histone methylation was stable, while subtle changes were apparent in histone acetylation at 4 to 5 days post-mortem. Conclusion We conclude that global epigenetic studies on human post-mortem brain tissue are feasible, but great caution is needed for selection of post-mortem delay matched controls if histone acetylation is of interest. Electronic supplementary material The online version of this article (10.1186/s13148-018-0596-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica S Jarmasz
- Department of Human Anatomy and Cell Science, University of Manitoba, Room 674 JBRC - 727 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada
| | - Hannah Stirton
- Max Rady College of Medicine, University of Manitoba, Room 260 Brodie Centre - 727 McDermot Avenue, Winnipeg, MB, R3E 3P5, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Room 333A BMSB, 745 McDermot Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba, Room 401 Brodie Centre - 727 McDermot Avenue, Winnipeg, MB, R3E 3P5, Canada.
| |
Collapse
|
6
|
Van Wesenbeeck L, Janssens L, Meeuws H, Lagatie O, Stuyver L. Droplet digital PCR is an accurate method to assess methylation status on FFPE samples. Epigenetics 2018. [PMID: 29527977 PMCID: PMC5997148 DOI: 10.1080/15592294.2018.1448679] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Most tissue samples available for cancer research are archived as formalin-fixed paraffin-embedded (FFPE) samples. However, the fixation process and the long storage duration lead to DNA fragmentation and hinder epigenome analysis. The use of droplet digital PCR (ddPCR) to detect DNA methylation has recently emerged. In this study, we compare an optimized ddPCR assay with a conventional qPCR assay by targeting a dilution series of control DNA. In addition, we compare the ddPCR technology with results from Infinium arrays targeting two separate CpG sites on a set of colon adenoma FFPE samples. Our data demonstrate that qPCR and ddPCR assess methylation status equally well on dilution controls with a high DNA input. However, the methylation detection on low-input samples is more accurate using ddPCR. The proposed primer design (methylation-independent primers with amplification of solely the converted DNA target) will allow for methylation detection, independent of bisulfite conversion efficiency. Those data show that ddPCR can be used for methylation analysis on FFPE samples with a wide range of DNA input and that the precision of the assay depends largely on the total amount of amplifiable DNA fragments. Due to accessibility of the ddPCR technology and its accuracy on high- as well as low-DNA input samples, we propose the use of this approach for studies involving degraded FFPE samples.
Collapse
Affiliation(s)
| | - Leen Janssens
- a Janssen Diagnostics, A Division of Janssen Pharmaceutica , Beerse , Belgium
| | - Hanne Meeuws
- a Janssen Diagnostics, A Division of Janssen Pharmaceutica , Beerse , Belgium
| | - Ole Lagatie
- a Janssen Diagnostics, A Division of Janssen Pharmaceutica , Beerse , Belgium
| | - Lieven Stuyver
- a Janssen Diagnostics, A Division of Janssen Pharmaceutica , Beerse , Belgium
| |
Collapse
|