1
|
Huang YY, Cheng YY, Chen HY, Fu RH, Chang YJ, Yang TH. Chinese herbal medicine for the treatment of children with cerebral palsy: a meta-analysis of randomized controlled trials with core herbs exploration. Front Pharmacol 2025; 16:1500095. [PMID: 40078275 PMCID: PMC11897310 DOI: 10.3389/fphar.2025.1500095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/02/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Chinese herbal medicine (CHM) taken orally is frequently utilized to enhance functional ability and independence in cerebral palsy (CP); nonetheless, there is a lack of current evidence regarding the efficacy of oral CHM in treating CP. Additionally, the general complexities of CHM prescriptions often obscure the underlying mechanisms. Our study aims to assess the efficacy of oral CHM in treating CP, a meta-analysis will be conducted on randomized clinical trials (RCTs). Materials and methods We searched Cochrane Library, PubMed, Embase, Scopus, PubMed Central, ClinicalTrials.gov, and China National Knowledge Infrastructure (CNKI), from 1990 to 2022. The primary outcome was the improvement in Effectiveness rate (ER). The secondary outcome was the improvement of motor function (GMFM). Subgroup analysis and trial sequential analysis (TSA) were conducted to confirm results consistency. Core CHMs were investigated through system pharmacology analysis. Results Seventeen RCTs were analyzed, in which CHMs with Standard treatment (ST) were compared to ST alone. All participants were aged <11 years. More participants in the CHM group achieved prominent improvement in ER (RR: 1.21, 95% CI: 1.13-1.30, p-value < 0.001, I2 = 32%) and higher GMFM improvement (SMD: 1.49; 95% CI: 1.33-1.65, p-value < 0.001, I2 = 92%). TSA also showed similar results with proper statistical power. Core CHMs, such as Glycyrrhiza uralensis Fisch. Ex DC., Poria cocos (Schw.) Wolf, Paeonia lactiflora Pall., processed Rehmannia glutinosa (Gaertn.) DC., Astragalus mongholicus Bunge, and Angelica sinensis (Oliv.) Diels, exerted effects on immune modulation and metabolism systems. The subgroup analysis showed participants using core CHMs or longer CHM treatment duration, and studies enrolling CP with spastic or mixed type, or mild-to-moderate severity had better outcomes in CHM groups with less heterogeneity. Conclusion CHMs may have a positive impact on managing pediatric CP; however, the potential bias in study design should be improved. Systematic Review Registration Identifier CRD42023424754.
Collapse
Affiliation(s)
- Ying-Yu Huang
- Division of Chinese Internal and Pediatric Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Ya-Yun Cheng
- Division of Chinese Acupuncture and Traumatology, Center of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsing-Yu Chen
- Division of Chinese Internal and Pediatric Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ren-Huei Fu
- Department of Pediatrics and Neonatology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yi-Jung Chang
- Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tsung-Hsien Yang
- Division of Chinese Internal and Pediatric Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Tarhini S, Crespo-Quiles C, Buhler E, Pineau L, Pallesi-Pocachard E, Villain S, Saha S, Silvagnoli L, Stamminger T, Luche H, Cardoso C, Pais de Barros JP, Burnashev N, Szepetowski P, Bauer S. Cytomegalovirus infection of the fetal brain: intake of aspirin during pregnancy blunts neurodevelopmental pathogenesis in the offspring. J Neuroinflammation 2024; 21:298. [PMID: 39548550 PMCID: PMC11566200 DOI: 10.1186/s12974-024-03276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Congenital cytomegalovirus (CMV) infections represent one leading cause of human neurodevelopmental disorders. Despite their high prevalence and severity, no satisfactory therapy is available and pathophysiology remains elusive. The pathogenic involvement of immune processes occurring in infected developing brains has been increasingly documented. Here, we have used our previously validated rat model of CMV infection of the fetal brain in utero to test whether the maternal administration of four different drugs with immunomodulatory properties would have an impact on the detrimental postnatal outcome of CMV infection. METHODS CMV infection of the rat fetal brain was done intracerebroventricularly. Each of the drugs, including acetylsalicylic acid (aspirin, ASA), a classical inhibitor of cyclooxygenases Cox-1 and Cox-2, the two key rate-limiting enzymes of the arachidonic acid-to-prostaglandins (PG) synthesis pathway, was administered to pregnant dams until delivery. ASA was selected for subsequent analyses based on the improvement in postnatal survival. A combination of qRT-PCR, mass spectrometry-based targeted lipidomics, immunohistochemistry experiments, monitoring of neurologic phenotypes and electrophysiological recordings was used to assess the impact of ASA in CMV-infected samples and pups. The postnatal consequences of CMV infection were also analyzed in rats knocked-out (KO) for Cox-1. RESULTS Increased PGE2 levels and increased proportions of Cox-1+ and Cox-2+ microglia were detected in CMV-infected developing brains. Maternal intake of ASA led to decreased proportion of Cox-1+ fetal, but not neonatal, microglia, while leaving the proportions of Cox-2+ microglia unchanged. Maternal intake of ASA also improved the key postnatal in vivo phenotypes caused by CMV infection and dramatically prevented against the spontaneous epileptiform activity recorded in neocortical slices from CMV-infected pups. In contrast with maternal intake of ASA, Cox-1 KO pups displayed no improvement in the in vivo phenotypes after CMV infection. However, as with ASA administration, the spontaneous epileptiform activity was dramatically inhibited in neocortical slices from CMV-infected, Cox-1 KO pups. CONCLUSION Overall, our data indicate that, in the context of CMV infection of the fetal brain, maternal intake of ASA during pregnancy improved CMV-related neurodevelopmental alterations in the offspring, likely via both Cox-1 dependent and Cox-1 independent mechanisms, and provide proof-of-principle for the use of ASA against the detrimental outcomes of congenital CMV infections.
Collapse
Affiliation(s)
- Sarah Tarhini
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
| | - Carla Crespo-Quiles
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
- Alicante Neuroscience Institute, Miguel Hernandez University, CSIC, San Juan de Alicante, Alicante, Spain
| | - Emmanuelle Buhler
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
| | - Louison Pineau
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
- Institute for Physiology and Pathophysiology, Johannes Gutenberg University, Mainz, Germany
| | - Emilie Pallesi-Pocachard
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
| | - Solène Villain
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
| | - Saswati Saha
- TAGC, INSERM, Aix Marseille University, Turing Centre for Living Systems, Marseille, France
- Argenx France SAS, 92130, Issy-Les-Moulineaux, France
| | - Lucas Silvagnoli
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
| | | | - Hervé Luche
- CIPHE, PHENOMIN, INSERM, CNRS, Aix-Marseille University, Marseille, France
| | - Carlos Cardoso
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
| | | | - Nail Burnashev
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
| | - Pierre Szepetowski
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France.
| | - Sylvian Bauer
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France.
| |
Collapse
|
3
|
Sandran NG, Badawi N, Gecz J, van Eyk CL. Cerebral palsy as a childhood-onset neurological disorder caused by both genetic and environmental factors. Semin Fetal Neonatal Med 2024; 29:101551. [PMID: 39523172 DOI: 10.1016/j.siny.2024.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cerebral palsy (CP) is a clinical term used to describe a spectrum of movement and posture disorders resulting from non-progressive disturbances in the developing fetal brain. The clinical diagnosis of CP does not include pathological or aetiological defining features, therefore both genetic and environmental causal pathways are encompassed under the CP diagnostic umbrella. In this review, we explore several genetic causal pathways, including both monogenic and polygenic risks, and present evidence supporting the multifactorial contributions to CP. Historically, CP has been associated with various risk factors such as pre-term birth, multiple gestation, intrauterine growth restriction (IUGR), maternal infection, and perinatal asphyxia. Thus, we also examine genetic predispositions that may contribute to these risk factors. Understanding the specific aetiology of CP enables more tailored treatments, especially with the increasing potential for early genetic testing.
Collapse
Affiliation(s)
- Nandini G Sandran
- Neurogenetics Research Program, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australian Collaborative Cerebral Palsy Research Group, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Nadia Badawi
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, Australia; Grace Centre for Newborn Intensive Care, The Children's Hospital Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, Australia
| | - Jozef Gecz
- Neurogenetics Research Program, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australian Collaborative Cerebral Palsy Research Group, Robinson Research Institute, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Clare L van Eyk
- Neurogenetics Research Program, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australian Collaborative Cerebral Palsy Research Group, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| |
Collapse
|
4
|
Zheng H, Fu L, Xu Y, Zhang TF, Che D, Li JQ, Zhou H, Jiang Z, Lin K, Zhang L, Pi L, Gu X. The PTGS1 (rs1330344) CC Genotype Contributes to Susceptibility to Kawasaki Disease in Southern Chinese Children. Angiology 2023; 74:832-839. [PMID: 36056535 DOI: 10.1177/00033197221118343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Kawasaki disease (KD) is an acute systemic vascular disease complicated by coronary artery injury. Although polymorphisms in prostaglandin-endoperoxide synthase 1 (PTGS1) are being increasingly explored in cardiovascular diseases, little is known regarding the connection between PTGS1 polymorphisms and KD risk. We evaluated 834 KD patients and 1474 healthy controls to explore the relationship between PTGS1 polymorphisms (rs1330344 and rs5788) and KD risk. Our results showed that the rs1330344 CC genotype was significantly associated with KD risk and coronary artery injury in children with KD. In combined analysis, individuals with 1-2 unfavorable genotypes had an increased risk of KD, compared with those with no risk genotype. Stratified analysis indicated that the rs1330344 CC genotype is strongly associated with increased risk of KD in children aged ≤60 months and females. Moreover, carrying 1-2 of these SNP genotypes had a higher risk of KD than those who harbored none of them in children ≤60 months of age and females; the risk of coronary artery dilatations/small aneurysms and medium/giant aneurysms was also significantly increased in KD patients. In summary, the PTGS1 rs1330344 CC genotype is associated with increased susceptibility to KD, which may contribute to KD pathogenesis and serve as a genetic biomarker.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanyan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ting Fang Zhang
- Pharmacy Department, Jiujiang NO.5 People's Hospital, Jiujiang, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jin Qing Li
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - HuaZhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - ZhiYong Jiang
- Department of Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kun Lin
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Department of Cardiology, Guangzhou Women and Children's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiong Gu
- Department of Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Xu Y, Liu Y, Li K, Miao S, Lv C, Wang C, Zhao J. Regulation of PGE 2 Pathway During Cerebral Ischemia Reperfusion Injury in Rat. Cell Mol Neurobiol 2021; 41:1483-1496. [PMID: 32621176 PMCID: PMC11448554 DOI: 10.1007/s10571-020-00911-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/22/2020] [Indexed: 01/14/2023]
Abstract
Stroke is an acute central nervous system disease with high morbidity and mortality rate. Cerebral ischemia reperfusion (I/R) injury is easily induced during the development or treatment of stroke and subsequently leads to more serious brain damage. Prostaglandin E2 (PGE2) is one of the most important inflammatory mediators in the brain and contributes to both physiological and pathophysiological functions. It may be upregulated and subsequently plays a key role in cerebral ischemia reperfusion injury. The synthesis and degradation of PGE2 is an extremely complex process, with multiple key stages and molecules. However, there are few comprehensive and systematic studies conducted to investigate the synthesis and degradation of PGE2 during cerebral I/R injury, which is what we want to demonstrate. In this study, qRT-PCR and immunoblotting demonstrated that the key enzymes in PGE2 synthesis, including COX-1, COX-2, mPGES-1 and mPGES-2, were upregulated during cerebral I/R injury, but 15-PGDH, the main PGE2 degradation enzyme, was downregulated. In addition, two of PGE2 receptors, EP3 and EP4, were also increased. Meanwhile, immunohistochemistry demonstrated the localization of these molecules in ischemic areas, including cortex, striatum and hippocampus, and reflected their expression patterns in different regions. Combining the results of PCR, Western blotting and immunohistochemistry, we can determine where the increase or decrease of these molecules occurs. Overall, these results further indicate a possible pathway that mediates enhanced production of PGE2, and thus that may impact production of inflammatory cytokines including IL-1β and TNF-α during cerebral I/R injury.
Collapse
Affiliation(s)
- Yunfei Xu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
| | - Ying Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.
| | - Kexin Li
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
| | - Shuying Miao
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Caihong Lv
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
| | - Chunjiang Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Shi AC, Rohlwink U, Scafidi S, Kannan S. Microglial Metabolism After Pediatric Traumatic Brain Injury - Overlooked Bystanders or Active Participants? Front Neurol 2021; 11:626999. [PMID: 33569038 PMCID: PMC7868439 DOI: 10.3389/fneur.2020.626999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Microglia play an integral role in brain development but are also crucial for repair and recovery after traumatic brain injury (TBI). TBI induces an intense innate immune response in the immature, developing brain that is associated with acute and chronic changes in microglial function. These changes contribute to long-lasting consequences on development, neurologic function, and behavior. Although alterations in glucose metabolism are well-described after TBI, the bulk of the data is focused on metabolic alterations in astrocytes and neurons. To date, the interplay between alterations in intracellular metabolic pathways in microglia and the innate immune response in the brain following an injury is not well-studied. In this review, we broadly discuss the microglial responses after TBI. In addition, we highlight reported metabolic alterations in microglia and macrophages, and provide perspective on how changes in glucose, fatty acid, and amino acid metabolism can influence and modulate the microglial phenotype and response to injury.
Collapse
Affiliation(s)
- Aria C Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ursula Rohlwink
- Neuroscience Institute and Division of Neurosurgery, University of Cape Town, Cape Town, South Africa.,The Francis Crick Institute, London, United Kingdom
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Lewis SA, Shetty S, Wilson BA, Huang AJ, Jin SC, Smithers-Sheedy H, Fahey MC, Kruer MC. Insights From Genetic Studies of Cerebral Palsy. Front Neurol 2021; 11:625428. [PMID: 33551980 PMCID: PMC7859255 DOI: 10.3389/fneur.2020.625428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Cohort-based whole exome and whole genome sequencing and copy number variant (CNV) studies have identified genetic etiologies for a sizable proportion of patients with cerebral palsy (CP). These findings indicate that genetic mutations collectively comprise an important cause of CP. We review findings in CP genomics and propose criteria for CP-associated genes at the level of gene discovery, research study, and clinical application. We review the published literature and report 18 genes and 5 CNVs from genomics studies with strong evidence of for the pathophysiology of CP. CP-associated genes often disrupt early brain developmental programming or predispose individuals to known environmental risk factors. We discuss the overlap of CP-associated genes with other neurodevelopmental disorders and related movement disorders. We revisit diagnostic criteria for CP and discuss how identification of genetic etiologies does not preclude CP as an appropriate diagnosis. The identification of genetic etiologies improves our understanding of the neurobiology of CP, providing opportunities to study CP pathogenesis and develop mechanism-based interventions.
Collapse
Affiliation(s)
- Sara A Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Sheetal Shetty
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Bryce A Wilson
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Aris J Huang
- Programs in Neuroscience and Molecular & Cellular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Hayley Smithers-Sheedy
- Cerebral Palsy Alliance, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States.,Programs in Neuroscience and Molecular & Cellular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
8
|
Pham R, Mol BW, Gecz J, MacLennan AH, MacLennan SC, Corbett MA, van Eyk CL, Webber DL, Palmer LJ, Berry JG. Definition and diagnosis of cerebral palsy in genetic studies: a systematic review. Dev Med Child Neurol 2020; 62:1024-1030. [PMID: 32542675 DOI: 10.1111/dmcn.14585] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 01/01/2023]
Abstract
AIM To conduct a systematic review of phenotypic definition and case ascertainment in published genetic studies of cerebral palsy (CP) to inform guidelines for the reporting of such studies. METHOD Inclusion criteria comprised genetic studies of candidate genes, with CP as the outcome, published between 1990 and 2019 in the PubMed, Embase, and BIOSIS Citation Index databases. RESULTS Fifty-seven studies met the inclusion criteria. We appraised how CP was defined, the quality of information on case ascertainment, and compliance with international consensus guidelines. Seven studies (12%) were poorly described, 33 studies (58%) gave incomplete information, and 17 studies (30%) were well described. Missing key information precluded determining how many studies complied with the definition by Rosenbaum et al. Only 18 out of 57 studies (32%) were compliant with the Surveillance of Cerebral Palsy in Europe (SCPE) international guidelines on defining CP. INTERPRETATION Limited compliance with international consensus guidelines on phenotypic definition and mediocre reporting of CP case ascertainment hinders the comparison of results among genetic studies of CP (including meta-analyses), thereby limiting the quality, interpretability, and generalizability of study findings. Compliance with the SCPE guidelines is important for ongoing gene discovery efforts in CP, given the potential for misclassification of unrelated neurological conditions as CP.
Collapse
Affiliation(s)
- Ryan Pham
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Ben W Mol
- Discipline of Obstetrics & Gynaecology, University of Adelaide, Adelaide, South Australia, Australia.,Discipline of Obstetrics & Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Jozef Gecz
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Alastair H MacLennan
- Discipline of Obstetrics & Gynaecology, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Suzanna C MacLennan
- Neurology Department, Women's and Children's Hospital, North Adelaide, South Australia, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark A Corbett
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Clare L van Eyk
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Dani L Webber
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Lyle J Palmer
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Jesia G Berry
- Discipline of Obstetrics & Gynaecology, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
van Eyk C, Corbett M, Maclennan A. The emerging genetic landscape of cerebral palsy. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:331-342. [DOI: 10.1016/b978-0-444-63233-3.00022-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Rai-Bhogal R, Ahmad E, Li H, Crawford DA. Microarray analysis of gene expression in the cyclooxygenase knockout mice - a connection to autism spectrum disorder. Eur J Neurosci 2017; 47:750-766. [PMID: 29161772 DOI: 10.1111/ejn.13781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023]
Abstract
The cellular and molecular events that take place during brain development play an important role in governing function of the mature brain. Lipid-signalling molecules such as prostaglandin E2 (PGE2 ) play an important role in healthy brain development. Abnormalities along the COX-PGE2 signalling pathway due to genetic or environmental causes have been linked to autism spectrum disorder (ASD). This study aims to evaluate the effect of altered COX-PGE2 signalling on development and function of the prenatal brain using male mice lacking cyclooxygenase-1 and cyclooxygenase-2 (COX-1-/- and COX-2-/- ) as potential model systems of ASD. Microarray analysis was used to determine global changes in gene expression during embryonic days 16 (E16) and 19 (E19). Gene Ontology: Biological Process (GO:BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were implemented to identify affected developmental genes and cellular processes. We found that in both knockouts the brain at E16 had nearly twice as many differentially expressed genes, and affected biological pathways containing various ASD-associated genes important in neuronal function. Interestingly, using GeneMANIA and Cytoscape we also show that the ASD-risk genes identified in both COX-1-/- and COX-2-/- models belong to protein-interaction networks important for brain development despite of different cellular localization of these enzymes. Lastly, we identified eight genes that belong to the Wnt signalling pathways exclusively in the COX-2-/- mice at E16. The level of PKA-phosphorylated β-catenin (S552), a major activator of the Wnt pathway, was increased in this model, suggesting crosstalk between the COX-2-PGE2 and Wnt pathways during early brain development. Overall, these results provide further molecular insight into the contribution of the COX-PGE2 pathways to ASD and demonstrate that COX-1-/- and COX-2-/- animals might be suitable new model systems for studying the disorders.
Collapse
Affiliation(s)
- Ravneet Rai-Bhogal
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada.,Department of Biology, York University, Toronto, ON, Canada
| | - Eizaaz Ahmad
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada.,Department of Biology, York University, Toronto, ON, Canada
| | - Hongyan Li
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Dorota A Crawford
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada.,Department of Biology, York University, Toronto, ON, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
11
|
Kaur C, Rathnasamy G, Ling EA. Biology of Microglia in the Developing Brain. J Neuropathol Exp Neurol 2017; 76:736-753. [PMID: 28859332 DOI: 10.1093/jnen/nlx056] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microglia exist in different morphological forms in the developing brain. They show a small cell body with scanty cytoplasm with many branching processes in the grey matter of the developing brain. However, in the white matter such as the corpus callosum where the unmyelinated axons are loosely organized, they appear in an amoeboid form having a round cell body endowed with copious cytoplasm rich in organelles. The amoeboid cells eventually transform into ramified microglia in the second postnatal week when the tissue becomes more compact with the onset of myelination. Microglia serve as immunocompetent macrophages that act as neuropathology sensors to detect and respond swiftly to subtle changes in the brain tissues in pathological conditions. Microglial functions are broadly considered as protective in the normal brain development as they phagocytose dead cells and sculpt neuronal connections by pruning excess axons and synapses. They also secrete a number of trophic factors such as insulin-like growth factor-1 and transforming growth factor-β among many others that are involved in neuronal and oligodendrocyte survival. On the other hand, microglial cells when activated produce a plethora of molecules such as proinflammatory cytokines, chemokines, reactive oxygen species, and nitric oxide that are implicated in the pathogenesis of many pathological conditions such as epilepsy, cerebral palsy, autism, and perinatal hypoxic-ischemic brain injury. Although many studies have investigated the origin and functions of the microglia in the developing brain, in-depth in vivo studies along with analysis of their transcriptome and epigenetic changes need to be undertaken to elucidate their full potential be it protective or neurotoxic. This would lead to a better understanding of their roles in the healthy and diseased developing brain and advancement of therapeutic strategies to target microglia-mediated neurotoxicity.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
12
|
Ten VS. Mitochondrial dysfunction in alveolar and white matter developmental failure in premature infants. Pediatr Res 2017; 81:286-292. [PMID: 27901512 PMCID: PMC5671686 DOI: 10.1038/pr.2016.216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/19/2016] [Indexed: 01/11/2023]
Abstract
At birth, some organs in premature infants are not developed enough to meet challenges of the extra-uterine life. Although growth and maturation continues after premature birth, postnatal organ development may become sluggish or even arrested, leading to organ dysfunction. There is no clear mechanistic concept of this postnatal organ developmental failure in premature neonates. This review introduces a concept-forming hypothesis: Mitochondrial bioenergetic dysfunction is a fundamental mechanism of organs maturation failure in premature infants. Data collected in support of this hypothesis are relevant to two major diseases of prematurity: white matter injury and broncho-pulmonary dysplasia. In these diseases, totally different clinical manifestations are defined by the same biological process, developmental failure of the main functional units-alveoli in the lungs and axonal myelination in the brain. Although molecular pathways regulating alveolar and white matter maturation differ, proper bioenergetic support of growth and maturation remains critical biological requirement for any actively developing organ. Literature analysis suggests that successful postnatal pulmonary and white matter development highly depends on mitochondrial function which can be inhibited by sublethal postnatal stress. In premature infants, sublethal stress results mostly in organ maturation failure without excessive cellular demise.
Collapse
Affiliation(s)
- Vadim S. Ten
- Department of Pediatrics, Division of Neonatology, Columbia University, New York, New York
| |
Collapse
|